An Examination Of College Persistence Factors For Students From Different Rural Communities: A Multilevel Analysis

Andrew Hudacs
University of Vermont

Follow this and additional works at: http://scholarworks.uvm.edu/graddis
Part of the Higher Education Commons, and the Statistics and Probability Commons

Recommended Citation
Hudacs, Andrew, "An Examination Of College Persistence Factors For Students From Different Rural Communities: A Multilevel Analysis" (2017). Graduate College Dissertations and Theses. 682.
http://scholarworks.uvm.edu/graddis/682

This Dissertation is brought to you for free and open access by the Dissertations and Theses at ScholarWorks @ UVM. It has been accepted for inclusion in Graduate College Dissertations and Theses by an authorized administrator of ScholarWorks @ UVM. For more information, please contact donna.omalley@uvm.edu.
AN EXAMINATION OF COLLEGE PERSISTENCE FACTORS FOR STUDENTS FROM DIFFERENT RURAL COMMUNITIES: A MULTILEVEL ANALYSIS

A Dissertation Presented

by

Andrew Hudacs

to

The Faculty of the Graduate College

of

The University of Vermont

In Partial Fulfillment of the Requirements for the Degree of Doctor of Education Specializing in Educational Leadership and Policy Studies

January, 2017

Defense Date: November 2, 2016
Dissertation Examination Committee:

Kieran Killeen, Ph.D., Advisor
Dona Brown, Ph.D., Chairperson
Sean Hurley, Ph.D.
Vijay Kanagalla, Ph.D.
Cynthia J. Forehand, Ph.D., Dean of the Graduate College
Students transitioning into college from public school require more than just academic readiness; they also need the personal attributes that allow them to successfully transition into a new community (Braxton, Doyle, Hartley III, Hirschy, Jones, & McLendon, 2014; Nora, 2002; Nora, 2004; Tinto, 1975). Rural students have a different educational experience than their peers at schools in suburban and urban locations (DeYoung & Howley, 1990; Gjelten, 1982). Additionally, the resources, culture, and educational opportunities at rural schools also vary among different types of rural communities. Although some studies have examined the influence of rural students’ academic achievement on college access and success, little research has analyzed the relationship between students of different types of rural communities and their persistence in post-secondary education.

This study examined the likelihood for college-going students from three different types of rural communities to successfully transition into and persist at a four-year residential college. Multilevel logistic modeling was used to analyze the likelihood for students to persist in college for up to two academic years based on whether they were from rural tourist communities, college communities, and other rural communities. The analysis controlled for a variety of student and high school factors. Findings revealed that student factors related to poverty and academic readiness have the greatest effects, while the type of rural community has no significant influence on college persistence.
ACKNOWLEDGEMENTS

First, I am grateful to my family for helping me to undertake this project. I am especially thankful to my parents, John and Susanne, for their endless support and encouragement to pursue doctoral studies. It is also with exceptional gratitude that I thank my lovely wife, Mara, who has helped me to become a better student and researcher. Your inspiration and understanding has been immeasurable. Also, I thank my brother Chris and his partner Emily with their positive comments and cheer along the way.

This study would not have been possible without support from many individuals at the Vermont Agency of Education and Vermont Student Assistance Corporation. The first two among them are Secretary Rebecca Holcombe and Deputy Secretary Amy Fowler. The continuous support, encouragement, and inquiry into my work provided a motivation and obligation to push forward. Moreover, your outstanding capacity to remain focused on improving education with a critical lens has shaped me as both a doctoral student and state education agency employee. Also, thank you for approving the use of the data. I also owe substantial gratitude to Wanda Arce, Scott Giles, and Robert Walsh for providing data from the Vermont Student Assistance Corporation. Wendy Geller, Jen Perry, Mike Bailey, Glenn Bailey, Dan Shepard, and Dave Kelly, thank you for coordinating the data sharing and entertaining the many questions I had about utilizing the various data sets. Last, but certainly not least, I thank my supervisor,
Michael Hock, for his continuous support, humor, and perspective about graduate studies and using research to support education.

I also owe substantial gratitude to the several additional individuals who provided guidance, resources, and data during for my doctoral research: Greg Gerdel of the Vermont Department of Tourism and Marketing, Victor Gauto of the Vermont Department of Taxes, and the librarians of the Waterbury Public Library. I thank my friends from high school, college, Vermont, Bolton Valley, and rural America for your humbling support throughout the process. Also, the support and leadership of Dr. Judith Aiken has been inimitable.

Lastly, it is with deep gratitude that I thank my dissertation committee. First, Dr. Kieran Killeen, thank you for being my advisor and providing guidance during the process. Dr. Sean Hurley, who was exceptionally generous with the time and space for me to learn quantitative methods. Dr.Vijay Kanagala, whose positive approach and passion for studying college success and completion factors has been contagious. Dr. Dona Brown, thank you for your excitement and interest to bridge academic departments and perspectives on tourism in New England for this project.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>ii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>vi</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>vii</td>
</tr>
<tr>
<td>CHAPTER 1: INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>1.1. Problem Statement</td>
<td>2</td>
</tr>
<tr>
<td>1.2. Purpose of the Study</td>
<td>3</td>
</tr>
<tr>
<td>1.3. Hypothesis</td>
<td>4</td>
</tr>
<tr>
<td>CHAPTER 2: REVIEW OF THE LITERATURE</td>
<td>7</td>
</tr>
<tr>
<td>2.1. The Role and Relationship of Rural Communities on the Development of Youth Assets</td>
<td>7</td>
</tr>
<tr>
<td>2.1.2. What are rural communities?</td>
<td>7</td>
</tr>
<tr>
<td>2.2. Rural Community and Education Factors of Northern New England</td>
<td>9</td>
</tr>
<tr>
<td>2.2.1. Tourism of Northern New England and Rural Vermont</td>
<td>10</td>
</tr>
<tr>
<td>2.2.2. Colleges of Rural Vermont</td>
<td>13</td>
</tr>
<tr>
<td>2.2.3. Colleges and the Communities Where they Reside</td>
<td>15</td>
</tr>
<tr>
<td>2.2.4. Tourism and Communication Interactions</td>
<td>18</td>
</tr>
<tr>
<td>2.3. Capital and Character of Rural Communities</td>
<td>23</td>
</tr>
<tr>
<td>2.4. Theoretical Models of College Completion</td>
<td>24</td>
</tr>
<tr>
<td>2.5. Factors that Influence a Student’s Transition and Persistence into a Four-Year Residential College</td>
<td>33</td>
</tr>
<tr>
<td>2.5.1. College Transitions and Persistence</td>
<td>33</td>
</tr>
<tr>
<td>2.5.2. College Completion for Rural Students</td>
<td>34</td>
</tr>
<tr>
<td>CHAPTER 3: METHODOLOGY</td>
<td>38</td>
</tr>
<tr>
<td>3.1. Data Collection</td>
<td>38</td>
</tr>
<tr>
<td>3.2. Study Sample</td>
<td>39</td>
</tr>
<tr>
<td>3.3. Sources of Data</td>
<td>40</td>
</tr>
<tr>
<td>3.3.1. Description of Data Sources</td>
<td>40</td>
</tr>
<tr>
<td>3.3.2. Identifying Eligible Postsecondary Institutions for the Analysis</td>
<td>44</td>
</tr>
<tr>
<td>3.4. Constructing the Variables and Data Sets</td>
<td>44</td>
</tr>
<tr>
<td>3.4.1. Rural Designations</td>
<td>44</td>
</tr>
<tr>
<td>3.4.2. Community Types</td>
<td>46</td>
</tr>
<tr>
<td>3.4.3. School Factor Data Set</td>
<td>52</td>
</tr>
<tr>
<td>3.4.4. Student Factor Variables</td>
<td>54</td>
</tr>
<tr>
<td>3.4.5. Final Data Set</td>
<td>63</td>
</tr>
<tr>
<td>3.4.6. Construction of the Dependent Variable: College Persistence</td>
<td>64</td>
</tr>
<tr>
<td>3.5. Missing Values</td>
<td>66</td>
</tr>
<tr>
<td>3.5.1. Multiple Imputation Methodology</td>
<td>68</td>
</tr>
</tbody>
</table>
3.6. Associations of Group Variables

CHAPTER 4: RESULTS

4.1. Key Findings for Research Question 1
 4.1.1. Frequency and Distribution Analysis of Variables
 4.1.2. Building the Multilevel Model
4.2. Key Finding for Research Question 2
4.3. Key Finding for Research Question 3

CHAPTER 5: DISCUSSION

5.1. Discussion of Findings for Research Question 1
5.2. Discussion of Findings for Research Question 2
5.3. Discussion of Findings for Research Question 3
5.4. Limitations
5.5. Conclusion

REFERENCES

APPENDICES
LIST OF TABLES

Table 1. Frequency of cases by race and ethnicity for final sample56
Table 2. Descriptive Statistics for Standardized Composite SAT Scores.59
Table 3. The frequency and percentage of total cases for each dichotomous variable63
Table 4. Summary of variables with missing values ..66
Table 5. Crosstabs of student background and demographic variables sorted by college Persistence ..71
Table 6. Descriptive statistics of standardized composite SAT scores for students who did or did not persist in college ...72
Table 7. Parameter Estimates for Multilevel Models with a Single Explanatory Variable for Student Background Factors on College Persistence74
Table 8. Parameter Estimates for Multilevel Models with a Single Explanatory Level 2 Variable for School Characteristics...74
Table 9. Effect of Student Factors on College Persistence ..76
Table 10. Effects for Multilevel Models with a Single Predictor Variable for Community Type ..77
Table 11. Crosstabs Count of Students by Tourist Town Membership.........................82
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figures</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1. Histograms of Standardized Composite SAT Scores</td>
<td>59</td>
</tr>
<tr>
<td>Figure 2. Survey Questions with Response Options, Newly Constructed Variable Titles with Codes, and Descriptions of Constructed Variable Values</td>
<td>61</td>
</tr>
</tbody>
</table>
CHAPTER 1: INTRODUCTION

Students transitioning into college from public school require more than just academic readiness; they also need the personal attributes that allow them to successfully transition into a new community (Braxton, Doyle, Hartley III, Hirschy, Jones, & McLendon, 2014; Nora, 2002; Nora, 2004; Tinto, 1975). Several theorists of college completion have examined factors associated with successful transitions into college, including the social and cultural forces of school communities that shape student characteristics (Braxton et al., 2014; Nora, 2002; Nora, 2004). Students from rural communities have a different educational experience than their peers at schools in suburban and urban locations (DeYoung & Howley, 1990; Gjelten, 1982). Additionally, the resources, culture, and educational opportunities at rural schools also vary among different types rural communities. Although measurements of academic achievement in rural education research has frequently focused on the use of standardized test scores, little research has examined the relationship between students of different backgrounds and how they persist in post-secondary education. Specifically, there is an absence of research on rural students from different types of rural communities and their success at transitioning into college. This study proposes to examine the likelihood for college-going students of different backgrounds to successfully transition into a four-year residential college after living and attending public school in three different types of rural communities.
1.1. Problem Statement

Rural schools educate approximately 20% of American students in a variety of different socioeconomic, cultural, and demographic regions throughout the country (Hamilton, Hamilton, Duncan & Colocousis, 2008; Johnson, Showalter, Klein, & Lester, 2014). The economic and demographic factors of each individual rural community are often influenced by industries that support the existing residents and also attract new visitors (Funnell, 2008; Gjelten, 1982; Hamilton et al., 2008; Kaufman & Kaliner, 2011). The region of northern New England (Maine, New Hampshire, and Vermont) has a culture rooted in a long history of rural living. Tourism industries and post-secondary education institutions have economically supported many New England towns, while many retired mill towns or agricultural villages have struggled economically for decades (Hamilton et al., 2008).

Although researchers regularly examine the economic conditions and compositions of rural communities in northern New England, little research examines how schools and student achievement relates to the context of the rural community where the school resides. Specifically, little is known about the relationship between types of rural communities and a student’s likelihood to successfully transition into college and remain enrolled for at least two years. The lack of knowledge about local and regional differences in college transition and persistence raises many questions about what type of policies or support systems are needed for rural students living in poverty. Clearly, there is a need to better understand both the people and places that make rural school communities different.
1.2. Purpose of the Study

The purpose of this study was to investigate the relationship between factors of different rural communities and the likelihood of publicly educated students to transition into college and persist for at least two years. This study examined and compared college transitions for students who attended college after high school, based on their place of residence in a rural area that was either heavily influenced by tourism, had a residential college, or composed of other cultural and economic characteristics. The results of the study identify the relationship between rural community factors and the college persistence of graduates of the local public school systems.

College completion is both a state and national problem. The number of students completing a bachelor degree within six years is substantially lower than the number of students who enroll in a second year of college (Shapiro, Dundar, Wakhungu, Yuan, & Harrell, 2015; Shapiro, Dundar, Yuan, Harrell, & Wakhungu, 2014; United States [U.S.] Department of Education, 2011). Students who complete a baccalaureate degree are likely to have a higher salary over their career, and provide greater contributions to the workforce (U.S. Department of Education, 2011). Moreover, policy efforts to increase college completion have made little progress (Carnevale, Smith, Stone, Kotamraju, Steuernagel & Green; 2011; Mangan, 2013).

This study may serve to further inform federal, state, and local policy makers about which rural students may be at a disadvantage for completing college. Informing policy-makers will allow for a greater understanding of how to equitably distribute resources for supporting rural students. In regards to community and economic development, the study also provides an understanding of how tourism activity in a
community may impact local residents and the outcomes of public school students to continue their education after high school.

Leaders of secondary schools and families may also benefit from this study by gaining a greater understanding of factors that contribute to success in college. School leaders may be better informed of the relationship between their schools and communities, and how to better provide support in school for students who will be transitioning into college. Families can have a better understanding of the impact their local community may have on preparing their child to transition into college, which can help guide additional steps to prepare for moving away from home.

1.3. Hypothesis

The hypothesis for this study is that students who complete secondary school in a rural community with a substantial presence of non-residential tourists or a college within their residential community show an increased likelihood of persisting in college for at least two years after initial enrollment. Tourists visiting from outside of the state or region bring with them behaviors and physical property of a different culture (e.g., automobiles, clothing, recreational equipment, and personal technology devices) that local students are typically exposed to. The kind of social and cultural contributions tourists bring to a rural area allows local residents to be exposed to behaviors, social trends, and lifestyles that may not otherwise be experienced in their local community. Additionally, an increase of tourists also provides for an increased exposure to unfamiliar people, who are likely from urban and suburban areas, within a community’s small, rural population. The frequent exposure to unfamiliar people from more populated areas could potentially reduce the isolation students from rural communities may feel, when
compared to their peers in other types of rural communities. The exposure to the ways of being, habits, and ideas these tourists bring to rural areas might also be encountered in college environment.

This study posits that rural students who have been exposed to frequent non-residential tourist behaviors and property are more likely to develop a cultural capital and habitus that serves as an asset for adjusting to the social and physical environment of a residential four-year college. As Tinto (1975, 1993) explained, student background characteristics, such as community of residence, influence dispositions relevant to college persistence. Nora (2004) built on Tinto’s theory, elaborating that the cultural capital and habitus, or the unconscious system of transposable dispositions based on someone’s perception of the environment and their own cultural preferences. He argued that the cultural capital and habitus students develop prior to college contribute to student satisfaction within college communities (Nora, 2004). Students who are more satisfied with their social experience at college and feel more connected with their new community are more likely to persist (Nora, 2003; Nora, 2004, Tinto, 1993).

Additionally, students exposed to the activities and physical presence of a residential college campus in a rural community are likely to become familiarized with the variety of people and behaviors they may encounter during a college experience (Sage & Sherman, 2014). This study also intends to expand on research findings that rural students who live closer to colleges are more likely to persist in college through a successful transition into college campus life (Sage & Sherman, 2014; Turley, 2009). Because rural communities are more isolated and there are clear geographic boundaries
separating areas for social and cultural interactions, community factors can be more readily tied to the exposure of local residents to colleges and tourists.

The measure of college transition and persistence was students’ completion of a fourth semester at a residential four-year institution outside of the rural community where they attended high school. A fourth semester threshold was used rather than college completion because factors other than college transition are likely to impact college dropout (Howley, Johnson, Passa, & Uekawa, 2014; Nora, 2004; Tinto, 1975).

The participant cases for the study were Vermont high school students who completed grades 9 through 12 with their graduation cohort within the same rural school district and graduated in the years 2008, 2010, and 2012. Students were only included if they enrolled in college immediately after high school. School districts were categorized by their location in rural towns with tourism character, college character, or other towns of rural character.

For the purposes of this study, towns labeled with “rural tourism community character” were identified by towns with the high rates of tourism and out-of-state visitors. Communities labeled as “rural college community character” were identified by the presence of an operating residential four-year college within the town. Rural communities labeled as having “other rural community character” included the remaining towns across the state.
CHAPTER 2: REVIEW OF THE LITERATURE

This literature review examines the concepts and frameworks scholars have found pertinent to the college transition and persistence of rural students after graduating from high school. The review is organized into five sections: 1.) The Role and Relationship of Rural Communities; 2.) Rural Community and Education Factors of Northern New England; 3.) Capital and Character of Rural Communities; 4.) Theoretical Models of College Completion; 5.) Factors that influence a student’s transition and persistence into a four-year residential college.

2.1. The Role and Relationship of Rural Communities

2.1.2. What are Rural Communities?

Defining “rural” is a challenge that policy makers and researchers have grappled with for decades. The federal government alone currently uses at least 15 different definitions for “rural,” each with an intended administrative purpose for an office, department, agency, or intergovernmental organization (Flora & Flora, 2008; Tieken, 2014). The definitions for rural allow government entities to determine which geographic places are eligible for programs, funding, or services. Utilizing governmental definitions for education systems is especially difficult, because schools are often involved with many different government program (Flora & Flora, 2008; Tieken, 2014). For the purposes of education policy and research, definitions from the U.S. Census Bureau, Office of Management and Budget, and National Center for Education Statistics are often used.

The prevailing theme among the different government definitions of “rural” is a comparison of geographic areas which are deemed to be either urban or a varying degree
of non-urban. The U.S. Census Bureau bases its definition for rural by first identifying developed territories as Urban Areas, with a population of 50,000 or more people, and Urban Clusters, as areas “of at least 2,500 and less than 50,000 people” (U.S. Census Bureau, 2015b). Territories that fall outside of these identified areas are categorized by their relative distance to Urban Areas and Urban Clusters. The definitions of rural do not necessarily follow the boundaries of cities and counties (U.S. Census Bureau, 2015b; U.S. Department of Health and Human Services, 2015).

The Office of Management and Budget uses a definition which “designates counties as Metropolitan, Micropolitan, or Neither” (U.S. Department of Health and Human Services, 2015). A Metropolitan county has a core population density with greater than 50,000 people. A Micropolitan county has a core urban area of at least 10,000 people but less than 50,000 (U.S. Census Bureau, 2015b; U.S. Department of Health and Human Services, 2015). Counties that are non-metropolitan and do not have strong economic ties through a commuting labor force to a neighboring metropolitan county are often considered rural, even if they are classified as Micropolitan (U.S. Department of Agriculture, 2015). This mechanism for combining statistical areas with economic ties and different population densities can be an effective geographic tool for sorting counties into non-rural and rural areas (Office of Management and Budget, 2010; U.S. Department of Agriculture, 2015).

Lastly, the National Center for Education Statistics within the U.S. Department of Education devised an “urban centric” classification system, which provides a definition for rural that is specific to the location of each school’s address relative to the distance from an urban center. This classification system uses modernized geocoding technology
and the Office of Management and Budget metropolitan definitions to provide a discrete physical measurement of rurality that is specific to the education system (NCES, 2015a). The physical location of the school building fits within one of four categories (city, suburb, town, rural), each of which houses three additional, more specific subcategories with definitions for locale (See Appendix A) (NCES, 2015b).

Despite the wide variety of quantified measures for identifying different rural communities by location and economic characteristics, there has not been a federally specified measure for the social or cultural character of rural communities that makes them unique. The concept of rural “character” has been challenged for decades in research on rural communities as meaning something different for each rural community. A 2008 report by the Carsey Institute explained that in rural communities, “the diversity of its residents as well as economic, political, and environmental changes” vary from place to place (Hamilton et al., 2008, p. 3). Therefore, it does not make sense to think of rural communities as the demarcated boundaries within a state, but rather to identify economic, geographic, and cultural components that define a community within a rural area. The forces reshaping rural America are often complex, and an analysis of trends and conditions across different types of rural communities can provide additional guidance for policy discussions (Hamilton et al., 2008; Howley, 2004).

2.2. Rural Community and Education Factors of Northern New England

2.2.1. Tourism of Northern New England and Rural Vermont

Vermont is in the geographic and cultural region of northern New England, which also includes New Hampshire and Maine (Johnson & Strange, 2009; Kaufman & Kaliner, 2011; McReynolds, 1987). Vermont has the smallest population of the three states, with
an estimated 2013 state population of 626,855, as compared to New Hampshire with 1,322,616 residents, and Maine with 1,328,702 residents (U.S. Census Bureau, 2015a). Although all three states have many rural communities, Vermont has the highest percentage of both rural schools and rural students (Johnson et al., 2014). Rural student populations and the proportion of rural schools by state reported by the Rural School and Community for 2013 are as follows: Vermont had 57.5% of its students attending rural school districts (51,062 students) and 72.5% of public schools were rural; New Hampshire had 34.5% of its students attending rural school districts (66,838 students) and 53% of public schools were rural; Maine had 57.2% of its students attending rural school districts (107,961 students) and 67.5% of public schools were rural (Johnson et al., 2014).

The culture of rural northern New England has long been viewed by the residents of coastal cities in northeastern region of the US as sentimental and nostalgic to traditional values and simple living (Duncan, 1999). The natural landscape of the mountains, waterways, and small villages create an allure for urban residents who seek a respite from cities (Bassett, 1987; Chidester, 1934; Kaufman & Kaliner, 2011; McReynolds, 1987). Recreation and tourism was fostered by many communities during the 19th century as a way to promote economic development by attracting visitors from coastal cities in other northeastern states (Chidester, 1934; McReynolds, 1987). As early as the 1840’s, state officials in northern New England took steps to become involved in supporting tourism when geologists used illustrations in their reports to “attract tourists to areas surveyed” (Basset, 1987, p. 554). Public interest in tourism and recreation areas grew in many parts of the region during the 1890’s and contributed to the transformation of many communities (Kaufman & Kaliner, 2011). For more than a century, both public
and private spaces and facilities were developed, or protected, to meet the needs and interests of incoming tourists (Basssett, 1987; Chidester, 1934; Kaufman & Kaliner, 2011; McReynolds, 1987). Resorts, restaurants, and lodging facilities cropped up along the Maine coast, New Hampshire’s lakes, and close to ski areas throughout Vermont (Basssett, 1987; Chidester, 1934; Kaufman & Kaliner, 2011; McReynolds, 1987). The expansion of second-home ownership also spread throughout the region (Chidester, 1934). Vermont, for example, had matched Maine’s rate of second-home ownership, which was considered among the highest in the nation for that period (Kaufman & Kaliner, 2011). The influx of tourists, changing needs of employment skills, and the attraction of new residents to rural recreational communities transformed the social character of the locale (Kaufman & Kaliner, 2011; McReynolds, 1987,). The once industrial communities designed to process materials from the local natural resources (paper, lumber mills) transformed into communities with micro-economies driven by hospitality, tourism, and recreation (Duncan, 1999; Kaufman & Kaliner, 2011; MacCannell, 1976; McReynolds, 1987).

The tourism activity in northern New England, and especially Vermont, has remained strong into the 21st century. The number of out-of-state visitors to Vermont from 2003 to 2014 varied between 12.8 million to 14.3 million (Vermont Tourism Research Center, 2015). A 2014 report from the UVM Tourism Research Center found that “most visitors to Vermont lived in nearby states, traveled to Vermont in automobiles, and were relatively affluent” (p. 17). Measurements of tourist activity have primarily focused on economic impacts. As one report explains, “Tourism represents almost eight percent of Vermont’s Gross Domestic Product (GDP) and with significant amounts of
money spent in Vermont by visitors” (Vermont Agency of Commerce and Community Development, 2015, p.1). It was estimated that Vermont visitors spent approximately $1.7 billion in 2003 and $2.29 billion in 2013 (Vermont Agency of Commerce and Community Development, 2015).

The impact of tourism on labor and the workforce has also remained strong in Vermont from 2003 to 2014, according to the most current reports of labor and economic data. In 2011 and 2012, one of the largest areas of job growth was in the service industry, which includes workers who serve meals, beverages, and provide lodging and entertainment services to tourists visiting Vermont vacation areas (Vermont Department of Labor, 2014a). Monthly reports of economic and travel indicators from the Vermont Department of Labor shows that Vermont frequently sustained at least 30,000 jobs in the occupational areas of hospitality and leisure from 2002-2014 with “wages and business income of more than $850 million” (Vermont Agency of Commerce and Community Development, 2015, p. 3; Vermont Department of Labor, 2014a). This time span also encompasses a recession when tourist activity across the nation declined (Chumra Economics and Analytics, 2014; Vermont Department of Labor, 2014b).

Although it is difficult to differentiate the economic impacts of tourism from out-of-state visitors versus activities of Vermont residents, certain spending activities are known to be highly related to visitors from out-of-state. Reports from the Vermont Lodging Establishment Surveys indicate approximately 90% of overnight lodging sales are made by out-of-state visitors (Vermont Department of Tourism and Marketing, 2015). Additionally, the 2013 survey results indicate that approximately 90% of room sales receipts were from guests on vacation (Vermont Department of Tourism and Marketing,
2014). In 2003, it was estimated that $320 million was spent on lodging by visitors, which increased to $430 million in 2013 (Vermont Agency of Commerce and Community Development, 2015). It is clear that tourism is a substantial part of the Vermont economy and communities where tourists visit (Vermont Agency of Commerce and Community Development, 2015).

2.2.2. Colleges of Rural Vermont

Similar to the development of tourism in rural Vermont, the expansion of post-secondary institutions has also played an important role with many rural communities since Vermont’s burgeoning years as a state. The first Vermont Constitution in 1777 clearly emphasized the importance of higher education by declaring that the state should support a University (Smallwood, 1971). Since that time, several residential colleges have formed in rural communities throughout all regions of the state.

Both public and private higher education institutions have made significant contributions to the rural communities of Vermont. The early formation and expansion of higher education across the state began with private institutions, which were recognized by the state (Smallwood, 1971). The first rural college in Vermont was Dartmouth College, which is currently located in Hanover, New Hampshire. The relocation of the college was an unusual circumstance that occurred because from 1778 to 1781. Hanover was one of several towns along the Connecticut River Valley that seceded from New Hampshire to become part of Vermont, thus making Dartmouth College Vermont’s first rural higher education institution (Smallwood, 1971). After Dartmouth returned to its original state boundaries of New Hampshire, Middlebury College, formed in 1800, became the oldest rural, residential higher education institution chartered in Vermont
Several other private colleges formed during the 1800’s, such as Norwich University (formed in 1819), Vermont College of Montpelier (organized in 1834 as the Newbury Theological Seminary of the Methodist Church), Castleton Medical Academy (chartered in 1818), Green Mountain College (formed in 1834), St. Joseph College (formed in 1926) in Bennington which later became Southern Vermont College in 1974, Bennington College (formed in 1932), Goddard College (formed in 1938) (low-residency) in Plainfield, Marlboro College (formed in 1946) in Marlboro, and Sterling College (formed in 1958) in Craftsbury, Vermont Law School (1972) in South Royalton, and the School for International Training (formed in 1964) (Consortium of Vermont Colleges, 2015; Smallwood, 1971). Several other private colleges have formed in Vermont, but were not listed because they either closed several years ago, have very low residency, or are no longer located in rural communities.

Vermont has had a relatively small number of rural public higher education institutions in comparison to the number of private colleges and universities. The Vermont General Assembly passed Public Act 1 of 1866 to establish three “normal” schools across the state for the preparation of teachers (Smallwood, 1971). The three schools were located at existing grammar schools in the towns of Castleton, Johnson, and Randolph Center (Vermont Governor’s Task Force on High Education, 2009). The number of state schools increased to four when the State School of Agriculture was formed in 1910, which replaced the teacher preparation school in Randolph Center (Smallwood, 1971; Vermont Governor’s Task Force on High Education, 2009). In 1911, Lyndon Institute, in the town of Lyndon, became the home of state supported teacher training courses (Smallwood, 1971). The three schools in Lyndon, Castleton, and
Johnson were later re-designated as teacher colleges in 1947 (Smallwood, 1971). Then in 1962, these three schools and the State School of Agriculture (which later developed into Vermont Technical College) became Vermont’s four residential colleges that we know today (Smallwood, 1971; Governor’s Task Force on High Education, 2009).

Currently, Vermont holds 24 colleges throughout the state who are registered with the Vermont Consortium of Colleges (2015), 11 of which are residential four-year colleges operating in rural communities.

2.2.3. Colleges and the Communities Where They Reside

Cities and towns with colleges are different than other communities. The presence of a college within a town impacts the social, cultural, and economic character of the community (Gumprecht, 2003; Smallwood, 1971; Weill, 2009). The impact of a college on a community has been notably studied within the context of communities that are branded as “college towns.” The concept or definition of a college town was summarized by Blake Gumprecht (2003) as a town where the college is the largest employer, there is a high percentage of students living in the community when compared with total population (about 20%), and a substantial percentage of the labor force works in education occupations. In Gumprecht’s (2003) study of 59 college towns across the country, he found that college towns have fundamental differences between other types of towns or cities by the following attributes:

- *College towns are youthful places.*
- *College-town populations are highly educated.*
- *College-town residents are less likely to work in factories and more likely to work in education.*
• In college towns, family incomes are high and unemployment is low.
• College towns are transient places.
• College-town residents are more likely to rent and live in group housing.
• College towns are unconventional places.
• College towns are comparatively cosmopolitan.

(Gumprecht, 2003, pp. 54-55)

Other studies of college towns have examined the economic and physical qualities often found in communities where a college resides. Several authors recognized the strong purchasing power college students have and the positive effect it can have on growing or sustaining a local economy (Gumprecht, 2003; Gumprecht 2007; Massey, Field, & Chan, 2014; Weill, 2009). The physical presence of a college campus with green space and large buildings creates an additional public space for intellectual pursuits or recreation (Gumprecht, 2003; Gumprecht 2007; Weill, 2009). Additionally, Weill (2009) adds that the population in college towns are “generally more diverse than that in other similarly sized towns” (p. 38).

Although, the literature is predominantly filled with studies and editorials that examine the relationship between higher education institutions and urban communities, there have been some parallels for college towns in rural Vermont and other parts of northern New England. In a study which compared the social and cultural differences that developed between Vermont and New Hampshire in the 20th century, Kaufman and Kaliner (2011) identified the formation of higher education institutions in rural Vermont, such as Goddard College, Bennington College, Middlebury College, and Green Mountain College, which attracted college professors, students, artists, and writers to relocate to the
local communities. The authors explained that the influx of migrants “bolstered the cultural life and economy of numerous Vermont towns” (Kaufman & Kaliner, 2011, p. 139). It is also likely that many students remained in the communities after graduation to become part of the local labor force. Over time, the new residents allowed for a cultural transformation to occur, which is likely attributable to the presence of a college (Kaufman & Kaliner, 2011).

The literature is clear that towns with colleges are different, but the question remains about whether the students who are from towns with colleges or a high rate of tourism are different. Ruth Lopez Turley (2009) found a significant relationship between the number of colleges within proximity of where a student lives and an increased likelihood of the student applying to college. Additionally, Turley (2009) found that where a student lived at the time of applying for college was of greater importance for predicting the likelihood of college application and enrollment than the length of time they have been exposed to a local college. However, this study is limited in measuring factors specific to rural locations and economic factors of the local community.

2.2.4. Tourism and Community Interactions

The concept of tourism does not have a universally accepted definition (Deery, Jago, & Fredline, 2011; Smith, 1988). Definitions of tourism are continuously changed and created by government agencies, businesses, and researchers to serve the purposes and interests of what is trying to being measured (Leiper, 1979; Smith, 1988). Neil Leiper (1979) attempted to create one of the first scholarly collective definitions by reviewing the previous studies and reports about tourism. In his review of the literature, Leiper (1979) organized tourism definitions into three categories: economic, technical, and
holistic (Smith, 1988). The findings of his analysis showed that economic definitions tend
to focus on the industry and the services provided to visitors, rather than the tourist itself
(Leiper, 1979; Smith, 1988). Technical definitions focused on the qualities of a tourist,
such as the purpose of their trip, distance traveled, and duration of their stay, which
makes them different from other types of travelers (Leiper, 1979). Lastly, the holistic
definitions look at all the facets of the tourism phenomenon, such as the socio-cultural,
economic and geographical characteristics of the host environment, as they relate to the
central actor, the tourist (Leiper, 1979).

Throughout the tourism literature, towns and communities which have
concentrations of tourism activity are referred to as host communities or local
communities (Craik, 1995; Deery et al., 2011; Dias, Ribeiro, & Correia, 2012; Leiper,
1979; Murphy, 1985; Pearce, Moscado, & Ross, 1996). Among the many descriptions of
tourist communities, tourists are recognized as non-resident visitors who make at least
one overnight stay and remain for at least 24 hours for the reasons of “pleasure, business,
or a combination of the two” (Murphy, 1985, p. 5; Leiper, 1979; Smith, 1988). Visitors
who remain in a community for less than 24 hours and simply pass through are referred
to “excursionists” (Murphy, 1985). Although, excursionists frequently engage in tourist
activities, they are likely to have a different type of social and economic impact on a
community (Murphy, 1985). For the purposes of this study, tourist communities, or towns
with tourism character, are places where the rate and number of tourist visitations has a
driving effect on social and economic activities of a residential area (Leiper, 1979; Smith,
1988).
A substantial amount of tourism research, both international and domestic to the US, has examined the impact of tourism on the quality of life in host communities, as measured by the perceived economic, sociocultural, and environmental impact of an increased level of tourism (Anderek, Valentine, Vogt, & Knopf, 2007; Craik, 1995). The increase in economic activity from tourism provides greater opportunities for local residents to be employed or become entrepreneurs (Johnson & Moore, 1993; Leiper, 1979; Murphy, 1983; Smith, 1988; Zhao, Ritchie, & Echtner, 2011). The socio-culture characteristics of the local community are impacted by an increase in festivals, museums and the image of the town by both residents and visitors (Anderek et al., 2007). The environmental impacts, which are mostly perceived as negative, relate to crowding and an increase in pollution (Anderek et al., 2007). In a rural area, impact of tourism on quality of life may be more noticeable because there are fewer jobs, services, and amenities available outside of the tourism industry (Deller, 2010; Gossling, 2002; Hamilton et al., 2008; Hines, 2010; Johnson & Strange, 2009).

Rural communities with sustained levels of tourism are different from other rural communities for several reasons. First, rural tourist communities have a physical infrastructure with a capacity to support the needs of people visiting an area in addition to the needs of the local residents (Deller, 2010; Hines, 2010). Physical infrastructure includes improved traffic ways, telecommunication systems, wastewater systems, and emergency services (Beale & Johnson, 1998; Deller, 2010; Hamilton et al., 2008). Second, rural tourism communities have an increased number of amenities, or economic infrastructure, such as restaurants, hotels, and recreational facilities that provide services which are shared by both the visitor and local resident, but would not likely be sustained
by the spending power of local residents (Deller, 2010; Hamilton et al., 2008). These businesses provide employment opportunities for residents, including local youth (Hamilton et al., 2008). Additionally, the economic infrastructure of rural tourist communities provides opportunities for economic growth in areas where previous micro-economies have declined (Deller, 2010; English, Marcouiller, & Cordell, 2000; Hamilton et al., 2008). Micro-economies based on natural resource extraction (e.g., mining, logging), agriculture, or modification of raw materials (e.g., textile mills, paper mills) can be replaced by the tourism based service industry (Duncan, 1999; English et al., 2000; Hamilton et al., 2008; Petrezelka, Krannich, Brehm, & Trentelman, 2005). It is the tourism based economy which allows for more social interactions between local residents and visitors from outside the community (Dogan, 1989; Gossling, 2002).

The relationship between tourism and local communities has been examined in several studies through the lens of local residents and their attitudes toward both tourism and tourists. Peter Murphy (1983, 1985) used an ecological approach to provide a framework for understanding tourism as a community industry. As Murphy (1983, 1985) explained, the interactions between the visitors, local residents, and the non-living parts of the community provide a social system within the host community that characterizes a tourist experience. Other studies of the local perspectives on tourism have focused on the interactions and interdependence between visitors and local residents for the exchange of goods and services for an economic contribution to the community (Ap, 1992; Deery et al., 2011; Devine, Gabe, & Bell; 2009; Pearce et al., 1996; Ward & Berno, 2011). Although principle measurements of the exchange between visitors and local residents has been limited to surveys and economic data about business and economic
relationships, it is well accepted that tourists will interact with local residents if tourism has been sustained as an economic contributor in the host community (Ap, 1992; Deery, et al., 2011; Devine et al., 2009; Ward & Berno, 2011).

The social impact of tourism on individuals in a host community varies significantly according to the internal or external characteristics of local residents (Anderek et al., 2007; Deery et al., 2011). Internal characteristics include demographic factors, such as age, gender, and income, as well as the political, social, and environmental values of local residents (Anderek et al., 2007; Brougham & Butler, 1981; Deery et al., 2011). External characteristics include factors such as the level of contact locals have with visitors, the extent of shared facilities between tourists and locals, and the ratio of tourists to local residents (Deery et al., 2011; Dogan, 1989; Gossling, 2002). How these characteristics play a role in the social impact of tourism is also influenced by the cultural similarities of host community residents and tourists (Dogan, 1989; Gossling, 2002). Tourism communities with high similarities of lifestyle and values between residents and tourists are more likely to lead to positive interactions (Dogan, 1989; Gossling, 2002).

In cases where there are vast cultural differences between tourists and local residents, the locals may perceive the tourists as representation of an elite lifestyle to which they cannot relate (Dogan, 1989; Gossling, 2002). In communities with a newly developed tourist industry, tourism may introduce values and behaviors that are extrinsic to the host community culture and more oriented toward supporting leisure, pleasure, and consumption by visitors who enter the community to recreate (Andereck et al., 2005; Craik, 1995; Gossling, 2002; McCool & Martin, 1994). Significant contradictions
between the tourism lifestyle within a host community and the traditional culture of a local community can be prohibitive to fostering positive and meaningful social interactions (Dogan, 1989; Gossling, 2002). Conversations between tourists and local residents about topics, such as politics, society, or culture, may not happen, because of differences in intellectual interests or there simply is not an extended period of time for meaningful interactions to occur (Dogan, 1989; Gossling, 2002). However, studies have recognized that differences in culture are not always obstacles for frequent and friendly conversations between tourists and residents about superficial topics such as the weather and money (Gossling, 2002).

Research on the impact of tourism on students and youth members of host communities is very limited, as most age related studies have focused on the attitudes of adults (Anderek et al., 2007; Brougham & Butler, 1981, Deery et al., 2011). The few studies that include observations and analysis of local youth are based on international tourism and set within a context of a developing country or region with tourist visiting from countries with Western cultures. These studies observed that younger local residents have made accommodations to their native culture that reflects their experiences from visitor interactions (Gossling, 2002). An international study by Hasan Dogan (1989) on the sociocultural impacts of tourism attributed the curiosity and adventurousness of local youth to a greater propensity to explore different cultural traits of visiting tourists. As Dogan (1989) explained, youth are more likely to adopt changes to their local culture and be “motivated to admire the tourists and their lifestyles and to imitate their behavior” (Dogan, 1989, p. 24). Local youth were observed wearing clothes and consuming beverages that are from the culture of visiting tourists (Dogan, 1989; Gossling, 2002).
These observations illustrate examples of local residents adopting the behavior and cultural characteristics they observed in the leisure activities and discretionary spending behaviors of tourists.

2.3. Capital and Character of Rural Communities

Each rural community presents a unique collection of natural, physical, and social structures which comprise the context or environment where children live and attend school (Flora & Flora, 2008). The natural resources of northern New England, such as the mountains and waterways, provide a natural capital which has been used to build other forms of capital in many rural communities (Flora & Flora, 2008). The natural beauty attracted people, businesses, and higher education institutions that sought to be removed from the distractions and landscape of urban life (Bassett, 1987; Chidester, 1934; Gumprecht, 2003; Kaufman & Kaliner, 2011; McReynolds, 1987). Since the early years of American higher education, it became common practice for the founders of colleges and universities to be lured to rural towns as the locations for their new campus (Gumprecht, 2003; Lucas, 2006). The tourism industry developed properties and physical infrastructure adjacent to or within areas of natural appeal to visitors from out-of-state (Bassett, 1987; Chidester, 1934; McReynolds, 1987).

The physical structures of the community, such as the buildings, homes, businesses, roads, parks, and public works infrastructure, create a framework of resources that make a town exist. These physical structures and objects which provide a supporting foundation to facilitate human activity is known as “built capital” (Flora & Flora, 2008). The rural communities with a college or high level of tourist activities have physical structures to serve visitors, temporary, and long-term residents, which may not otherwise
exist in a rural community. Examples of these physical structures include sports complexes, recreational facilities, high traffic road ways, public transportation, wastewater treatment facilities, medium to large multiple-unit housing, theaters, overnight lodging facilities, internet and communication facilities, and sometimes medical facilities (Flora & Flora, 2008; Gumprecht, 2003; Gumprecht, 2007; Kaufman & Kaliner, 2011).

In addition to supporting the public and business activities of the community, built capital is often available to the public to support social activities that range from the mundane, such as commuting to work, to the formation of social clubs, including intermural sports leagues (Flora & Flora, 2008; Gumprecht, 2003). When people reside in the same community and interact for an extended period of time, social activities often become organized to form social structures (Flora & Flora, 2008; Molotch, Freudenburg, & Paulsen, 2000). The social structures of the community, such as the social clubs, community groups, and collectively understood social norms, plays a valuable role in shaping the social capital of the community (Coleman, 1988; Flora & Flora, 2008).

Social capital is a group level phenomenon where social structures are in place among a group of people and “they facilitate certain actions of actors-whether persons or corporate actors-within the structure” (Bourdieu, 1986; Coleman, 1988, p. S98; Flora & Flora, 2008). As Coleman (1988) explains, social capital is unique when compared with other forms of capital because it “inheres in the structure of relations between actors and among actors” (p. S98). It is within these structures of relations where community members learn to build connections among others with similar backgrounds and characteristics though bonding social capital (Bourdieu, 1986; Corbett, 2007; Flora &
Flora, 2008). Furthermore, community members connect with a greater diversity of people within or outside the community through bridging social capital (Flora & Flora, 2008). The connections for bridging social capital tend to be single-purpose oriented and serve as an instrument toward a greater need, while bonding social capital tends to be rooted with greater emotion or affection.

The combination of the natural, built, and social capital of rural communities shapes the identity of towns the residents “sense of place” (Kaufman & Kaliner, 2011). “Sense of place” refers to how people feel about, interact with, and invest meaning and value in an environment or locality where they visit or live (Gieryn, 2000; Molotch et al., 2000; Nanzer, 2004; Prince, 1974). Kaufman and Kaliner (2011) describe “the “accomplishment of place” as the achievement of a locale’s subjective reputation as perceived by insiders (residents) and outsiders (nonresidents). Simply stated, this is a process where both locals and non-residents “come to identify a specific place with specific values, resources, and behaviors, the emphasis being on the perception of place, as opposed to the accuracy of said perception” (Kaufman & Kaliner, 2011, p. 121). The social, economic, demographic, political, and geographic characteristics of communities shape and influence how residents of rural areas and small towns construct the identity of their community and see themselves as actors among a network of other individuals and organizations (Bauch, 2009; Coleman, 1988; Corbett, 2007; Molotch et al., 2000).

In relation to the collective identity formation of a community, the natural, physical (built), and social structures of a community contribute to how children and young adults develop socially, interact with others, and develop an “understanding of society and their role in it, speech, dress, and ways of being…that in turn affect the
choices they make” (Flora & Flora, 2008, p. 55). These individual traits constitute a student’s cultural capital. As Flora and Flora (2008) describe, cultural capital can serve as the “filter through which people live their lives, …the way they regard the world around them, and what they think is possible to change” (pp. 55-56). The concept of cultural capital began with the French sociologist Pierre Bourdieu (MacLeod, 2009; Swartz, 1990; Weining & Lareau, n.d.). In relation to his theory of cultural capital, Bourdieu also emphasizes the concept habitus, which he defines as “a system of lasting, transposable dispositions which, integrating past experiences, functions at every moment as a matrix of perceptions, appreciations, and actions” (Bourdieu, 1977, p. 82-83). Essentially, each individuals’ habitus serves as an intermediary between each person’s agency and the structures of the outside world (Bourdieu, 1977; MacLeod, 2009; Swartz, 1990). Habitus may also be thought of as embodied capital, or an integral part of a person to make rational decisions in a structured, unconscious manner based on their perception of their environment and their own cultural preferences (Bourdieu, 1986; Vilhjálmsdóttir & Arnkelsson, 2013).

Each student’s cultural capital and habitus plays a substantial role in how they transition into college after leaving their home community (Demi, Coleman-Jensen & Snyder, 2010; Nora, 2004). Students who have certain cultural capital are more likely to integrate into the community on a college campus (Demi et al., 2010; Nora, 2004). Little is known about the relationship between types of rural communities and how successful students are at transferring into a college community. Do different rural communities provide different types of environments, some of which are better able to provide students with a type of cultural capital which supports their transition into a residential
college community than others? Are students from different types of rural communities different in their college transitions?

2.4. Theoretical Models of College Completion

This study intends to measure student persistence in college as it relates to the home community where a student lived and attended high school. The hypothesis is that students from rural communities that contains a college or has high rate of visiting tourists are more likely to stay in college after they initially enroll. Although studying student persistence in college is not a novel concept, this research will build upon the existing theoretical models of college completion, which includes a diverse representation of students.

Comprehensive theoretical models of college completion began with Vincent Tinto (1975) when he developed a theoretical framework to understand the different processes that relate with dropping out of college. Tinto’s interactionalist theory of departure from higher education posits that students’ transition into and persistence within college arises out of longitudinal processes of “interactions between an individual with given attributes,” dispositions, and resources, and “other members of the academic and social systems of the institution” (Tinto, 1993, p. 113). Students who persist in college are able to successfully complete three stages: separation from past associations, transition between high school and college, and incorporate into the new society of college (Tinto, 1993).

The first stage, separation from past associations and communities, generally requires the student to disassociate themselves from communities and networks usually associated with family, high school, and the community where they grew up (Tinto,
This stage is often stressful for students, especially when entering college requires relocating to a different geographic area (Tinto, 1993). The second stage, transitioning from high school to college, entails the “adoption of new norms and patterns of behavior and after the onset of separation from the old ones” (Tinto, 1993, p. 97). The length and intensity of this stage depends on the degree of differences from the students’ original community and the new college community. Students who come from homes, communities, and high schools with norms and behaviors that are drastically different than college life, may not have the social or intellectual skills to participate in the new community (Tinto, 1993). The third stage, incorporation into the new society of the college, is required for students to persist in college after they have initially integrated (Tinto, 1993). It is in this stage when students’ connectedness to the college and community is ratified (Tinto, 1993). Often there are no circumstances when formal rituals or declarations are made to signify membership in the college community, but rather the frequent personal contacts, both formal and informal, create a sense of “satisfying intellectual and social membership” (Tinto, 1993, p. 99).

Additional considerations in the theory include how a student experiences higher education over time, when they potentially modify their intentions and commitments according to his or intellectual and social integration. For example, factors external to the institution, such as family or health related emergencies, may influence students’ commitments and goals during their college career. Furthermore, student’s backgrounds, personal attributes, financial resources, and “precollege educational experiences and achievements,” which are likely to have a direct impact on their persistence or departure from college (Tinto, 1993, p. 115).
Tinto’s model has been highly critiqued and expanded upon by other theorists. Braxton, Sullivan, and Johnson (1997) tested Tinto’s model on the type of post-secondary institutions that students choose to attend. The study concluded that college persistence processes differ between students who attend residential universities, commuter universities, liberal arts colleges, and two-year colleges (Braxton et al., 2014). Furthermore, Braxton and colleagues found that Tinto’s theory provides better support for students enrolled in residential higher education institutions, and little explanation for students who persist or dropout of commuter institutions (Braxton et al., 2014).

The sociological factors of college persistence play a substantial role in college completion (Braxton et al., 2014; St. John, Cabrera, Nora, & Asker, 2000; Tinto, 1993). Specifically, the importance of cultural capital in social integration was asserted by John Braxton (2000) as an essential factor that cannot be overlooked. The social integration of students in college includes a bridge between a student’s culture of origin and the culture of the college community. A students’ cultural capital or habitus that bridges well with the values, norms, and behavioral styles at college, is likely to support the transition from their home town and high and formation of a social network (Braxton, 2014; Tinto, 1987). Specifically, Braxton et al. (2014) view cultural capital as a “student entry characteristic that influences communal potential and psychosocial engagement” (p. 213). Furthermore, the peer groups that students form at college create a sense of belonging and shape the culture of a student’s experience. Braxton modified Tinto’s model to clarify that “students who traverse a long cultural distance must become acclimated to dominant cultures of immersion or join one or more enclaves to achieve social integration” (St. John et al., 2000, p. 265).
Similar to Braxton, Amaury Nora (2002, 2003) also expanded upon Tinto’s theory by further exploring the relationship of social and cultural factors with college persistence. Nora’s (2003) Model of Student Engagement broadened Tinto’s theory by proposing six categories of factors that lead to college completion: Precollege and Pull Factors, Sense of Purpose and Institutional Allegiance, Academic and Social Experiences, Cognitive and Non-Cognitive Outcomes, Goal Determination/Institutional Allegiance, and Persistence (see Appendix B). The Precollege and Pull Factors include academic, financial, and psychosocial factors that either encourage a student to attend college or pull them back toward their home community. The Sense of Purpose and Institutional Allegiance category encompasses a student’s aspirations and commitment to attend college. The Academic and Social Experiences category includes a student’s interactions and involvement with learning communities, peer social interactions, perceptions of campus climate, and other validating or mentoring experiences from faculty or staff. The category of Cognitive and Non-Cognitive Outcomes includes the academic performance and affective results of the student’s social experiences, which may be perceived as positive or negative. Lastly, the category of Goal Determination/Institutional Allegiance includes how whether a student reaches their educational goals and their commitment to the institution. All of these categories lead a student’s decision to re-enroll at a higher education institution or withdraw (Nora, 2002; Nora, 2003).

Like Braxton, Nora (2004) also recognized the importance of cultural capital and habitus as an essential factor for social integration for college students. Nora’s (2002, 2003, 2004) examination of the psychosocial factors, part of the Precollege/Pull Factors
category, focused on the role of cultural capital in college enrollment and persistence. Specifically, habitus and cultural capital play a significant role in the decision making process of students when choosing which college to attend and whether or not to re-enroll (Nora, 2004). In other words, the cultural capital students acquire before entering college is a contributing factor to the college they choose to attend and how well they integrate to the college experience. As Nora (2004) explains, choosing a college is one of the most influential precollege experiences, because it demonstrates the social and psychosocial considerations students have made when deciding where to apply and enroll for a college experience (Nora, 2004). Students who are able to match themselves with the best fit for a college experience where they feel “accepted, safe, and comfortable in a new academic and social setting” are more likely to persist than a match that is based on “institutional quality, location, diversity, or cost” (Nora, 2004, pp. 198-199).

These models of college completion all recognize a relationship between students’ pre-college community experiences and their subsequent integration into higher education at four year residential institutions. This study proposes to examine the significance of rural community factors as pre-college factors for student integration into higher education. In other words, this study will test the concept that something is different about students from rural communities with a college or high rates of tourism activity that better prepares them for the community of a college campus.
2.5. Factors that Influence a Student’s Transition and Persistence into a
Four-Year Residential College

2.5.1. College Transitions and Persistence

Since the beginning of the 21st century, the conditions of the economy and labor market have required high school students to continue their education at the post-secondary level to gain employment that earns a livable wage (Becker, 1993; Carnevale, Smith, & Strohl, 2013; Greenstone, Looney, Patashnik, & Yu, 2013; Kuczera & Field, 2013; Symonds, Schwartz, & Ferguson, 2011). Essentially, post-secondary education plays a key role in helping students “create economically stable lives for themselves” (Woodrum, 2004, p. 5). However, students from rural communities have faced the challenge of finding employment that provides economic mobility or even a livable wage within their local communities, because the variety and number of available occupations are far less than urban or suburban areas (Bowen, Chingos & McPherson, 2009; Gibbs, 1998). Furthermore, attending college often requires students to relocate to a new location outside of their home community (McGrath, Swisher, Elder, & Conger, 2001).

The topic of college transition has gained significant attention in recent years because earning a college degree requires more than just accessing college; it also requires a successful social and academic transition into the college community. Furthermore, students must persist after being enrolled. The recent increase in research on college completion factors have shown considerable variation in persistence and completion rates across different student populations (Bowen et al., 2009; Hall, Smith, & Chia, 2008; Niu & Tienda, 2013). Although research about college continuation has been
growing for rural students, especially for first-generation college completers, there has been little research about the transition and persistence of rural students who enroll in college.

Rural students who enter college after high school often experience a notable transition from the community of their childhood into the more densely populated residential academic community of higher education. As McGrath and colleagues noted, rural students who attend four year colleges typically need to “move away from home and demand a more distinct break from the rural environment and culture” (McGrath et al., 2001, p. 250). Part of the transition may include social and cultural challenges faced when leaving the rural community of their hometown and immersing themselves in a larger college community (Guiffrida, 2008). Some of the factors rural students may encounter are a more racially and ethnically diverse environment, and an increased difficulty accessing student services (Guiffrida, 2008). There may also be added challenges for students who attend post-secondary institutions in urban settings or large universities without opportunities for outdoor activities (Guiffrida, 2008; Swift, 1988).

2.5.2. College Completion for Rural Students

The limited research on factors that influence college completion for rural students has reached mixed conclusions. However, several studies have looked at the broader college going population to determine factors associated college persistence or dropping out. Precollege factors related to college completion include high school grade point average (GPA), College Board Scholastic Achievement Test (SAT) scores, American College Test (ACT) scores, (College Board, 2016a; Hall et al., 2008; Murtaugh, Burns, & Schuster, 1999; Stumpf & Stanley, 2002). Some of the behavioral
reasons researchers have discovered about why students have difficulty persisting in college include monetary concerns, the need to hold part-time or full-time jobs, “indecision about major, changing major, changing colleges, adjustment to personal freedoms, ineffective and/or inefficient learning strategies” (Hall et al., 2008, p. 1087).

In regards to research on student background characteristics impacting college completion, two of the most notable factors include socioeconomic status and race and ethnicity (Aud, Fox, & Kewal Ramani, 2010; Becker, 1993; Bowen et al., 2009; Byun, Meece, & Irvin, 2012; College Board, 2016a; Howley et al., 2014; Kao & Thompson, 2003; Murtaugh et al., 1999; Terenzini, Cabrera, & Bernal, 2001). Students of lower socioeconomic status face disadvantages that cross all lines of race and ethnicity (Bowen et al., 2009). Families of lower socioeconomic status tend to have parents with lower education levels and less financial support available to support a transition into a four-year college (Becker, 1993; Bowen et al., 2009; Hill & Wang, 2015; Stage & Hossler, 1988; Tinto, 1993).

In a nationwide study of public higher education institutions, students of color were shown to be far less likely to complete a college degree than their White and Asian peers (Bowen et al., 2009). Specifically, black males had one of the lowest completion rates (Bowen et al., 2009). Similar disparities can be found among Hispanic students, who are also less likely than White students to complete a bachelor degree (Bowen et al., 2009). One potential explanation for the disparities with Hispanic students is that many enter college in pursuit of a two-year degree, such as a community college, with the potential to transfer into an academic program at a bachelor degree granting institution.
(Bowen et al., 2009). Students who follow this pathway are less likely to complete a bachelor degree after transferring from a two-year college (Bowen et al., 2009).

Several research studies have identified important factors in the retention of students from a variety of higher education institutions. One factor that has been well researched is the presence of social supports (Braxton et al., 2014; Hall et al., 2008; Nora, 2004; Tinto, 1993; St. John et al., 2000). Additionally, college students who build peer relationships and networks have often had a history of pre-college socialization and shared relationships with peers in academic settings (Koyama, 2007). In other words, the social experiences students have prior to entering college relate with a student’s potential to develop social networks that act as support systems.

Regarding the college completion of rural students, some of the factors identified through qualitative research that challenge college completion includes “family economic hardship, first-generation college student status, and poor academic preparation” (Byun et al., 2012, p. 464). The 2012 study by Byun, Irvin and Meece found that family income was a greater predictor of bachelor degree attainment for rural students than suburban students. A 2002 study of rural Pennsylvania students found that SES, gender, high school academic programs, number of science courses taken, social integration to college and post-secondary education experiences were predictors of college persistence for rural youth (Yan, 2002). A more recent study conducted by Caitlin Howley and colleagues (2014), also in Pennsylvania, supported these findings. Further research in other states and rural regions will provide a more comprehensive picture of factors influencing college completion for rural students.
Although the factors related to the successful transition of rural students into college has not been well researched in the region of northern New England, research has shown that students who live and attend school near post-secondary institutions are more inclined to enroll in college (Luo & Williams, 2010; Sage & Sherman, 2014; Turley, 2009). As Sage and Sherman (2014) concluded, “even in consideration of other factors such as parents’ education level, income, and aspirations, individuals living in rural zip codes were influenced in their educational choices by their distance from colleges and universities” (p. 72).
CHAPTER 3: METHODOLOGY

The present study used multilevel logistic modeling to identify and analyze community factors that contribute to college persistence among public school students in rural communities. For the purposes of this study, the indicator for successful transition into a college environment is the completion of four semesters of full time enrollment at a four-year college. The relationship between community factors, school factors, and student characteristics on college persistence in a four-year residential college was measured and reported in odds ratios. The student cases used for the analysis were not perfectly nested in a hierarchical structure because students in the same town can be members of different school communities or students in the same school can be members of different town communities. This type of data structure creates an imperfect hierarchy where students can differ by their membership between two different groups at a higher level in the model (Raudenbush & Bryk, 2002; Snijders & Bosker, 2012). Tests were performed to examine the different types of group membership among students to determine how to fit the multilevel model (Raudenbush & Bryk, 2002; Snijders & Bosker, 2012). The two levels of data for analysis were school characteristics (upper level), and student background, behavioral, and community identification (lower level). The researcher reported the likelihood of persisting in college for at least two years for factors at each level. All model specifications were made in Stata version 14.1.

3.1. Data Collection

This study collected data from 10 different sources to form three separate data sets representing community factors, school factors, and student characteristics related to college persistence. Each data set was then used to create variables to encompass the
factors for the analysis. Then, the three data sets were merged to form the final data used for building the multi-level model. Student identifiable data was extensively cleaned and de-identified from the original record keeping characteristics using a unique algorithm designed solely for this study. The following sections describe how the study sample, data sets, and variables were constructed prior to building the multilevel logistic model.

3.2. Study Sample

The sample of this study included rural Vermont students who completed high school with their 9th grade cohort and attended a four-year residential post-secondary institution starting the fall after graduating from high school in 2008, 2010, or 2012. Limiting the study sample to this explicit population of students allowed for the appropriate testing of the hypothesis. Students were only included if they lived in the same town for each year they were enrolled in high school, because this captured the hypothesized effects related to living in a rural tourist or college town on college persistence. The study only included students who completed high school with their cohort in order to better compare students from different graduation years and common entry times to college (Schafft, Killeen, & Morrissey, 2010). The sample was also narrowed to only include students who attended four-year residential institutions, because this would allow for a measure of a students’ separation from their home community and transition into a college community. The researcher restructured all data sets into wide form so there was a separate case for each student. Student cases from each graduation cohort were combined to form one data set. The construction of variables was completed in Microsoft Excel and SPSS version 22.
3.3. Sources of Data

The data sources used for defining the study sample were the Vermont Student Census by the Vermont Agency of Education (AOE), Vermont School Data Reports from the AOE, Vermont Senior Survey by Vermont Student Assistance Corporation (VSAC), National Center of Educational Statistics (NCES), U.S. Census Bureau, College Board SAT, New England Common Assessment Program (NECAP), National Student Clearinghouse (NSC), The Carnegie Classification of Institutions of Higher Education (CCIHE), and the Vermont Department of Taxes.

Vermont Student Census data was used for identifying town of residence and high school enrollment. The Vermont Senior Survey by the Vermont Student Assistance Corporation provided measures about college planning, family education level, and financial support, which the literature has shown to be associated with college persistence (Braxton et al., 2014). NSC data was used to identify the terms and dates of college enrollment. NCES data provided rural designations for each town where a student lived. The CCIHE data was used to identify four-year residential post-secondary institutions. Vermont School Data Reports were used to measure of schoolwide socioeconomic conditions for the students. College Board SAT data was use as a schoolwide measure for college preparation and as student specific academic measure of college readiness. Vermont Department of Tax data was used to construct the indicator for tourist towns.

Student specific data from the Vermont Agency of Education (AOE), College Board, and the Vermont Student Assistance Corporation was considered confidential and under restricted access. Inter-organization data use agreements were developed prior to
accessing the data. The research study was approved by the Institutional Review Board at the University of Vermont.

3.3.1. Description of Data Sources

Vermont Student Census

Each year, the Vermont Agency of Education (AOE) collects information about every publicly educated student in Vermont as part of the student census. The information collected in the census includes student characteristics such as race, ethnicity, National School Lunch Program Eligibility, grade, school of enrollment among many other facts that provide a unique and comprehensive collection of student characteristics. The data undergoes rigorous quality control procedures to ensure its accuracy from the data generators in local schools, to the analysis at the AOE, and federal officers who monitor grants, such as the Elementary and Secondary Education Act. For the purposes of this study, student records were used from Vermont students who graduated from a public high school in the years 2008, 2010, and 2012.

Vermont School Data Reports

The Vermont School Data Reports are comprised of data collected by the AOE each fiscal year to describe characteristics of schools. The data collected includes the fundamental aspects of a school’s record (e.g., name of the school, enrollment, grades served), as well as data describing the student body as a whole (e.g., percentage of students eligible for free or reduced lunch/National School Lunch Program, teacher/staff survey, per pupil expenditures) (Vermont Agency of Education, 2015b). Much of the data is collected by the AOE to comply with federal or state regulations and is publicly available.
Vermont Senior Survey by the Vermont Student Assistance Corporation (VSAC)

The Vermont Senior Survey was started in 1978 and is administered biennially to Vermont students in the second half of their senior year in high school (Arce, Giles, Zu, & Wallack, 2009). Survey questions are “designed to determine the post-high school plans of high school graduates, and to examine the factors that might influence post-high school activities” (Arce, et al., 2009, p. 1). Data from the Vermont Senior Survey have been used to conduct research and provide reports to state level policy makers, educators, parents and students (VSAC, 2015). VSAC was created in 1965 by the Vermont legislature to be a non-profit organization that helps Vermonters continue their education after high school (VSAC, 2016).

College Board SAT

The SAT by the College Board is a standardized assessment that measures students’ ability in mathematics, reading and writing. The SAT is also an admissions test that is accepted by all colleges in the US (College Board, 2015). This assessment has been used as a nationally recognized predictor of college success and academic readiness in many research studies (Niu & Tienda, 2013). SAT scores are reported for each subject area on a scale of 200 to 800 (College Board, 2015). Most students who plan to attend college in the fall enrollment term after high school take the SAT during the spring of their junior year of high school or during the fall season of their senior year (College Board, 2015). Students are able to take the SAT multiple times in an attempt to achieve a higher score (College Board, 2015).
As mentioned in Chapter 2, the National Center for Education Statistics within the U.S. Department of Education devised an “urban centric” classification system that identifies the relative location of each school’s address relative to the distance from an urban center. This classification system uses geocoding technology and the Office of Management and Budget metropolitan definitions to provide a discrete physical measurement of rurality that is specific to the education system (NCES, 2015a). The physical location of the school building fits within one of four categories (city, suburb, town, rural), each of which houses three additional, more specific subcategories with definitions for locale (see Appendix A) (NCES, 2015b). These categories are based on the U.S. Census Bureau concepts for defining urbanicity of an area, which is relative to population, population density, and core areas of economic activity (NCES, 2015a). The rural classifications were updated in 2006. The data used from the U.S. Census Bureau was from 2010 and updated in 2013.

The Carnegie Classification of Institutions of Higher Education

The CCIHE is a “classification of colleges and universities to support its program of research and policy analysis” (CCIHE, 2016). According to the website (CCIHE, 2016), the CCIHE is used in research to “control for institutional differences, and also in the design of research studies to ensure adequate representation of sampled institutions.” The CCIHE began in 1976 and has been updated six times. The most current update occurred in February 2016, incorporating data as recent as 2015.
National Student Clearinghouse

The National Student Clearinghouse (NSC) collects information from almost every post-secondary institution that receives Title IV funding for student loans under the Higher Education Act of 1965 (U.S. Department of Education, 2016). Post-secondary enrollment records and data about graduates from Vermont high schools is collected from the NSC by the Vermont AOE and updated on a regular basis. The Vermont AOE provides the NSC with student identifiers, to specify which students were graduates of Vermont schools. The NSC then provides the Vermont AOE with post-secondary enrollment information for the identified students. This data set was cleaned extensively by the Vermont AOE to remove duplicate cases and verify missing data before it was released to the researcher (Shepard, 2016). Additionally, census data were used to limit cases to students who graduated with their 9th grade cohort (Shepard, 2016).

Vermont Department of Taxes Rooms, Meals and Alcohol Tax and Property Taxes

The Vermont Department of Taxes collects information annually about the amount of tax dollars assessed for the sale of lodging for overnight stays, restaurant served meals, and alcohol purchased each calendar year (Vermont Department of Taxes, 2015a). Additionally, data was collected about the property taxes assessed in each town (Vermont Department of Taxes, 2013). All data was publicly available, but subject to change based on amended tax returns that were previously submitted (Vermont Department of Taxes, 2015b). Data from certain towns were suppressed because of a small number of businesses, which would become identifiable if released (Vermont Department of Taxes, 2015b).
3.3.2. Identifying Eligible Postsecondary Institutions for the Analysis

The definition of a four-year residential college was constructed using the custom listings feature for the undergraduate profile classification and size and setting classification system of the CCIHE (2016). As stated on the CCIHE (2016) website, “Classifications are time-specific snapshots of institutional attributes and behavior based on 2013-14 data”; these data are the most current data available and overlaps the timeframe sampled students attended higher education (CCIHE, 2016). Appendix C provides a logic syntax for the classifications used to create a custom list of institutions.

This classification scheme allowed for the identification of bachelor degree granting institutions with a fall enrollment of at least 60% of undergraduates enrolled full-time. Additionally, it ensured at least half of degree-seeking undergraduates live on institutionally-owned, controlled, or affiliated housing and at least 80% of the students attended full time (CCIHE, 2016). Schools of all sizes and transfer rates were included. No schools classified as primarily nonresidential were included because that classification includes institutions with a proportionally low or no student residential community and exclusively distance learning institutions (CCIHE, 2016).

The custom list yielded 1343 higher education institutions within the CCIHE, which was then matched to the higher education institutions attended by Vermont students who graduated from high school in 2008, 2010, or 2012.

3.4. Constructing the Variables and Data Sets

3.4.1. Rural Designations

For the purposes of this study, rural communities were defined as townships for school districts with locale designations of rural, town distant, or town remote as assigned
by the National Center of Educational Statistics (NCES, 2015c). Locale designations are based on the places where schools reside, which often matches school districts in Vermont. These codes were selected because they designate schools in communities that are not inside metropolitan areas or clusters or in towns on the fringe of urban areas (National Center for Educational Statistics, 2015a; National Center for Educational Statistics, 2015c). Almost every town in Vermont also serves as school district, which allows for a convenient and effective way to apply locale designations to towns. Locale codes for distant or remote towns were used, rather than all towns in an effort to capture a sample of rural communities with similar characteristics. Rural fringe was included because it has been used in several studies and reports to identify communities with rural qualities despite being closer to urban clusters or urbanized areas (Johnson & Strange, 2009; Johnson et al., 2014). A list of the locale codes and definitions is provided on Appendix A.

To provide a more precise definition of rural, a U.S. Census Bureau data set was used to identify the economic and physical relationship between several towns by identifying them as either principal “cities” and the related towns in the area. The New England Cities and Town Areas (NECTA) for 2013 from the U.S. Census Bureau data identified towns that serve as the principal areas of population and employment with a population greater than 10,000 and less than 50,000 (U.S. Census Bureau, 2013a). Towns designated by NCES as remote or distant and were listed as a Principal City of NECTA in February 2013 by the U.S. Census Bureau were not included in the study. These towns may not have rural characteristics that are comparable across other rural communities because of their size and structure as a social and economic core of a micropolitan area.
In Vermont, there were four principal cities (Barre, Bennington, Burlington-South Burlington, and Rutland) with 59 related towns combined in the areas. There were also two principal cities bordering Vermont (Lebanon, NH and North Adams, MA) where 15 Vermont towns were included in the combined area. The town of Hartford, VT was excluded because of its proximity to Lebanon, NH. Bennington, VT, which is close to the NECTA principal city of North Adams, MA, was already excluded because its own designation as a NECTA principal city.

Towns which did not have a direct match with a locale designation often had multiple school districts or multiple schools within the town. In these cases, the researcher applied the locale designation with the least rurality as a way to reduce the possibility of non-rural students being included in the sample. Towns that did not have any locale designations were examined for their population size and distance from their closest neighboring towns. All of the towns without a designation had a population less than 1700 and were located next to towns with rural or town locale NCES designations.

A total of 239 towns met all criteria to be designated rural for this study. These towns were assigned a value of one on the binary indicator for the constructed variable Rural Town. The towns were then divided in three types: tourist, college, and other rural towns.

3.4.2. Community Types

This study analyzed students from rural communities, which were organized into one of three groups: tourism-based communities, college communities, and other rural communities without high rates of tourism or a residential college within close proximity. A thorough review of the literature provided a foundation for the theoretical constructs of
each type of community, which directed the data collection. Tourist communities were empirically defined from data sets constructed to measure rates of visitation by non-residential tourists. College communities were defined according to the presence of an operating residential four-year college. Constructing definitions and identifying each of these rural communities required the analysis of publicly collected data about tourism, taxes, residential property ownership, the location of higher education institutions within the state, the location of schools serving secondary grades, and workforce information about all rural communities in Vermont.

Data that described tourism behavior was retrieved from the Vermont Department of Tourism and Marketing and the Vermont Tourism Research Center at UVM (Vermont Department of Tourism and Marketing, 2015; Vermont Department of Tourism and Marketing, 2014). The Vermont Department of Taxes provided data regarding property values and sales of rooms, meals and alcohol (Vermont Department of Taxes, 2013). The categories of listed property values were: corporately owned property, non-state resident owned property, state resident owned property, and town resident owned property exclusive of state resident owned property.

College Community Type

This study measured the likelihood of college-going students from rural communities to successfully transition into a four-year residential college. Rural college community character was defined by the presence of an operating residential four-year undergraduate college within a rural town from 2003 to 2012 (with one exception, explained below). This time span encompassed the years when students in the sample attended high school. Colleges were only included if they met the CCIHE designation
according to the four-year residential undergraduate profile classification and size and setting classification system (2016). This designation was used because the residential nature of these schools meant there was a greater chance of overlap between the college community and the local town. Commuter and community colleges were not included. Additionally, one town with a professional graduate school was included because it met many of the criteria outlined by Gumprecht (2003) for a college town when compared with other rural communities (Town of Royalton, 2016). A total of 13 towns met all the criteria for the presence of a college: Castleton, Craftsbury, Johnson, Lyndon, Marlboro, Middlebury, North Bennington, Northfield, Plainfield, Poultney, Putney, Randolph, and Royalton. These towns were assigned a value of one on the binary indicator for the constructed variable “College Town”.

Tourist Community Type

Constructing variables for tourist towns first required defining people who are considered tourists. For the purposes of this study, tourists are defined as non-resident visitors who make at least one overnight stay and remain for at least 24 hours for the reasons of “pleasure, business, or a combination of the two” (Leiper, 1979; Murphy, 1985, p. 5). This definition identifies visitors who spend enough time in a town to have a reasonable likelihood to interact with local businesses and residents.

Tourist towns, or the empirical representation of communities with rural tourism community character, were identified by analyzing two tourist community variables, constructed for the purposes of this study from two different data sets, for extreme values. The two variables indicated the usage of lodging that was rented by tourists and the
proportion of vacation homes owned by non-state residents in each rural town. The following sections describe the construction of these variables.

Tourist Rented Lodging Variable

Constructing a variable to measure tourist rented lodging required an examination of the annual total rooms taxes collected during the timeframe of the study. This measure served as a good proxy for town’s level of tourism because approximately 90% of the room taxes are generated by non-residents traveling to Vermont for tourism and recreation (Vermont Department of Tourism and Marketing, 2015; Vermont Department of Tourism and Marketing, 2014). Using lodging records as a measure of tourism provides a conservative estimate of the amount of tourist activity, because there are likely to be additional tourists visiting the town who do not pay money to stay overnight (Murphy, 1985). Although tourists contribute to the taxable sales of meals and alcohol in each town, there is also an expected overlap in the use of facilities and services by local and regional residents who are not tourists (Anderek et al., 2007; Deery et al., 2011; McIntosh, 1977). Therefore, the data for meals and alcohol receipts were excluded from the analysis.

Taxable receipts for lodging rooms sales in each town from 2001 to 2013 was used as the tourist rented lodging metric because it provided the primary indicator of tourist activity. According to surveys and analysis by the Vermont Tourism Research Center at UVM and the Vermont Department of Tourism and Marketing, approximately 90% of overnight visitors who used lodging facilities were travelers from out of state and stayed for at least two nights. The researcher was advised to use the recorded sales receipts rather than taxes collected, because optional local taxes could potentially impact
the consistency of the metric. Data for lodging receipts from the tax years of 2001 through 2013 were used because they provided a long-term representation of the lodging activity in each town while sampled students resided in their home community and attended public school. The room sales receipts totals for the years 2001 to 2013 were averaged to create a mean total for the 13-year time span. The mean room sales provide a more accurate measure of lodging sales trends over time rather than using data from a single year, which could be subject to the effects of a short term event.

Tourist Owned Lodging Variable

In an effort to create a more sensitive measure of tourism activity beyond hotel stays, a second indicator of tourism activity was utilized to capture tourists who stay in vacation homes (Beale & Johnson, 1998). Comparing each town’s proportion of residential property ownership of out-of-state residents to in-state residents provided an indicator of vacation homes and visitation activity by out-of-state residents for tax year 2012 (Vermont Department of Taxes, 2013). This variable was created by finding the percentage of non-state resident property values listed in each town in relation to the total listed values of property owned by town residents, state residents (excluding town residents), and non-state residents. Corporately owned property was excluded because it generally reflects the property values of businesses rather than households (Roger Kilbourn, VT Department of Taxes). Tax year 2012 was chosen because it was the most recent year when any students in the study resided in the town. Further details about the construction of the tourist town variable is included in the following section.
Constructing a Single Binary Tourism Town Variable

Developing a binary variable for rural towns with a high level of tourist activity began with the measure for room sales from lodging facilities in rural towns, because this variable had the strongest empirical measures for the number and frequency of tourists who visit for longer than one day. An exploration of the variable through descriptive statistics, histograms, and stem and leaf plots identified 36 towns with extremely high values and 9 towns with values at least two standard deviations above the mean.

Rural towns with measures for both mean rooms sales values greater than two standard deviations above the mean and also a proportion of vacation property values greater than the 75th percentile (also greater than the statewide median and mean) were determined to be tourist towns. For the proportion of vacation property values, a threshold greater than the 75th percentile mean or median percentage of all rural towns was used because it eliminated towns which had a large lodging facility that was separate from the residential community and also serve as an indicator for a substantial proportion of homes in the community which were vacation homes for out-of-state residents. The result of these analyses yielded a variable that identified nine Vermont towns as having a high level of tourism activity: Dover, Jay, Ludlow, Manchester, Sherburne (Killington), Stowe, Stratton, Warren, Woodstock. These nine towns were assigned a value of one on the binary indicator for the newly constructed variable labeled “Tourist Town”.

All of the remaining towns in the sample that were not identified as a College Town or Tourist Town were considered “Other Rural Towns” for the purposes of this study. Examples of Other Rural Towns were Alburgh, Bristol, Benson, Charlotte, Cavendish, Clarendon, and Duxbury.
In summary, the variables constructed to measure community factors were:

- Mean lodging rooms sales by town from 2003-2013 (MeanRoomSales20032013)
- Presence of a residential 4-year college in the calendar year 2012 (FourYrResPS)
- Proportion of property values listed to Non-State Residents compared to town residents excluding non-town state residents or corporate listed values (PercNonstatetoSNSTown2012)
- Rural Designation (RuralTown)

3.4.3. School Factor Data Set

As noted in the review of the literature, high schools play an important role in predicting college persistence. According to Niu and Tienda (2013), the economic composition of a high school is a significant factor that influences student persistence at four-year colleges. Graduates from more affluent high schools are more likely to persist in college and graduate (Niu & Tienda, 2013). Additionally, students who attended high schools with a higher percentage of students taking the College Board SAT (used as a metric for schoolwide college preparation) were also more likely to persist and graduate (Johnson, 2008; Niu & Tienda, 2013). The contributions of the research and availability of data directed the construction of two school variables.

Constructing School Variables

School variables were constructed using Microsoft Excel from publicly available data. High school data was retrieved through public records requests and downloads from websites for the Vermont Agency of Education and the U.S. Census Bureau. These two data sources were used because they provided the most accurate, comprehensive publicly available information about public high schools in Vermont.
Each data set included the high school name and the state identification school codes for every public high school operating in 2011; this identification code allowed the school to be linked to other data included in the analysis. Each school was checked by the researcher to verify that it operated for all years the sampled cohort of students would have attended high school.

Schoolwide College Preparation

The variable measuring schoolwide preparation for college was constructed from participation in the College Board SAT exam. Data was only available for the years 2010 to 2012. Participation in the SAT was chosen because it is frequently used by students in applications for post-secondary schools, particularly in Vermont and northern New England (College Board, 2015). Additionally, the SAT is recognized as a common metric for students’ knowledge for success in college (College Board, 2015; Johnson, 2008; Yan, 2002). This variable is titled “Schoolwide College Preparation”.

Schoolwide Socioeconomic Status

The variable measuring the schoolwide socioeconomic status (SES) was constructed from the percentage of students eligible to participate in the National School Lunch Program (NSLP), or commonly known as Free and Reduced Lunch program eligibility (FRL). Participation in NSLP is frequently used in education research as a surrogate measurement of poverty (Johnson, 2008; Niu & Tienda, 2013). Because the available data only allowed for using the percentage of students eligible for FRL for a single year, data from school year 2008 to 2009 was used because it included the beginning of an economic recession and overlapped with the other cohorts of the sampled students. This variable is titled “Schoolwide SES”.

53
In summary, there were two high school factors that served as variables in the multi-level model:

- Percentage of high school students eligible for the National School Lunch Program in 2009 (a surrogate measure for school wide low-income status) (Johnson, 2008; Niu & Tienda, 2013) - Schoolwide SES
- Percentage of students taking the SAT (Yan, 2002; Johnson 2008) - Schoolwide College Preparation

3.4.4. Student Factor Variables

The most robust collection of variables for the analysis were factors measuring student background and demographic characteristics. These factors were critical to include in the analysis because decades of research on college completion and academic success have identified several student factors that contribute to a greater or reduced likelihood of college persistence (Aud et al., 2010; Bowen et al., 2009; Coleman, 1968; Munro, 1981; Niu & Tienda, 2013; Nora, 2004; Tinto, 1975; Titus 2006). Specifically, student demographic and post-secondary related socio-economic characteristics were included because the literature shows they are often the greatest predictors of college persistence (Bowen et al., 2009; Coleman, 1968; Munro, 1981; Niu & Tienda, 2013; Nora, 2004; Tinto, 1975). Controlling for these student-level characteristics allowed the analysis to focus on the relationship between community factors and college persistence.

The student demographic factors included gender, race and ethnicity, and eligibility for the National School Lunch Program, which serves as a surrogate measurement for students living in poverty (Aud et al., 2010; Bean, 1980; Bowen et al., 2009; Coleman, 1968; Howley et al., 2014; Munro, 1981; Niu & Tienda, 2013; Nora,
2004; Tinto, 1975). Measurements of academic background and readiness for college were scores on the mathematics, reading, and writing sections of the SAT and the reading and mathematics section of the New England Common Assessment Program (NECAP), the standardized assessment used by Vermont while these students were in high school (College Board, 2015; Niu & Tienda, 2013; Vermont Agency of Education, 2015a). Lastly, factors for family post-secondary characteristics included measures for the highest level of education that each parent or guardian completed, the grade level when students began to speak with their parent(s) or guardian(s) about post-secondary planning, student concerns about ability to pay for college, and the grade level when students decided to continue education after high school.

Data from the student census file was used to construct variables for gender, race and ethnicity, and National School Lunch Program (NSLP) eligibility. Academic readiness variables were constructed from state accountability assessment data and the College Board SAT data sets. Lastly, family post-secondary background variables were constructed from Vermont Senior Survey data from VSAC.

Constructing Demographic Variables

Variables for demographic factors were constructed from student census data to create binary indicators of student characteristics. There were no missing values for data measuring demographic factors. The variable for gender was constructed to be a binary indicator for “Female” where 0=male and 1=female. Variables were then created to be binary indicators for each race and ethnicity represented in the student sample. A variable was also created to indicate students who were members of more than one race. Hispanic
students all had multiple memberships to different subgroups of students to include the ethnicity category and at least one race category.

An examination of the newly constructed variables revealed that race and ethnicity indicators were heavily weighted on the category of “White” (about 98.3% of all cases). Because the individual race and ethnicity variables other than white were too small to provide meaningful interpretation from the analysis and potentially provide results that were student identifiable, the non-white race variables were collapsed to form a single composite variable called “Non-White.” The Non-White variable also included students who identified as Multiracial, Multiethnic, and White. Table 1 shows the number of cases for each race or ethnicity and the percentage of total cases represented by each group of students.

Table 1

Frequency of cases by race and ethnicity for final sample.

<table>
<thead>
<tr>
<th>Race or Ethnicity</th>
<th>Number of cases</th>
<th>Percentage of Total Cases</th>
</tr>
</thead>
<tbody>
<tr>
<td>American Indian</td>
<td>35</td>
<td>0.7</td>
</tr>
<tr>
<td>African American</td>
<td>39</td>
<td>0.8</td>
</tr>
<tr>
<td>Asian</td>
<td>37</td>
<td>0.8</td>
</tr>
<tr>
<td>Hispanic</td>
<td>44</td>
<td>0.9</td>
</tr>
<tr>
<td>Native Hawaiian or Pacific Islander</td>
<td>9</td>
<td>0.2</td>
</tr>
<tr>
<td>White</td>
<td>4726</td>
<td>98.3</td>
</tr>
<tr>
<td>MultiRaceEth</td>
<td>77</td>
<td>1.6</td>
</tr>
<tr>
<td>Non-White</td>
<td>154</td>
<td>3.2</td>
</tr>
</tbody>
</table>

Lastly, constructing the variable to indicate students living in poverty was based upon a student’s eligibility for either free or reduced lunch (FRL) through the NSLP criteria at any time during high school. This variable was labeled “FRL.”
Academic Factors and Variables

Research on college persistence and completion has consistently shown that academic readiness for college is a predictor of college persistence and completion (Braxton et al., 2014; Hall, et al., 2008; Hoffman & Lowitzki, 2005; Stumpf & Stanley, 2002; Tinto, 1975; Tinto, 1993; St. John et al., 2000). Vincent Tinto’s theories of student departure emphasized the importance of separating the domains of academic integration versus social integration into higher education when examining factors leading to college persistence (1995).

Variables constructed to measure student’ academic readiness for college included the scores on the mathematics, reading, and writing sections of the College Board SAT and the reading and mathematics section of the NECAP. The SAT has been used as a nationally recognized predictor of college success in many studies and is frequently used for college admissions (College Board, 2015; Hoffman & Lowitzki, 2005; Niu & Tienda, 2013). The NECAP was designed for use in a small number of states to measure math and reading skills at grade level according to state achievement standards as required by No Child Left Behind, the federal education act guiding student assessment when this study’s students were in high school (Vermont Agency of Education, 2015a).

When using SAT scores for educational research that predicts success in college, the College Board recommends using the SAT in conjunction with high school grade point average (GPA) as a measure of academic readiness (Shaw, 2015). Although, high school transcript information was not available for this study, validity studies measuring the relationship between SAT scores and college retention demonstrated that higher SAT
composite scores show an increased college retention and graduation rates, even when controlling for high school GPA (Shaw, 2015). Little research has been conducted on the relationship between the NECAP and college readiness; however, the assessment is recognized as an accurate and reportable measure of grade level knowledge and skills for the subject areas of mathematics, reading and science (Vermont Agency of Education, 2015a; Vermont Agency of Education, 2015c).

An initial exploration of the data revealed cases with duplicate scores for both NECAP (23 cases) and SAT (1946 cases). The duplicate cases with NECAP scores were deleted because all score values were the same for each duplicate case.\(^1\) The most recent SAT score was retained for the analysis, which is a method used in other research of SAT scores predicting success in college (Mattern & Patterson, 2009; Zwick & Himelfarb, 2011).

A bivariate correlation was conducted on the scores for all subject areas in each assessment. The results showed that SAT Verbal, Math, and Writing scores had strong relationships between each of the subject areas, therefore not all of the assessment variables will be used for the analysis. To reduce the likelihood of collinearity among variables in the multi-level model, the SAT Verbal, Math, and Writing scores were combined to create a single SAT composite score (Shaw, 2015). The composite SAT score was then standardized as a Z score to create the continuous variable of academic

\(^1\) There were high correlations between NECAP Reading and Math scores with SAT scores, which prompted a decision to limit assessment variables from the analysis (see Appendix C, Appendix D for Spearman Correlation Matrix of Variables). Further exploration of the data revealed that no students took the 11th grade NECAP in 2008, so approximately 1/3 of the data was missing (missing values will be discussed in further detail in the section titled Missing Values). Therefore, the NECAP scores were removed from the analysis.
readiness (variable code label ZSATVERBMATHWRIT). The mean, range, median, and number of cases for the standardized composite SAT score without missing values can be found in Table 2, and a histogram showing the distribution of score is in Figure 1.

Table 2

Descriptive statistics for standardized composite SAT scores.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Mean</th>
<th>Minimum</th>
<th>Maximum</th>
<th>Median</th>
<th>Valid</th>
</tr>
</thead>
<tbody>
<tr>
<td>Composite SAT Score</td>
<td>0 (0.02)</td>
<td>-3.61</td>
<td>3.13</td>
<td>-0.03</td>
<td>3908 (81.3%)</td>
</tr>
</tbody>
</table>

Figure 1. Histogram of standardized composite SAT scores.
Family Postsecondary Factors

Variables constructed to measure student factors related family post-secondary characteristics were collected from results of the Vermont Senior Survey by VSAC. For the purposes of this study, the Vermont Senior Survey data included a statewide representation of students who were seniors and graduated in the years 2008, 2010, and 2012. The survey was voluntary, and the annual statewide response rate was approximately 85% (VSAC, 2015), though many surveys had unanswered questions, creating missing data. In total, 18,467 surveys were completed and included in the data set for the study.

For the purposes of this study, survey questions were identified that the literature suggested could influence college persistence or college completion due to their relationship to college planning and family education (Braxton et al., 2014; Stage & Hossler, 1988; Yan, 2002). Answers to survey questions were transformed to become binary variables. The variables were parent education level, post-secondary planning at an early age, and serious concerns about paying for college. See Appendix E for a list and description of the variables created.

Chi-squared tests were conducted to test for collinearity between variables constructed from survey responses and demographic variables with conceptual or theoretical constructs that may be similar. The dichotomous variables measured were Mother has a College Degree, Father has a College Degree, Major Concern about Paying for College, FRL, and Early Planning. The results of the chi-square tabulation showed expected counts that were close to actual counts for students with the same value for each variable, which was an indicator of potential collinearity. The researcher retained the
variables Early Planning and FRL for the analysis because these variables have been used in other studies of college enrollment, persistence and completion (Alarcon & Edwards, 2013; Bowen et al., 2009; Ishitani, 2006; Tinto, 1993). Both variables Mother has a College Degree and Father has a College Degree were replaced by the variable First Generation College (PARENTSNODEGREE) to provide an estimate of first generation college going and parent education level (Ishitani, 2006). Figure 2 shows survey questions and response options, the newly constructed variables titles, and each variables respective values derived from the original survey responses.

<table>
<thead>
<tr>
<th>Survey Questions</th>
<th>Constructed Variable</th>
<th>Description of Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>What is the highest level of education that parent(s) or guardian(s) completed?</td>
<td>First Generation College</td>
<td>This dichotomous variable is a measure of parents’ education level; 1=both parents have an education level of less than a college degree, 0=One or both parents have any type of college degree (associates, bachelor, master, doctorate, or professional degree, System Missing= no reported response or “Don’t know”</td>
</tr>
<tr>
<td>Mother and Father responses available.</td>
<td>(PARENTSNODEGREE)</td>
<td></td>
</tr>
<tr>
<td>1. Did not finish high school</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. High School diploma or GED</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Some college or one year certificate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. 2-year college degree (associate’s)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. 4-year college degree (bachelor’s)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Master’s, doctorate, or professional degree</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Don’t know</td>
<td></td>
<td></td>
</tr>
<tr>
<td>When did you begin to talk with your parent(s) or guardian(s) about what to do</td>
<td>Early Planning</td>
<td>This dichotomous variable indicates whether a student talked about their plans after high school in eighth grade or earlier. 1=Began to talk about what to do after high school in grade 8, 7, 6 or earlier, 0=Began to talk about what to do after high school in grade 9, 10, 11, 12 or not at all.</td>
</tr>
<tr>
<td>after high school? (Please mark only one.)</td>
<td>(EARLYTALK)</td>
<td></td>
</tr>
<tr>
<td>Sixth grade or earlier (1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seventh grade (2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eighth grade (3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ninth grade (4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tenth grade (5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eleventh grade (6)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Twelfth grade (7)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I haven’t talked with my parent(s)/guardian(s) about my plans (8)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 2. Survey questions with response options, newly constructed variable titles with codes, and descriptions of constructed variable values.
Selecting the Final Student Variables

Selecting the final student variables for the multilevel model required tests to determine whether the variables are independent and do not have correlated errors (Raudenbush & Bryk, 2002). The researcher then used SPSS to perform an OLS with collinearity diagnostics on 11th grade NECAP reading scores with the following explanatory variables: Female, Early Planning, FRL, First Generation College, Composite SAT Score, American Indian, Asian, White, African American, Hispanic, Hawaiian-Pacific Islander (HawaiiPacific), and Multi Race/Ethnicity. All variables for race and ethnicity, except Hawaiian-Pacific Islander, had a tolerance of 0.1 or lower and variance inflation factors (VIF) greater than eight (see Appendix F) signaling the potential for multi-collinearity (SPSS Web Books-Regression with SPSS, 2016).

A second OLS on 11th grade NECAP reading scores was performed by including Non-White and excluding all other race and ethnicity variables. The results of this analysis showed all tolerance coefficients to be greater than 0.8 and the VIF to be less than two. The level one student variables selected for the model were Female, Non-White, FRL, Composite SAT Score, Early Planning, and First Generation College. In summary, the student background and demographic factors included in this analysis are described in the bullets below with the code title in parenthesis:

- Gender-Female (Female)
- Race and ethnicity other than White- Non-White (NotWhite)
- National School Lunch Program (NSLP) eligibility- Low family income (FRL)
- Standardized composite score for College Board SAT Verbal, Mathematics and Writing sections- Composite SAT Score (ZSATVERBMATHWRIT)
• Neither parent has attained a college degree, including an associate degree - First Generation College (PARENTNODEGREE)

• Students began discussions with their parent(s) or guardian(s) about what to do after high school at eighth grade or earlier – Early Planning (EARLYTALK)

A summary list of the variables with their coded name and definition for the purposes of this study can be found in Appendix E. The frequencies for the newly constructed binary variables can be found in Table 3.

Table 3
The frequency and percentage of total cases for each dichotomous variable.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Value</th>
<th>Frequency</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Female</td>
<td>0</td>
<td>2187</td>
<td>45.5</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>2621</td>
<td>54.5</td>
</tr>
<tr>
<td>Low Family Income</td>
<td>0</td>
<td>3892</td>
<td>80.9</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>916</td>
<td>19.1</td>
</tr>
<tr>
<td>Early Planning</td>
<td>0</td>
<td>2744</td>
<td>57.1</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1591</td>
<td>33.1</td>
</tr>
<tr>
<td>First Generation College</td>
<td>0</td>
<td>2908</td>
<td>60.5</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1369</td>
<td>28.5</td>
</tr>
<tr>
<td>Non-White</td>
<td>0</td>
<td>4654</td>
<td>96.8</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>154</td>
<td>3.2</td>
</tr>
</tbody>
</table>

3.4.5. Final Data Set

After the three data sets for Community Factors, School Factors, and Student Background and Family Post-Secondary Characteristics were sufficiently restructured, they were aggregated into a single data set for building the multi-level model. Merging of the data was completed in SPSS version 22. The original census file that included all students graduating high school in 2008, 2010, and 2012 had 21,737 cases. After filtering
the data set to only include students who enrolled in the fall semester after graduating from high school and entered a four-year residential college, 8970 cases remained. Lastly, the final filtering of data only included students from rural towns who enrolled in a four-year residential college the fall after graduating from high school and completed the Vermont Senior Survey. The final data set for the analysis had 4,808 cases.

3.4.6. Construction of the Dependent Variable: College Persistence

Constructing the dependent variable “College Persistence” required extensive data management from the records retrieved through the NSC. A measurement of consecutive enrollment in a post-secondary institution for up to two years did not already exist. Additionally, the wide variety of academic calendars and enrollment terms for post-secondary institutions in the data provided substantial obstacles for capturing a measure of continuous enrollment in semesters, trimesters, quarters, summer short-terms, or other academic schedules. Therefore, the researcher designed a new measure of continuous enrollment to classify enrollment terms as occurring in either the fall or spring academic calendar.

To create this measure, the beginning dates of enrollment terms were transformed into indicators of calendar year quarters by the year of enrollment (e.g., enrollment begin date for a term in September, 2009 becomes Fall2009). Next, the order, or sequential placement, of each enrollment term was combined with the calendar year quarter to provide a reference point of when a student was enrolled during a fall or spring academic term. For example, if a 2008 high school graduate enrolled in a course at any post-secondary institution from December 2008 through March, 2009, and it was their second
or third enrollment term, it would be included with the variable labeled EnrollBeginSpring2009.

As the newly created enrollment indicator captured student enrollment into the spring of their second school year, the formula was expanded to include students who took summer courses or enrolled at institutions with shorter enrollment terms (e.g., trimesters, quarters) so they would be included with their peers enrolled in semester academic schedules. To control for this growing disparity of ordered or sequential enrollment terms, the researcher expanded the possible combinations of eligible enrollment terms for each quarter and year. The formula was analyzed throughout its development by comparing results of the new variable with individual outlier student cases in data set. For example, students would be counted as continuously enrolled if they attended a college with a quarter system and took summer classes or if they attended sequential semesters and no summer courses.

Following the creation of the enrollment indicator by academic calendar, the researcher created a variable identifying the Office of Postsecondary Education Identification (OPEID) code for the institution where each student enrolled in their first fall season and spring of their last academic season. The OPEID is a code developed by NCES to “identify schools that have Program Participation Agreements so that its students are eligible to participate in Federal Student Financial Assistance programs under Title IV regulations” (NCES, 2015d). If the institution code matched for those two term periods, the student was identified as having completed two years of post-secondary education (variable label for 2008 graduates= OPEIDFall08Spring2010). Lastly, all variables for the three cohorts of students were combined to create a single variable
indicating college persistence for four fall and spring academic, or calendar, quarters. See Appendix G for the SPSS syntax showing the complete formula.

3.5. Missing Values

Several variables in the final data set contained missing values that needed to be managed before building the multi-level model. Although many of the data sets were cleaned extensively prior to the researcher’s access, certain data sets had suppressed values or data missing from the original collection for a variety of reasons. Steps were taken to identify the scope of missing values and decide how to proceed with filling in missing data points.

To gain a better understanding of the scope of missing data, the researcher conducted a missing values analysis in SPSS. The missing values analysis revealed several variables with missing data points (Table 4).

<table>
<thead>
<tr>
<th>Variable</th>
<th>N</th>
<th>Count Missing</th>
<th>Count Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Female</td>
<td>4808</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Low Family Income</td>
<td>4808</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Non-White</td>
<td>4808</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Composite SAT Score</td>
<td>3908</td>
<td>900</td>
<td>18.7</td>
</tr>
<tr>
<td>Early Planning</td>
<td>4335</td>
<td>473</td>
<td>9.8</td>
</tr>
<tr>
<td>First Generation College</td>
<td>4277</td>
<td>531</td>
<td>11</td>
</tr>
</tbody>
</table>

The variables constructed from items on the Vermont Senior Survey had a substantial number of missing results. The variable Early Planning had 9.8% of cases missing values and First Generation College had 11%. The values were considered
missing at random (MAR) due to the incomplete responses on the voluntary survey (Snijders & Bosker, 2012).

The last category of variables with missing values were the SAT scores, where the Verbal, Mathematics, and Writing variables each have 900 missing values, or 18.7% of the cases. When reviewing the SAT data, the missing values were distributed among students of different high schools, post-secondary institutions, graduation years, gender, NSLP eligibility, and town of residence. The possible reasons for the missing SAT values are that students took the SAT in a year other than what was included in the data set for the analysis or the student did not take the SAT at all. Therefore, it is likely that these missing scores are MAR (Snijders & Bosker, 2012).

The missing values for group variables were limited to the school level data. All of the missing values are within the variable Schoolwide College Preparation and only apply to three schools. The schools with missing values had small student bodies, and their values were suppressed by the College Board and Vermont Agency of Education in the publicly available data set as a way to preserve student confidentiality. These missing values are NMAR. Because there are only 65 cases in the three schools, mean substitution was used to impute the missing values (Acock, 2005).

The pattern and breadth of missing data was addressed before further analyses were conducted on the research questions. A statistical method called multiple imputation was used to make valid inferences on estimations of what values should be imputed where data is missing (Schafer & Olsen, 1998; Van Buuren, 2007). Imputing values will yield a complete data set that preserves the structure of the data. Two challenges for imputation the researcher faced were the classifications of data as MAR and NMAR and
the multilevel structure of the data set, where data with missing values are nested within groups (Snijders & Bosker, 2012). Multiple imputation would be used to replace missing values of control variables for the final model, but not for any community type explanatory variables. Before imputing missing values, tests for collinearity were performed to identify variables that should be excluded from the analysis because multilevel models are sensitive to variables with strong relationships (Raudenbush & Bryk, 2002; Snijders & Bosker, 2012).

3.5.1. Multiple Imputation Methodology

The missing values for the data set were addressed through multiple imputation by chained equations (MICE) or what Van Buuren (2007) called fully conditional specifications (FCS). The MICE or FCS method builds separate models for each variable missing data that is conditional on its distribution with all other variables, but does not require the “simultaneous distribution of all variables jointly” (Snijders & Bosker, 2012, p. 145; StataCorp, 2015). This method is ideal for the missing data in this analysis because, as Van Buuren (2007) describes, FCS provides great flexibility to “specify models that are outside any known standard multivariate density” and maintain constraints between individual variables (p. 227).

The imputation model was built in Stata using commands specified in Stata Multiple Imputation Reference Manual 14 (StataCorp, 2015). The Stata commands for the multiple imputation can be found in Appendix H. The registered imputed variables were Composite SAT Score, First Generation College, Early Planning, School and Town. Although there were no missing values for School and Town, they were included as imputed variables for the analysis to account for clustering within schools and towns. All
of the remaining variables were registered as regular variables, including the outcome variable College Persistence. The imputation model regressed Composite SAT Score, School, Town and performed a logit with First Generation College and Early Planning. The independent variables selected were based on their conceptual capacity to represent relevant student factors but would also not be a perfect predictor. The dependent variable was also included as an independent variable. A total of 20 imputations were run with a burn-in period of 10 iterations, which is the recommended number of imputations when less than 20% of cases have values missing (White, Royston, & Wood, 2011).

3.6. Associations of Group Variables

Before choosing which type of multilevel model to build, the fit between the groups for towns and schools had to be analyzed for the strength of their association. The structure of the data implied an imperfect hierarchy of students being members of both towns and schools, which means that there is not a direct or complete association between town groups and school groups. To better understand the relationship between the two sets of groups, the researcher ran a chi square test for association using crosstabs in SPSS of directional and symmetric measures for nominal by nominal relationships. The results of the directional measures showed a Lambda value for school dependent relationships as 0.946 and an uncertainty coefficient of 0.964. The symmetric measures for Cramer’s V showed a values of 0.908 and a Contingency Coefficient of 0.99. All results of the analysis were significant and showed a strong association between town and school groups, which suggests that a two level hierarchical logistic model would likely be a better model fit rather than a cross-classified model (Britton, 2011; Snijders & Bosker, 2012).
CHAPTER 4: RESULTS

This study was designed to measure the likelihood of students from different kinds of rural communities persisting in college, while controlling for several student and high school factors that are known to influence college persistence and completion. The two level hierarchical logistic model was built in stages to address each research question. First, frequencies for each of the variables were calculated for rural students who did persist in college and students who did not persist. Second, the empty model was developed to estimate the group dependent probabilities (Snijders & Bosker, 2012). Then, parameter estimates for student (level 1) variables were calculated for the likelihood to persist in college. Next, the level two school variables were added to the model to control for the random effects for factors attributed the high school. Lastly, interactions between the type of towns and significant student characteristics were conducted. Each research question is addressed in the following sections.

4.1. Key Findings for Research Question 1

Research Question: How does college persistence differ among students with different demographic, socioeconomic, and academic backgrounds across all types of rural communities and high schools?

4.1.1. Frequency and Distribution Analysis of Variables

Answering the first research question required a descriptive analysis of the frequency and distribution of the student background and demographic variables as well as an examination of their association with college persistence (Raudenbush & Bryk, 2002). First, crosstabs were used to provide a count of the values for binary variables for the two student groups: “persistors” and “non-persistors”. The results of the frequencies
are in Table 5. Table 5 shows that there were low numbers of students in the sample who were not white, lived in college towns, or lived in tourist towns. Out of the 4,808 students in the sample, there were more females than males, more students who were not living in poverty, more students with at least one parent who had a college degree, and more students who did not start post-secondary planning at an early age. This distribution was true for students who persisted and those who did not.

Table 5
Crosstabs of student background and demographic variables sorted by college persistence

<table>
<thead>
<tr>
<th>Variable</th>
<th>Value</th>
<th>Not College Persist</th>
<th>College Persist</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Female</td>
<td>1</td>
<td>870</td>
<td>1751</td>
<td>2621</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>758</td>
<td>1429</td>
<td>2187</td>
</tr>
<tr>
<td>Family Low Income</td>
<td>1</td>
<td>369</td>
<td>547</td>
<td>916</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>1259</td>
<td>2633</td>
<td>3892</td>
</tr>
<tr>
<td>Non-White</td>
<td>1</td>
<td>56</td>
<td>98</td>
<td>154</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>1572</td>
<td>3082</td>
<td>4654</td>
</tr>
<tr>
<td>First Generation College</td>
<td>1</td>
<td>503</td>
<td>866</td>
<td>1369</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>901</td>
<td>2007</td>
<td>2908</td>
</tr>
<tr>
<td>Early Planning</td>
<td>1</td>
<td>488</td>
<td>1103</td>
<td>1591</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>943</td>
<td>1801</td>
<td>2744</td>
</tr>
<tr>
<td>College Town</td>
<td>1</td>
<td>168</td>
<td>310</td>
<td>478</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>1460</td>
<td>2870</td>
<td>4330</td>
</tr>
<tr>
<td>Tourist Town</td>
<td>1</td>
<td>69</td>
<td>173</td>
<td>242</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>1559</td>
<td>3007</td>
<td>4566</td>
</tr>
</tbody>
</table>

The distribution and association of the continuous variable Composite SAT Score, which measured academic readiness as a composite verbal, mathematics, and writing SAT score, with college persistence was calculated separately. Table 6 shows the mean, standard errors, standard deviation, median and range of standardized composite SAT scores for students who either did or did not persist in college. Appendix I shows histograms for the distribution of scores for the two groups of students; those who persisted in college and those who did not. The mean and median SAT score is greater
for students who persisted in college. There was also a smaller range of scores for students who persisted in college. Although SAT scores were slightly positively skewed for students who did not persist in college, both sets of SAT scores (for students who did or did not persist in college) were normally distributed. These results suggest that the non-imputed SAT scores for the 1293 students who did not persist in college and the 2615 students who did had a wide range of academic knowledge and skills before entering college. Also, the average SAT score among students who persisted in college was higher and the range of scores was closer to the mean than scores were for students who did not persist.

Table 6

<table>
<thead>
<tr>
<th>College Persistence</th>
<th>Mean</th>
<th>Standard Error</th>
<th>Standard Deviation</th>
<th>Median</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.107</td>
<td>0.020</td>
<td>1.000</td>
<td>0.082</td>
<td>5.910</td>
</tr>
<tr>
<td>0</td>
<td>-0.217</td>
<td>0.027</td>
<td>0.965</td>
<td>-0.261</td>
<td>6.743</td>
</tr>
</tbody>
</table>

4.1.2. Building the Multilevel Model

The Empty Model

After completing the descriptive analyses of student variables, the next analysis used to answer the first research question was multilevel logistic modeling. Building the multilevel model began with the creation of a null model or empty model to generate parameter estimates for the level two group variable that specifies “the probability distribution of group dependent probabilities...without taking further explanatory variables into account” (Snijders & Bosker, 2012, p. 295). In lay terms, the null model is important because it provides a measure of the total variability that occurs within groups.
Because students are nested within schools, a two level model was designed with schools being the groups at level two and individual students at level one. The empty model only included the dependent variable, College Persistence, and the identifiers for schools, labeled “SchoolCode”. The syntax and complete output of results for the empty model can be found in Appendix J.

The parameter estimates for the level 2 cluster variables were used to determine the variance partition coefficient (VPC), which is the proportion of variance explained at the group level (Snijders & Bosker, 2012). To calculate the VPC in the null model, the researcher used the following formula:

$$VPC = \frac{T_2}{T^2 + 1}$$

The VPC for the level two high school clusters was 0.034. Although this VPC value is low, it does indicate that there is variation among students from different schools. As a researcher, this led me to believe that using a hierarchical logistic model rather than an OLS was an appropriate design for this analysis.

Multilevel Models with Explanatory Variables

After the null model was completed, separate models were built for each student background and school explanatory variable. The results of the models with student background variables can be found in Table 7, and models with only school variables are in Table 8. The separate models with single explanatory variables for student background characteristics showed that gender, and race and ethnicity were not significant predictors of college persistence, while academic readiness for college, first generation college going and post-secondary planning at an early age were significant. The models built
with single variables for school factors showed that schoolwide socioeconomic status was
a significant predictor that students were slightly less likely to persist in college while
schoolwide preparation for college did not show a significant relationship.

Table 7

Parameter Estimates for Multilevel Models with a Single Explanatory Variable for
Student Background Factors on College Persistence

<table>
<thead>
<tr>
<th>Parameter Estimate</th>
<th>Female</th>
<th>Low Family Income</th>
<th>Non-White</th>
<th>Composite SAT Score</th>
<th>First Generation College</th>
<th>Early Planning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Odds Ratio</td>
<td>1.07 (0.07)</td>
<td>0.73*** (0.06)</td>
<td>0.89 (0.15)</td>
<td>1.43*** (0.05)</td>
<td>0.79*** (0.05)</td>
<td>1.20*** (0.08)</td>
</tr>
<tr>
<td>Constant</td>
<td>1.85*** (0.10)</td>
<td>2.06*** (0.09)</td>
<td>1.93*** (0.08)</td>
<td>2.00*** (0.08)</td>
<td>2.09*** (0.10)</td>
<td>1.80*** (0.09)</td>
</tr>
<tr>
<td>Random Effects</td>
<td>0.19 (0.05)</td>
<td>0.17 (0.05)</td>
<td>0.19 (0.05)</td>
<td>0.13 (0.06)</td>
<td>0.17 (0.05)</td>
<td>0.19 (0.05)</td>
</tr>
</tbody>
</table>

Notes: *p ≤ 0.10 **p ≤ 0.05 ***p ≤ 0.01 after rounding.
Standard errors are in parenthesis.

Table 8

Parameter Estimates for Multilevel Models with a Single Explanatory Level 2 Variable
for School Characteristics

<table>
<thead>
<tr>
<th>Parameter Estimate</th>
<th>Schoolwide SES</th>
<th>Schoolwide College Preparation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Odds Ratio</td>
<td>0.99*** (0.00)</td>
<td>1.00 (0.00)</td>
</tr>
<tr>
<td>Constant</td>
<td>2.45*** (0.25)</td>
<td>1.66*** (0.30)</td>
</tr>
<tr>
<td>Random Effects</td>
<td>0.15 (0.05)</td>
<td>0.18 (0.05)</td>
</tr>
</tbody>
</table>

Note: *p ≤ 0.10 **p ≤ 0.05 ***p ≤ 0.01 after rounding.
Standard errors are in parenthesis.

Next, individual student variables were added to the model to estimate the effects
of demographic, academic, and family backgrounds on college persistence. Each of these
explanatory variables was chosen for inclusion in the model due to its well-established
link to persistence (Bowen et al., 2009; Coleman, 1968; Nora, 2004; Tinto, 1975). At
first, the variables indicating student characteristics were added to the model to represent
indicators of gender, low family income, non-white race and ethnicity, and academic
readiness for college. Then, two relevant family background characteristic. First
Generation College and Early Planning, were included in the model. The odds ratios for
the variables in each model are reported in column one in Table 9.

Model 1 in Table 9 goes on to show that the student characteristics for gender and
race and ethnicity did not have a significant relationship with college persistence.
However, the surrogate measurement for academic readiness, composite SAT score (odds
ratio 1.41), and low family income (odds ratio 0.92) showed a significant effect. Both of
the variables measuring Family Characteristics, First Generation College and Early
Planning were not significant.

In summary, the results of the multilevel model for student background variables
demographic, academic, and family backgrounds on college persistence show that student
family income status and academic readiness are significant predictors of college
persistence for students from any type of Vermont’s rural communities. Rural students
living in poverty are 0.82 times less likely to persist in a four-year residential college,
while for each unit increase in academic readiness, students are 1.41 times more likely to
persist in college. Although parent post-secondary education and student college planning
at an early age are significant predictors of college persistence, the effects are not
significant when other variables are added to the model. The results of Models 2, 3 and 4
are reported in the Key Findings for Research Questions 2 and 3.
Table 9

Effect of Student Factors on College Persistence (Odds Ratios and Standard Errors)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Model 1</th>
<th>Model 2</th>
<th>Model 3</th>
<th>Model 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Constant</td>
<td>1.95***</td>
<td>1.94***</td>
<td>2.01***</td>
<td>1.68** (0.39)</td>
</tr>
<tr>
<td></td>
<td>(0.12)</td>
<td>(0.12)</td>
<td>(0.43)</td>
<td></td>
</tr>
<tr>
<td>Student Characteristics</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>1.09 (0.07)</td>
<td>1.09 (0.07)</td>
<td>1.09 (0.07)</td>
<td>1.09 (0.07)</td>
</tr>
<tr>
<td>Low Family Income</td>
<td>0.82** (0.07)</td>
<td>0.82** (0.07)</td>
<td>0.82** (0.07)</td>
<td></td>
</tr>
<tr>
<td>Non-White</td>
<td>0.98 (0.17)</td>
<td>0.97 (0.17)</td>
<td>0.97 (0.17)</td>
<td>0.98 (0.17)</td>
</tr>
<tr>
<td>Composite SAT Score</td>
<td>1.41***</td>
<td>1.41***</td>
<td>1.41***</td>
<td>1.41***</td>
</tr>
<tr>
<td></td>
<td>(0.06)</td>
<td>(0.06)</td>
<td>(0.06)</td>
<td>(0.06)</td>
</tr>
<tr>
<td>Family Characteristics</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>First Generation College Early Planning</td>
<td>0.99 (0.07)</td>
<td>0.99 (0.08)</td>
<td>1.00 (0.08)</td>
<td>0.99 (0.08)</td>
</tr>
<tr>
<td>College Town</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-FRL Tourist Town</td>
<td></td>
<td></td>
<td></td>
<td>1.18 (0.22)</td>
</tr>
<tr>
<td>Non-FRL Non-Tourist Town</td>
<td></td>
<td></td>
<td></td>
<td>1.22** (0.10)</td>
</tr>
<tr>
<td>Community Type</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>College Town</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tourist Town</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schoolwide SES</td>
<td>1.00 (0.00)</td>
<td>1.00 (0.00)</td>
<td>1.00 (0.00)</td>
<td></td>
</tr>
<tr>
<td>Schoolwide College Preparation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes: *p ≤ 0.10 **p ≤ 0.05 ***p ≤ 0.01 after rounding.

- **Model 1**: Level one variables for student factors and family characteristics
- **Model 2**: Level one variables for student factors, family characteristics, and community type
- **Model 3**: Level one variables for student factors, family characteristics, and community type and level two variables for school characteristics
- **Model 4**: Level one variables for student factors, family characteristics, and community type with interactions for community type and family income and level two variables for school characteristics
4.2. Key Finding for Research Question 2

Research Question: Do students of different backgrounds from rural communities with a college or high levels of tourism have an increased likelihood to persist in a four-year residential college community when controlling for the effects of their high school?

Answering the second research question required expanding the multilevel model for student background variables to include town variables. Further exploration of the town variables was conducted to examine the relationship between community types and college persistence before building the larger model to control for the effects of student background and school characteristics. Two separate models were built for each town variable: towns with high rates of tourism, or tourist towns, and towns with a residential college, also referred to as college towns. The results of the models with student background variables can be found in Table 10.

Table 10

<table>
<thead>
<tr>
<th>Parameter Estimate</th>
<th>College Town</th>
<th>Tourist Town</th>
</tr>
</thead>
<tbody>
<tr>
<td>Odd Ratio</td>
<td>0.99 (0.11)</td>
<td>1.30* (0.22)</td>
</tr>
<tr>
<td>Constant</td>
<td>1.92*** (0.09)</td>
<td>1.90*** (0.08)</td>
</tr>
<tr>
<td>Random Effects</td>
<td>0.19 (0.05)</td>
<td>0.18 (0.05)</td>
</tr>
</tbody>
</table>

Note: *p ≤ 0.10 **p ≤ 0.05 ***p ≤ 0.01; Standard errors are in parenthesis

The results of this model indicate that students from rural college towns are not significantly more or less likely to persist in college when compared to their peers who are from other types of rural communities. However, students from tourist towns are 1.3 times more likely to persist in college.
Next, the researcher expanded the multilevel model by adding variables to control for the effects of student background factors and school characteristics on college persistence. Although the only two variables with statistically significant results in the first model were family income status and academic readiness for college, all of the student and school variables were included to fit the new model because of their theoretical importance and statistical independence (or non-collinearity) (Raudenbush & Bryk, 2002; Snijders & Bosker, 2012). The town level variables indicating tourist towns and college towns were added to the model at the same time to test the second research question before controlling for the effects of schools at the second level.

The odds ratios for the variables in each model are reported in Model 2 of Table 9. The newly added variables measuring Community Type were not significant. The results for Tourist Town and College Town were directional with the hypothesis, however they were not significant. Similar to Model 1, the student characteristics for gender and race and ethnicity did not have a significant relationship with college persistence. Both of the variables measuring Family Characteristics, First Generation College and Early Planning, were also not significant. The only two variables with significant effects were composite SAT score (odds ratio 1.41), and low family income (odds ratio 0.92).

Lastly, to control for the effects high schools have on college persistence and completion, the researcher created another model by adding explanatory variables to measure the aggregate socioeconomic status of the school (Schoolwide SES) and the school-wide college preparation qualities (Schoolwide College Preparation). The odds ratios for the variables in each model are reported in Model 3 of Table 9. The odds ratios
for both Schoolwide SES and Schoolwide College Preparation were not significant. Similar to Model 2, all of the remaining variables in the model were not significant except for composite SAT score (odds ratio 1.41), and low family income (odds ratio 0.92).

The second key finding of this study is that the effects associated with living in a rural tourist town or college town does not in itself show a significant impact on a student’s ability to successfully transition into a college community. The effect of a student’s home community did not substantially impact the transition into college when accounting for factors related to a student’s academic readiness, family income, first generation college going, post-secondary planning at an early age, race/ethnicity, and high school socioeconomic status and college preparation. Although tourist towns did show an increased likelihood for college persistence when no other control variables were added to the model (odds ratio 1.30, p=0.11), both the odds ratio and significance of the parameter estimates changed after adding control variables (see Appendix K). After all control variables were added to the model, the slight increase in the likelihood of college persistence for students from tourist towns was not significant. The odds ratio for students from a college town to persist in college actually showed a reduced likelihood and was also not statistically significant.

The results of the analysis indicate that student variables measuring non-White race and ethnicity, gender, first generation college going, and post-secondary planning at an early age have no significant effect on persistence at a four-year residential college. However, the measure of academic readiness (Composite SAT Score) and low family income continue to show a significant relationship with college persistence. For every
one-point increase in the standardized composite SAT score, students are 1.41 times more likely to persist in college. Students who are members of low-income households are 0.82 times less likely to persist in college.

4.3. Key Finding for Research Question 3

Research Question: *How does college persistence differ among students in tourist towns with different demographic, socioeconomic, and academic backgrounds?*

The third research question is a closer examination of the background variables for students from tourist towns to see if community factors have a different effect between students in tourist communities. Answering the third research question required two steps. First, a descriptive analysis of the student factors for students from rural tourist communities was required to identify the appropriate variables for fitting a multilevel model. Second, a fourth multilevel model was built to measure the interaction between student background variables and rural tourist communities. Selecting the student demographic and socioeconomic background variables for the multilevel model was based on the results of the multilevel built for question two and the descriptive analysis of student background characteristics in tourist towns. The purpose of conducting these interactions is to better understand any differences in college persistence related to family income, the only non-academic student background variable shown to be significant in the previous three models, which may also be associated with community type. However, there was no significant difference between students from tourist towns not living in poverty when compared to their peers from other rural communities.
The results of research question three show that family income status was the only demographic or family background variable to have a significant relationship with college persistence. Fitting a model with an interaction of family income status with tourist town was not possible because of high standard errors in the results, which may have been due to the small number of students who were from low income families and lived in tourist towns. However, specifying student family income as above the poverty measure allowed for the use of two newly constructed interaction variables for non-FRL Tourist Town and non-FRL non-Tourist Town. These two interaction variables were created as dummy variables to measure the interaction between family income status and tourist town. The variables for FRL and Tourist Town were not included in the fourth model to prevent collinearity. The odds ratios for the variables in the fourth and final model are reported in Model 4 on Table 9.

In Model 4, family financial status proved to be a greater predictor of college persistence than community effects when the interaction between students living in poverty and the tourism community indicator was unpacked using an interaction. Income status had a significant interaction with students from non-tourist towns. Students not living in poverty were 1.22 times more likely to persist in college. To examine this finding further, a crosstabs analysis was conducted on the non-imputed data set to measure the number of students in tourist towns and non-tourist towns according to their individual and family characteristics. The results of this analysis can be found in Table 11, which shows the number of students for each combination of student background factors in Tourist Town and non-Tourist Town communities. The percentage of students from the sample in tourist towns was also calculated for each background variable.
Lastly, the proportional distribution of student and family characteristics among tourist towns and non-tourist towns according to their student and family characteristics was calculated. This analysis was conducted on the non-imputed data set in SPSS version 22. All variables showed appropriate relationships to be included in the model building process (Raudenbush & Bryk, 2002).

Table 11

<table>
<thead>
<tr>
<th>Variable</th>
<th>Value</th>
<th>Tourist Town Membership</th>
<th>Total</th>
<th>Percentage in Tourist Towns</th>
<th>Proportional distribution of Tourist Towns to Not Tourist Towns</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gender (Female)</td>
<td>1</td>
<td>137</td>
<td>2484</td>
<td>2621</td>
<td>5.2%</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>105</td>
<td>2082</td>
<td>2187</td>
<td>4.8%</td>
</tr>
<tr>
<td>Low Family Income</td>
<td>1</td>
<td>32</td>
<td>884</td>
<td>916</td>
<td>3.5%</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>210</td>
<td>3682</td>
<td>3892</td>
<td>5.4%</td>
</tr>
<tr>
<td>Non-White Race/Ethnicity</td>
<td>1</td>
<td>10</td>
<td>144</td>
<td>154</td>
<td>6.5%</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>232</td>
<td>4422</td>
<td>4654</td>
<td>4.9%</td>
</tr>
<tr>
<td>First Generation College</td>
<td>1</td>
<td>37</td>
<td>1332</td>
<td>1369</td>
<td>2.7%</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>175</td>
<td>2733</td>
<td>2908</td>
<td>6.0%</td>
</tr>
<tr>
<td>Early Post-Secondary Planning</td>
<td>1</td>
<td>75</td>
<td>1516</td>
<td>1591</td>
<td>4.7%</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>139</td>
<td>2605</td>
<td>2744</td>
<td>5.1%</td>
</tr>
</tbody>
</table>

Note: Counts are from the non-imputed data set

Formula for the proportional distribution of values in Tourist Towns and Not Tourist Towns = \(n \text{ with Tourist Town Value 1} \div n \text{ with Tourist Town Value 0} : n \text{ with Non-Tourist Town Value 1} \div n \text{ with Non-Tourist Town Value 0} \)

The results of the crosstabs analysis showed that there is a small number of low-income students from tourist towns who attended four-year residential colleges (n=32). This low number of students in the sample likely contributed to the high standard errors when attempting to fit a model with an interaction between family income and tourist town designation.

Additionally, the results showed that the proportion of low income students in tourist towns attending four year residential colleges is considerably lower than the
proportion of low income students from non-tourist communities. Moreover, when looking at the subgroup of First Generation College students, there are proportionally fewer students in tourist towns than in non-tourist towns. These two results suggest that the socioeconomic status and parent education level is generally higher for families of four-year college-going students from tourist communities than other rural communities.
CHAPTER 5: DISCUSSION

This study sought to examine whether students from a variety of rural communities substantively different in their attendance and persistence in college. According to Vincent Tinto’s interactionalist theory of departure from higher education, students who persist in college are able to successfully complete three stages: separation from past associations, transition between high school and college, and incorporate into the new society of college (Tinto, 1993). This study analyzed whether the factors of a rural tourist town or college community supported cultural capital development that would increase the likelihood of students having a successful incorporation into the academic and social systems of college.

Tourists visiting rural communities from outside of the local area bring with them behaviors and physical property of a different culture (e.g., automobiles, clothing, recreational equipment, and personal technology devices). The kind of social and cultural contributions tourists bring with them to a rural community allows local residents to be exposed to behaviors, social trends, and lifestyles that may not otherwise be experienced in their local community (Deery et al., 2011; Dogan, 1989; Gossling, 2002).

Additionally, colleges also shape the social, cultural, and economic character of a rural community (Gumprecht, 2003; Smallwood, 1971; Weill, 2009). The presence of a college introduces spending that supports the local economy, provides additional public space for intellectual pursuits or recreation, and potentially a more racially or ethnically diverse population to the local community (Gumprecht, 2003; Gumprecht 2007; Massey et al., 2014; Weill, 2009).
This study posits that students from tourist communities develop a cultural capital and habitus through exposure to frequent non-residential tourist behaviors and properties that would support their adjustment to the social and physical environment of a residential four-year college. Likewise, students exposed to the activities and physical presence of a residential college campus in a rural community are likely to become familiar with the variety of people and behaviors they may encounter during a college experience (Sage & Sherman, 2014), similarly easing their transition into college.

Multilevel logistic modeling was used to test the hypothesis that students who complete secondary school in a rural community with a substantial presence of non-residential tourists or a college within their residential community show an increased likelihood of persisting in college for at least two years after initial enrollment. Using a data set constructed from multiple sources, several explanatory variables were used in the model to control for the effects high schools and student background characteristics on college persistence. The findings of this study provide insight to Vincent Tinto’s (1993) interactionalist theory of departure from higher education as it relates to students from different types of rural communities.

5.1. Discussion of Findings for Research Question 1

How does college persistence differ among students with different demographic, socioeconomic, and academic backgrounds across all types of rural communities and high schools?

The key finding for this research question showed that student family income status and academic readiness are significant predictors of college persistence for students from rural communities. Although first generation college going and college
planning at an early age were significant predictors of college persistence, the effects were not significant when other variables were added to the model. There was no significant difference in college persistence according to gender or race and ethnicity when the variables were used as a predictor in a single variable model or when included with other student variables in a multilevel model. This finding further emphasizes the literature outlining the importance of family financial status and academic readiness for college as critical factors that influence college persistence and completion (Bowen et al., 2009; Braxton et al., 2014; Niu & Tienda, 2013; Nora, 2004; Tinto, 1993).

There are several possible reasons for the statistically non-significant relationship of certain variables with college persistence. First, the likely reason for why the race and ethnicity variable was not a significant factor in this study is that the number of students in the sample was too small. The sample size for this study was not large enough to find an effect, even after aggregating students of racial and ethnic backgrounds known to be related with persistence gaps into a single variable of Non-White (Bowen et al., 2014). Second, variables such as post-secondary planning at an early age and first generation college going likely lost their significance when other related student factors, such as poverty, with stronger predictive power were included in the model. This finding is congruent with previous studies suggesting that family income plays a stronger role in graduating on time than parental education (Bowen et al., 2014). Also, it has been established that low family income has a strong relationship with post-secondary planning at an early age and college degree attainment in parents (Hill & Wang, 2015; Stage & Hossler, 1988; Yan, 2002). The presence of this relationship was also shown in the correlation matrix in Appendix D.
5.2. Discussion of Findings for Research Question 2

Do students from rural communities with a college or high levels of tourism have a greater likelihood to persist in a four-year residential college community when controlling for the effects of their high school?

The multilevel models fit with only one variable did show a significant relationship for all variables except gender, race and ethnicity, college town, and schoolwide college preparation. However, after all the predictor variables were then added to the model as control variables for community type, the two variables that remained statistically significant were low family income and academic readiness. Community type was not statistically significant for tourist towns or college towns.

This finding builds upon the literature exploring college going tendencies for rural students and the relationship between the distance a rural student lives from a college and their educational choices (Sage & Sherman, 2014; Turley 2009). Turley (2009) found a small but significant relationship between the distance a student lives from college and their likelihood to apply and enroll in post-secondary education. One suggested reason was that the close proximity a student lived to a college provided a convenience mechanism for separating from home and an emotionally easier transition into college (Turley, 2009). In this study, college town is also a surrogate measurement for the distance a student lives from a four-year residential college. The results of this study show that persisting in any four-year residential college after enrollment is not impacted by proximity.

Additionally, the non-significant findings for students from tourist communities suggest that any difference in cultural capital developed by students from tourist
communities does not have an impact on college persistence. The factors that contribute to a student’s successful transition into and retention in a college community are not directly related to the characteristics of rural tourist communities. The impact of a student’s socioeconomic status and academic readiness for college plays a greater role in shaping the cultural capital supporting college persistence than the effects of their home community. The different physical, social, and cultural structures of tourist and college communities do not appear to have a significant impact on the development of cultural capital that relates with factors contributing to college persistence. Therefore, it is likely that any possible habitus students develop that is unique to tourist or rural college communities is separate from the effect of socioeconomic status and has little direct relationship with traits supporting a successful incorporation into a college community.

There is not sufficient evidence from this study to show that a student’s home rural community influences the social and cultural transition into a college community such that it has an impact on college persistence. This finding contributes to the existing research by Tinto (1993) and Nora (2003, 2004) on the effect of pre-college factors on the transition and integration into a higher education community. As Tinto (1975, 1993) outlined in his interactionalist theory of departure from higher education, the dispositions and attributes of a student entering college plays a role in their likelihood to transition and integrate into a new academic and social community. Furthermore, students from communities with drastically different norms and behaviors than college life may be at a disadvantage for persisting (Tinto, 1993). This key finding contributes to Tinto’s theory by showing that any difference in student dispositions or attributes that may result from
living in a rural tourist town or college town during high school does not have a clear relationship with the transition and incorporation into a college community.

The results also contribute to Nora’s (2004) conceptual framework of psychosocial factors related to college predispositions, search, choice and reenrollment. As Nora (2004) explained, the cultural capital and habitus developed from pre-college experiences plays an important role in a student’s integration into a college community, the new social network, and feelings of acceptance with the post-secondary institution. In Nora’s (2003) Student Engagement Model, the category of pre-college psychosocial factors that help draw students to or pull them away from higher education primarily include factors related to high school and home environment. These factors can predispose students to the social experiences and involvement in learning experiences at post-secondary institutions that lead toward college persistence (Nora, 2003, 2004). The findings of this study reveal that a student’s membership in a distinct rural community type is not likely to play a role in the psychosocial factors that significantly relates to their social experiences along the pathway to re-enrolling and persisting in college. Specifically, coming from a rural tourist town does not significantly contribute to experiences related with college persistence.

5.3. Discussion of Findings for Research Question 3

How does college persistence differ among students in tourist towns with different socioeconomic backgrounds?

Analyzing the interaction between low family income and tourist community type for this research question was a challenge because of the small number of students in the sample who were from tourist towns. Out of the 242 students from tourist towns, only 32
were from low income families. The size of this small subgroup of the sample likely contributed to large standard errors for the interaction terms in the multilevel model. The large standard errors limited the analysis to interactions for students not eligible for free and reduced lunch.

When analyzing the parameter estimates that were significant and did not have large standard errors, there was no significant difference for tourist community type and college persistence among students not eligible for free and reduced lunch. This finding suggests that there is a non-significant difference in the effects of a rural tourist community on a student from a low income family that would predict their likelihood to transition into academic, social, and residential demands of a college community. The implication of this finding is that efforts made by schools and policy makers to improve college persistence should focus on the individual student and their assets supporting their likelihood to succeed in college.

However, it is important to recognize that college persistence is different than enrollment. It is the researcher’s speculation that the effects of a rural student’s community on their habitus and sense of place is likely to have a stronger relationship with a student’s decision to attend and which college they choose to attend rather than whether or not they persist during the school year. The habitus and sense of place a student develops from their home community shapes how they see themselves in the world and is likely to be an important factor in their decision making about where they would like to be after high school and the social context where they would be comfortable (Braxton, 2014; Nora, 2004; Tinto, 1987). A student’s anticipation and preparation for social integration into a new college community is likely to begin well
before they arrive on campus and enroll in coursework (Braxton, 2014; Tinto, 1987). To
further test the hypothesis that the cultural capital developed by students living in tourist
communities is different than their college going peers in other rural communities,
additional research can track where students enroll in college to see if there is a
relationship with the characteristics of tourists vising the local community.

As Nora emphasized (2004), the enrollment process includes the decision making
prior to applying and attending college. Students’ habitus and cultural capital play a
substantial role in how a student tries to match themselves with a post-secondary
educational experience. The results of this key finding suggest that future research about
rural community effects on post-secondary education should examine the type of post-
secondary match students make which leads to college persistence. A study of this design
would measure the characteristics of colleges where students of different backgrounds
successfully persisted in college.

5.4. Limitations

The purpose of this study was to examine the relationship between rural tourism
community factors and integration into college according to Tinto’s interactionist theory
of student departure from higher education. There were four major limitations to this
study which may have impacted the findings that fell into two categories: data sampling
and data quality.

Data sampling

The foremost limitation of this study related to data quality was the absence of
direct measurements for the quantity and quality of interactions between students and
tourists. It is likely that students who grew up in a tourist town had very different
experiences with tourists visiting their community. The absence of a student or family measure for the type of interactions and relationships local residents have with tourists did not allow the study to control for different levels of exposure, or potential influences or tourism. Additionally, the broad definition of tourist towns as defined by political boundaries allows for variance in the true experience students would have with tourists.

Second, the sample was only limited to cases in one state within the northern New England region that had complete data values for all variables in multiple data sets. The results have the highest degree of relevance for the communities of Vermont and the Northern New England region, but may not be generalizable to other regions of the US or other countries. The history of post-secondary institutions and tourism development in northern New England is unique to this region of the US. Other regions may have a similar geo-spatial and cultural relationship between urban areas and rural communities, but that was not tested as part of the analysis.

Additionally, the small size of the tourist community type subgroups within the sample did not allow for certain analyses. This statistical limitation may have masked effects that would have been noticeable with a larger sample. Another subgroup with a small representation in the sample was students with a race or ethnicity other than white, which the literature has shown is a strong predictor of college persistence (Bowen et al., 2010). A larger sample with more students representing greater ethnic and racial diversity, perhaps in a follow up study, would allow for a more detailed analysis of race and ethnicity as a student factor.
Data Quality

The foremost limitation of this study related to data quality was the substantial number of cases with missing values for composite SAT scores and responses on the Senior Survey for early college planning and parental college degree. Although the missing values were determined to be MAR, the actual (non-imputed) representation of data was notably reduced for these three variables (Snijders & Bosker, 2012). Of particular emphasis for missing data is the nearly 19% of the cases missing values for composite SAT score. The composite SAT scores was the only continuous variable in the model and also the only measure of academic readiness in the models. Moreover, all of the multilevel models built with composite SAT score showed a significant relationship for this variable with college persistence. The possible impact for the missing data of composite SAT score, early college planning, and parental college degree is not known and could have potentially impacted the results.

Second, the analysis did not control for student behaviors and experiences while attending college, which are attributed to many of the factors associated with dropping out of college (Braxton, 2014; Tinto, 1987). The data used for this analysis did not measure any aspects of the student’s college experience, only their enrollment up to two years. However, because this measurement of college persistence required continuous enrollment for at least two years is stricter than many other definitions used in prior research, this analysis does provide an accurate look at the enrollment indicators that lead toward college completion (Kahn & Nauta, 2001).
5.5. Conclusion

This study sought to measure the likelihood that rural students would persist in college based on whether they came from a rural community with a college or high rates of tourism while controlling for several student background factors and school characteristics. Overall, there was no significant difference in the likelihood to persist in college among students of different types of rural communities when accounting for school and student background factors. Consistent with the literature on college completion, the student background factors of family income and college academic readiness are the strongest predictors of college persistence.

Efforts made by policy makers to improve rates of college completion for rural students in northern New England will need to focus on supporting students’ academic preparation before entering college and overcoming the challenges that living in poverty presents to persistence. Resources to support rural students who are enrolling in college should be distributed without concern for the type of rural community where they reside. Exposing students to college communities should be intentional and structured to provide a realistic expectation of what life at college will be like, because living in close proximity to a college is not in itself a reliable mechanism. Academic readiness for college should include sufficient preparation in mathematics, reading, and writing. This study suggests supporting the academic and socioeconomic needs for each individual student is the most effective pathway to improving college persistence and college completion for rural youth.
REFERENCES

Arce, W. M. (2015). Discussions with Vermont Student Assistance Corporation researchers managed and provided data.

StataCorp. (2013). Stata multilevel mixed effects reference manual release 13. College Station, TX: StataCorp LP.

Town of Royalton (2016). Retrieved from royaltonvt.com

U.S. Census Bureau (2015a, February 5). *State and county quick facts.* Retrieved from quickfacts.census.gov/qfd/index.html#

Vermont Department of Taxes (2015b). Discussions with research analysts.

Vermont Department of Tourism and Marketing (2015, March & April). Discussions with research and operations officers.

Vermont Student Assistance Corporation (2015). Discussions with research officers and analysts.

Appendix A: Metro- and Urban-Centric Locale Code Categories: Definitions and Comparison

Previous Metro-Centric Locale Codes
1 - Large City:
 A central city of a CMSA or MSA, with the city having a population greater than or equal to 250,000.
2 - Mid-size City:
 A central city of a CMSA or MSA, with the city having a population less than 250,000.
3 - Urban Fringe of a Large City:
 Any territory within a CMSA or MSA of a Large City and defined as urban by the Census Bureau.
4 - Urban Fringe of a Mid-size City:
 Any territory within a CMSA or MSA of a Mid-size City and defined as urban by the Census Bureau.
5 - Large Town:
 An incorporated place or Census-designated place with a population greater than or equal to 25,000 and located outside a CMSA or MSA.
6 - Small Town:
 An incorporated place or Census-designated place with a population less than 25,000 and greater than or equal to 2,500 and located outside a CMSA or MSA.
7 - Rural, Outside MSA:
 Any territory designated as rural by the Census Bureau that is outside a CMSA or MSA of a Large or Mid-size City.
8 - Rural, Inside MSA:
 Any territory designated as rural by the Census Bureau that is within a CMSA or MSA of a Large or Mid-size City.

New Urban-Centric Locale Codes
11 - City, Large:
 Territory inside an urbanized area and inside a principal city with population of 250,000 or more.
12 - City, Midsize:
 Territory inside an urbanized area and inside a principal city with population less than 250,000 and greater than or equal to 100,000.
13 - City, Small:
 Territory inside an urbanized area and inside a principal city with population less than 100,000.
21 - Suburb, Large:
 Territory outside a principal city and inside an urbanized area with population of 250,000 or more.
22 - Suburb, Midsize:
 Territory outside a principal city and inside an urbanized area with population less than 250,000 and greater than or equal to 100,000.
23 - Suburb, Small:
 Territory outside a principal city and inside an urbanized area with population less than 100,000.
31 - Town, Fringe:
 Territory inside an urban cluster that is less than or equal to 10 miles from an urbanized area.
32 - Town, Distant:
 Territory inside an urban cluster that is more than 10 miles and less than or equal to 35 miles from an urbanized area.
33 - Town, Remote:
 Territory inside an urban cluster that is more than 35 miles from an urbanized area.
41 - Rural, Fringe:
 Census-defined rural territory that is less than or equal to 5 miles from an urbanized area, as well as rural territory that is less than or equal to 2.5 miles from an urban cluster.
42 - Rural, Distant:
 Census-defined rural territory that is more than 5 miles but less than or equal to 25 miles from an urbanized area, as well as rural territory that is more than 2.5 miles but less than or equal to 10 miles from an urban cluster.
43 - Rural, Remote:
 Census-defined rural territory that is more than 25 miles from an urbanized area and is also more than 10 miles from an urban cluster.

Appendix B: Amaury Nora’s Student Engagement Model

Appendix C: Criteria used in Carnegie Classification of Institutions of Higher Education to Identify Four-year Residential Colleges

<table>
<thead>
<tr>
<th>Undergraduate Profile:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Four-year, medium full-time, inclusive, lower transfer-in,</td>
</tr>
<tr>
<td>or Four-year, medium full-time, inclusive, higher transfer-in,</td>
</tr>
<tr>
<td>or "Four-year, medium full-time, selective, lower transfer-in,</td>
</tr>
<tr>
<td>or "Four-year, medium full-time, selective, higher transfer-in,</td>
</tr>
<tr>
<td>or "Four-year, full-time, inclusive, lower transfer-in,</td>
</tr>
<tr>
<td>or "Four-year, full-time, inclusive, higher transfer-in,</td>
</tr>
<tr>
<td>or "Four-year, full-time, selective, lower transfer-in,</td>
</tr>
<tr>
<td>or "Four-year, full-time, selective, higher transfer-in,</td>
</tr>
<tr>
<td>or "Four-year, full-time, more selective, lower transfer-in,</td>
</tr>
<tr>
<td>or "Four-year, full-time, more selective, higher transfer-in,</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>and Size and Setting:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Four-year, very small, primarily residential</td>
</tr>
<tr>
<td>or Four-year, very small, highly residential</td>
</tr>
<tr>
<td>or Four-year, small, primarily residential</td>
</tr>
<tr>
<td>or Four-year, small, highly residential</td>
</tr>
<tr>
<td>or Four-year, medium, primarily residential</td>
</tr>
<tr>
<td>or Four-year, medium, highly residential</td>
</tr>
<tr>
<td>or Four-year, large, primarily residential</td>
</tr>
<tr>
<td>or Four-year, large, highly residential</td>
</tr>
</tbody>
</table>
Appendix D: Spearman Rho Correlation Coefficients Between Student and School Variables with Sample Size

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Female</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2 FRL</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>3 Composite SAT Score</td>
<td>0.035**</td>
<td>-0.164***</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 Early Planning</td>
<td>0.105***</td>
<td>-0.009</td>
<td>0.145***</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 First Generation College</td>
<td>0.713***</td>
<td>0.272***</td>
<td>-0.294***</td>
<td>0.034**</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 Non-White</td>
<td>-0.007</td>
<td>0.068***</td>
<td>-0.03</td>
<td>0.001</td>
<td>0.034**</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7 Schoolwide SES</td>
<td>0.014</td>
<td>0.199***</td>
<td>-0.229***</td>
<td>0.039***</td>
<td>0.248***</td>
<td>0.033*</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8 Schoolwide College Preparation</td>
<td>0</td>
<td>-0.112***</td>
<td>0.131***</td>
<td>-0.018</td>
<td>-0.133***</td>
<td>-0.042***</td>
<td>-0.397***</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9 College Town</td>
<td>-0.012</td>
<td>0.018</td>
<td>0.025*</td>
<td>0.026</td>
<td>-0.007</td>
<td>-0.037***</td>
<td>0.075***</td>
<td>0.034**</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 Tourist Town</td>
<td>0.01</td>
<td>-0.034***</td>
<td>0.065***</td>
<td>-0.008</td>
<td>-0.071***</td>
<td>0.012</td>
<td>-0.188***</td>
<td>0.118***</td>
<td>-0.076***</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11 Math Scores NECAP</td>
<td>-0.121***</td>
<td>-0.165***</td>
<td>0.76***</td>
<td>0.154***</td>
<td>-0.228***</td>
<td>-0.406***</td>
<td>-0.132***</td>
<td>0.063***</td>
<td>-0.004</td>
<td>0.044**</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>12 Reading NECAP Score</td>
<td>0.197***</td>
<td>-0.124***</td>
<td>0.626***</td>
<td>-0.189***</td>
<td>-0.190***</td>
<td>-0.041**</td>
<td>-0.085***</td>
<td>0.048***</td>
<td>0.021</td>
<td>0.028*</td>
<td>0.555***</td>
<td>1</td>
</tr>
</tbody>
</table>

Notes:
* Correlation is significant at the 0.1 level after rounding (2-tailed).
** Correlation is significant at the 0.05 level after rounding (2-tailed).
*** Correlation is significant at the 0.01 level after rounding (2-tailed).
Appendix E: Variable Codes, Names, Definitions, and Literature Citation for Theoretical Alignment to the Analysis

<table>
<thead>
<tr>
<th>Variable Code</th>
<th>Definition</th>
<th>Citation</th>
</tr>
</thead>
<tbody>
<tr>
<td>School Factors (School)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SIIHRPercentSATakers1012 (Schoolwide College Preparation)</td>
<td>The mean percentage of students who took the SAT from 2010, 2011, and 2012.</td>
<td>Yan, 2002; Johnson 2008</td>
</tr>
<tr>
<td>Community Factors (Town)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TITTouristTown (Tourist Town)</td>
<td>Binary code to indicate if the student lived in a town with a high level of tourist activity. (Predictor)</td>
<td>Predictor: Turley, 2009; Sage & Sherman, 2014; Gibbs, 1998; Johnson, 2008</td>
</tr>
<tr>
<td>TICollegeTown (College Town)</td>
<td>Binary code to indicate if the student lived in a rural town with a college. (Predictor)</td>
<td></td>
</tr>
<tr>
<td>Student Factors</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female (Gender)</td>
<td>Binary code to indicate if the student was reported as a female in the census.</td>
<td>Bean, 1980; Howley, Johnson, Passa, & Uekawa, 2014; Yan, 2002</td>
</tr>
<tr>
<td>FRL (Low Family Income)</td>
<td>Binary code to indicate if a student was determined eligible for free or reduced lunch or breakfast through the National School Lunch Program.</td>
<td>Tinto, 1993; Bowen, Chingos, & McPherson, 2009</td>
</tr>
<tr>
<td>NotWhite (Non-White Race and Ethnicity)</td>
<td>Binary code to indicate if the student was reported as being a race or ethnicity other than White.</td>
<td>Aud, Fox, & Kewal Ramani, 2010; Bowen, Chingos & McPherson, 2009; Kao & Thompson, 2003</td>
</tr>
<tr>
<td>ZSATVERBMATHWRIT (Composite SAT Score)</td>
<td>Standardized Composite SAT Verbal, Math and Writing scores as most recently reported by the College Board (measure of academic readiness).</td>
<td>College Board, 2016b; College Board, 2016c; Hall, et al., 2008; Stumpf and Stanley, 2002</td>
</tr>
<tr>
<td>PARENTSNODEGREE (First Generation College)</td>
<td>Binary variable that measures whether either parent had attained an associate’s degree or more post-secondary education.</td>
<td>Ishitani, 2006; Stage & Hossler, 1988</td>
</tr>
<tr>
<td>EARLYTALK (Early Planning)</td>
<td>Binary variable that measures whether a student talked about their plans after high school in eighth grade or earlier.</td>
<td>Hill & Wang, 2015; Stage & Hossler, 1988; Yan, 2002</td>
</tr>
<tr>
<td>Outcome Variable</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CollegePersist (College Persistence)</td>
<td>Binary code for students who were enrolled for the fall and spring of their first two years attending a four-year residential college.</td>
<td></td>
</tr>
</tbody>
</table>
Appendix F: SPSS Output of Coefficients for Collinearity Statistics

Model Summary

<table>
<thead>
<tr>
<th>Model</th>
<th>R</th>
<th>R Square</th>
<th>Adjusted R Square</th>
<th>Std. Error of the Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>.675</td>
<td>.455</td>
<td>.452</td>
<td>7.206</td>
</tr>
</tbody>
</table>

* a. Predictors: (Constant), MultiRaceEth, Female, Free or Reduced Lunch Eligibility, White, Post HS Talk Before Grade 9, Native Hawaiian or Pacific Islander, Zscore(SATVERBMATHWRIT), PARENTNODEGREE, American Indian, Asian, African American, Hispanic

Coefficients*

<table>
<thead>
<tr>
<th>Model</th>
<th>Unstandardized Coefficients</th>
<th>Standardized Coefficients</th>
<th>Collinearity Statistics</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B</td>
<td>Std. Error</td>
<td>Beta</td>
</tr>
<tr>
<td>1</td>
<td>(Constant)</td>
<td>54.940</td>
<td>6.188</td>
</tr>
<tr>
<td></td>
<td>Female</td>
<td>4.082</td>
<td>.316</td>
</tr>
<tr>
<td></td>
<td>Free or Reduced Lunch Eligibility</td>
<td>.497</td>
<td>.408</td>
</tr>
<tr>
<td></td>
<td>Zscore(SATVERBMATHWRIT)</td>
<td>6.191</td>
<td>.167</td>
</tr>
<tr>
<td></td>
<td>PARENTNODEGREE</td>
<td>-.367</td>
<td>.360</td>
</tr>
<tr>
<td></td>
<td>Post HS Talk Before Grade 9</td>
<td>1.022</td>
<td>.329</td>
</tr>
<tr>
<td></td>
<td>American Indian</td>
<td>-4.980</td>
<td>6.627</td>
</tr>
<tr>
<td></td>
<td>African American</td>
<td>-6.823</td>
<td>6.156</td>
</tr>
<tr>
<td></td>
<td>Native Hawaiian or Pacific Islander</td>
<td>-6.062</td>
<td>6.119</td>
</tr>
<tr>
<td></td>
<td>Hispanic</td>
<td>-2.852</td>
<td>6.352</td>
</tr>
<tr>
<td></td>
<td>White</td>
<td>-3.874</td>
<td>6.189</td>
</tr>
<tr>
<td></td>
<td>MultiRaceEth</td>
<td>3.473</td>
<td>6.539</td>
</tr>
</tbody>
</table>

* a. Dependent Variable: Reading NECAP Score

Coefficients*

<table>
<thead>
<tr>
<th>Model</th>
<th>Unstandardized Coefficients</th>
<th>Standardized Coefficients</th>
<th>Collinearity Statistics</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B</td>
<td>Std. Error</td>
<td>Beta</td>
</tr>
<tr>
<td>1</td>
<td>(Constant)</td>
<td>51.084</td>
<td>.281</td>
</tr>
<tr>
<td></td>
<td>Female</td>
<td>4.085</td>
<td>.316</td>
</tr>
<tr>
<td></td>
<td>Free or Reduced Lunch Eligibility</td>
<td>.457</td>
<td>.407</td>
</tr>
<tr>
<td></td>
<td>Zscore(SATVERBMATHWRIT)</td>
<td>6.203</td>
<td>.166</td>
</tr>
<tr>
<td></td>
<td>PARENTNODEGREE</td>
<td>-.357</td>
<td>.360</td>
</tr>
<tr>
<td></td>
<td>Post HS Talk Before Grade 9</td>
<td>.988</td>
<td>.328</td>
</tr>
<tr>
<td></td>
<td>NotWhite</td>
<td>-.814</td>
<td>.890</td>
</tr>
</tbody>
</table>

* a. Dependent Variable: Reading NECAP Score
Appendix G: SPSS Syntax for Constructing the College Persistence Variable

DO IF (((EnrollBegin1Quarter=3) OR (EnrollBegin1Quarter=4)) & (PSTerm1Year=2008)).
RECODE OPEID.1 (MISSING=0) (ELSE=Copy) INTO OPEIDFall2008.
END IF.
VARIABLE LABELS OPEIDFall2008 'OPEID for Fall Enrollment 2008'.
EXECUTE.

DO IF (((EnrollBegin2Quarter=1) & (PSTerm2Year=2009)) OR (((EnrollBegin2Quarter=4) & (PSTerm2Year=2008)) & ((EnrollBegin3Quarter=1) & (PSTerm3Year=2009)) & (OPEID.2 = OPEID.3))).
RECODE OPEID.2 (MISSING=0) (ELSE=Copy) INTO OPEIDSpring2009.
VARIABLE LABELS OPEIDSpring2009 'OPEID for Enrollment Spring 2009'.
EXECUTE.

DO IF (((EnrollBegin3Quarter=3) & (PSTerm3Year=2009)) OR (((EnrollBegin4Quarter=3) & (PSTerm4Year=2009)) OR ((EnrollBegin5Quarter=3) & (PSTerm5Year=2009)) & ((OPEID.3 = OPEID.4) OR (OPEID.3 = OPEID.5))).
RECODE OPEID.3 (MISSING=SYSMIS) (ELSE=Copy) INTO OPEIDFall2009.
END IF.
VARIABLE LABELS OPEIDFall2009 'OPEID for PS Enrollment Fall 2009'.
EXECUTE.

DO IF (((EnrollBegin4Quarter=1) & (PSTerm4Year=2010)) OR ((EnrollBegin5Quarter=1) & (PSTerm5Year=2010)) OR (((EnrollBegin5Quarter=4) & (PSTerm5Year=2009)) & (EnrollBegin6Quarter=1) & (PSTerm6Year=2010)) OR ((EnrollBegin6Quarter=4) & (PSTerm6Year=2009)) & ((EnrollBegin7Quarter=1) & (PSTerm7Year=2010)) & (OPEID.4 = OPEID.5) OR (OPEID.4 = OPEID.6) OR (OPEID.4 = OPEID.7) OR (OPEID.4 = OPEID.8)).
RECODE OPEID.4 (MISSING=SYSMIS) (0 thru 9999999999999999=Copy) (ELSE=Copy) INTO OPEIDSpring2010.
END IF.
VARIABLE LABELS OPEIDSpring2010 'OPEID for Enrollment Spring 2010'.
EXECUTE.

DO IF (OPEIDFall2008 = OPEIDSpring2010).
RECODE OPEIDFall2008 (MISSING=SYSMIS) (ELSE=Copy) INTO OPEIDFall08Spring2010.
END IF.
VARIABLE LABELS OPEIDFall08Spring2010 'Same OPEID for Fall 2008 and Spring 2010'.
EXECUTE.

COMPUTE TwoYears2008HSGrad=RANGE(OPEIDFall08Spring2010,1,9999999999999999).
EXECUTE.
COMPUTE TwoYears2010HSGrad=RANGE(OPEIDFall10Spring2012,1,9999999999999999).
EXECUTE.
COMPUTE TwoYears2012HSGrad=RANGE(OPEIDFall2012Spring2014,1,9999999999999999).
EXECUTE.

COMPUTE PSPersistAllHSGrad=(TwoYears2008HSGrad=1) OR (TwoYears2010HSGrad=1) OR (TwoYears2012HSGrad=1) = 1.
EXECUTE.

RECODE PSPersistAllHSGrad (1=1) (MISSING=0) (ELSE=Copy) INTO CollegePersist.
VARIABLE LABELS CollegePersist 'Added 0 to Missing Values on PSPersistAllHSGrad'.
EXECUTE.
Appendix H: Stata Commands for the Multiple Imputation

```
. mi set mlong
. sort School Town UniqueID
. mi register imputed ZSATVERBMATHWRIT PARENTNODEGREE EARLYTALK School Town
(1314 m=0 obs. now marked as incomplete)
. generate FRL_TIITouristTown = FRL*TIITouristTown
. generate FRL_TIICollegeTown = FRL*TIICollegeTown

. mi register regular Female FRL VermontPS NotVermontPS UVM VSC Asian NotWhite
NotWhiteAsian Hispanic FRLNonTourist NonFRLNonTourist NonFRLTourist FRLTourist
FRL_TIITouristTown FRL_TIICollegeTown SIIEnrollment20052012 SIIPercNSLP2009
SIIPercSATTakers1012 SIIMathGradeAveScale2009 SIIREadGradeAveScale2009
SIIScienceGradeScale2009 TIITouristTown TIICollegeTown TIIOtherTown CollegePersist

. mi impute chained (regress) ZSATVERBMATHWRIT School Town (logit) PARENTNODEGREE
EARLYTALK = Female FRL NotVermontPS UVM VSC Asian NotWhiteAsian FRLNonTourist NonFRLNonTourist
NonFRLTourist FRL_TIITouristTown FRL_TIICollegeTown SIIEnrollment2005 2012
SIIPercNSLP2009 SIIPercSATTakers1012 SIIMathGradeAveScale2009 SIIREadGradeAveScale2009
SIIScienceGradeScale2009 TIITouristTown TIICollegeTown CollegePersist, add(20) burnin(10)
   rseed(7654321)
   note: variables School Town contain no soft missing (.) values; imputing nothing

Conditional models:
   EARLYTALK: logit EARLYTALK School Town i.PARENTNODEGREE ZSATVERBMATHWRIT Female FRL
NotVermontPS UVM VSC NotWhiteAsian FRLNonTourist NonFRLNonTourist NonFRLTourist
FRL_TIITouristTown FRL_TIICollegeTown SIIEnrollment20052012 SIIPercNSLP2009
SIIPercSATTakers1012 SIIMathGradeAveScale2009 SIIREadGradeAveScale2009
SIIScienceGradeScale2009 TIITouristTown TIICollegeTown CollegePersist
   PARENTNODEGREE: logit PARENTNODEGREE School Town i.EARLYTALK ZSATVERBMATHWRIT Female
FRL NotVermontPS UVM VSC NotWhiteAsian FRLNonTourist NonFRLNonTourist NonFRLTourist
FRL_TIITouristTown FRL_TIICollegeTown SIIEnrollment20052012 SIIPercNSLP2009
SIIPercSATTakers1012 SIIMathGradeAveScale2009 SIIREadGradeAveScale2009
SIIScienceGradeScale2009 TIITouristTown TIICollegeTown CollegePersist
   ZSATVERBMATH-T: regress ZSATVERBMATHWRIT School Town i.EARLYTALK i.PARENTNODEGREE
Female FRL NotVermontPS UVM VSC NotWhiteAsian FRLNonTourist NonFRLNonTourist
NonFRLTourist FRL_TIITouristTown FRL_TIICollegeTown SIIEnrollment20052012 SIIPercNSLP2009
SIIPercSATTakers1012 SIIMathGradeAveScale2009 SIIREadGradeAveScale2009
SIIScienceGradeScale2009 TIITouristTown TIICollegeTown CollegePersist

Performing chained iterations ... 

Multivariate imputation Imputations = 20
Chained equations added = 20
Imputed: m=1 through m=20 updated = 0
Initialization: monotone Iterations = 200
   burn-in = 10

ZSATVERBMATH-T: linear regression
   School: linear regression
   Town: linear regression
   PARENTNODEGREE: logistic regression
   EARLYTALK: logistic regression
```

<table>
<thead>
<tr>
<th>Variable</th>
<th>Complete</th>
<th>Incomplete</th>
<th>Imputed</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZSATVERBMATH-T</td>
<td>3908</td>
<td>900</td>
<td>900</td>
<td>4808</td>
</tr>
<tr>
<td>School</td>
<td>4808</td>
<td>0</td>
<td>0</td>
<td>4808</td>
</tr>
<tr>
<td>Town</td>
<td>4808</td>
<td>0</td>
<td>0</td>
<td>4808</td>
</tr>
<tr>
<td>PARENTNODEGREE</td>
<td>4277</td>
<td>531</td>
<td>531</td>
<td>4808</td>
</tr>
<tr>
<td>EARLYTALK</td>
<td>4335</td>
<td>473</td>
<td>473</td>
<td>4808</td>
</tr>
</tbody>
</table>

(complete + incomplete = total; imputed is the minimum across m of the number of filled-in observations.)
Appendix I: Histograms of Standardized Composite SAT Scores for Students Who Did and Did Not Persist in College

Histogram for College Persist - 0

Mean = -2.9686
Std. Dev. = .00479
N = 1,203

Histogram for College Persist - 1

Mean = 1.0713
Std. Dev. = .99597
N = 2,615
Appendix J: Stata Output for the Empty Model

```
mi estimate, or: meqrlogit CollegePersist || School:

Multiple-imputation estimates
Mixed-effects logistic regression

Imputations = 20
Number of obs = 4,808

Group variable: School
Number of obs per group:
min = 1
avg = 80.1
max = 294

Obs per group:
min = 1
avg = 80.1
max = 294

Integration points = 7
Integration points:
avg = 80.1
max = 294

Average RVI = 0.0000
Largest FMI = 0.0000
DF:     min       =   3.13e+61
         avg       =   3.13e+61
         max       =          .
F(  0,      .)   =          .
Prob > F          =          .

Observation: 4,808
Number of groups = 60
Number of imputations = 20

CollegePersist | Odds Ratio   Std. Err.      t    P>|t|     [95% Conf. Interval]
------------- |--------------|--------------|------|--------|---------------------------------------------------------------------
          _cons |   1.919326   .0814197    15.37   0.000       1.7662    2.085727
------------- |--------------|--------------|------|--------|---------------------------------------------------------------------

Random-effects Parameters |   Estimate   Std. Err.     [95% Conf. Interval]
-------------------------------|--------------|--------------|---------------------|---------------------------------------------------------------------
School: Identity
          sd(_cons) |   .1882364   .0497979    .1120775    .3161468
-------------------------------|--------------|--------------|---------------------|---------------------------------------------------------------------
```
Appendix K: Odds Ratio and Standard Errors for Multilevel Models that Include only One Explanatory Variable

<table>
<thead>
<tr>
<th>Variable</th>
<th>Odd Ratio</th>
<th>Parameter Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Female</td>
<td>1.07 (0.07)</td>
<td>0.19 (0.05)</td>
</tr>
<tr>
<td>FRL</td>
<td>0.72*** (0.6)</td>
<td>0.17 (0.05)</td>
</tr>
<tr>
<td>NotWhite</td>
<td>0.89 (0.15)</td>
<td>0.19 (0.05)</td>
</tr>
<tr>
<td>Composite SAT Score</td>
<td>1.43*** (0.05)</td>
<td>0.13 (0.06)</td>
</tr>
<tr>
<td>PARENTSNO Degree</td>
<td>0.79*** (0.05)</td>
<td>0.17 (0.05)</td>
</tr>
<tr>
<td>Early Planning</td>
<td>1.20*** (0.08)</td>
<td>0.19 (0.05)</td>
</tr>
<tr>
<td>TIITourist Town</td>
<td>1.30* (0.22)</td>
<td>0.18 (0.05)</td>
</tr>
<tr>
<td>TICollege Town</td>
<td>0.99 (0.11)</td>
<td>0.19 (0.05)</td>
</tr>
<tr>
<td>SIIPercNSLP 2009</td>
<td>0.99*** (0.00)</td>
<td>0.15 (0.05)</td>
</tr>
<tr>
<td>SIIPercentSAT Takers 1012</td>
<td>1.00 (0.00)</td>
<td>0.18 (0.05)</td>
</tr>
</tbody>
</table>

Note: *p ≤ 0.10 **p ≤ 0.05 ***p ≤ 0.01

Odds Ratios and Random Effects Parameter Estimates for Multilevel Models with a Single Predictor Variable for Student Background Factors on College Persistence

<table>
<thead>
<tr>
<th>Predictor Variable</th>
<th>Gender (Female)</th>
<th>Low family income (FRL)</th>
<th>Non-White Race/Ethnicity (NotWhite)</th>
<th>Standardized measure of academic readiness (COMPOSITE SAT SCORE)</th>
<th>First Generation College (PARENTSNO Degree)</th>
<th>Post-secondary planning at an early age (EARLYTALK)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td>1.85***</td>
<td>2.06***</td>
<td>1.93***</td>
<td>2.00***</td>
<td>2.09***</td>
<td>1.80***</td>
</tr>
<tr>
<td>Random Effects Parameter Estimate</td>
<td>0.19</td>
<td>0.17</td>
<td>0.19</td>
<td>0.13</td>
<td>0.17</td>
<td>0.19</td>
</tr>
</tbody>
</table>

Standard errors are in parenthesis
Note: *p ≤ 0.10 **p ≤ 0.05 ***p ≤ 0.01

Odds Ratios and Random Effects Parameter Estimates for Multilevel Models with a Single Predictor Variable for Community or School Factors on College Persistence

<table>
<thead>
<tr>
<th>Predictor Variable</th>
<th>College Town (TICollege Town)</th>
<th>Tourist Town (TIITourist Town)</th>
<th>Schoolwide SES (SIIPercNSLP 2009)</th>
<th>Schoolwide college preparation (SIIPerc SAT Takers 1012)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td>1.92***</td>
<td>1.90***</td>
<td>2.45***</td>
<td>1.66***</td>
</tr>
<tr>
<td>Random Effects Parameter Estimate</td>
<td>0.19</td>
<td>0.18</td>
<td>0.15</td>
<td>0.18</td>
</tr>
</tbody>
</table>

Standard errors are in parenthesis
Note: *p ≤ 0.10 **p ≤ 0.05 ***p ≤ 0.01
Appendix L: Stata Commands and Output from Multilevel Models

```stata
. mi estimate, or: meqrlogit CollegePersist || School:

Multiple-imputation estimates                     Imputations =  20
Mixed-effects logistic regression                   Number of obs =  4,808
Group variable: School                             Number of groups =  60
Obs per group:
  min =  1
  avg =  80.1
  max =  294
Integration points = 7
Average RVI =  0.0000
Largest FMI =  0.0000
DF:
  min =  3.13e+61
  avg =  3.13e+61
  max =  3.13e+61
DF adjustment: Large sample
F( 0, .) = .
Prob > F = .

CollegePersist | Odds Ratio    Std. Err.    t    P>|t|   [95% Conf. Interval]
-----------------+---------------------+---------+--------+-------------------+
   _cons | 1.919326    .0814197   15.37   0.000     1.7662    2.085727

Random-effects Parameters |   Estimate   Std. Err.   [95% Conf. Interval]
-----------------+-------------------+---------+---------+
School: Identity |   sd(_cons) | .1882364  .0497979    .1120775    .3161468

. mi estimate, or: meqrlogit CollegePersist Female || School:

Multiple-imputation estimates                     Imputations =  20
Mixed-effects logistic regression                   Number of obs =  4,808
Group variable: School                             Number of groups =  60
Obs per group:
  min =  1
  avg =  80.1
  max =  294
Integration points = 7
Average RVI =  0.0000
Largest FMI =  0.0000
DF:
  min =  3.13e+61
  avg =  3.13e+61
  max =  3.13e+61
DF adjustment: Large sample
Model F test: Equal FMI
F( 1, .) = 1.22
Prob > F = 0.2693

CollegePersist | Odds Ratio    Std. Err.    t    P>|t|   [95% Conf. Interval]
-----------------+---------------------+---------+--------+-------------------+
   Female | 1.070287    .0658188    1.10   0.269     .9487558    1.207386
         _cons | 1.849389    .1000657   11.36   0.000     1.663305    2.056291

Random-effects Parameters |   Estimate   Std. Err.   [95% Conf. Interval]
-----------------+-------------------+---------+---------+
School: Identity |   sd(_cons) | .189247    .0499688    .1127918    .3175267

. mi estimate, or: meqrlogit CollegePersist FRL || School:

Multiple-imputation estimates                     Imputations =  20
```

121
Mixed-effects logistic regression

Number of obs = 4,808

Group variable: School
Number of groups = 60

Obs per group:
 min = 1
 avg = 80.1
 max = 294

Integration points = 7
Average RVI = 0.0000
Largest FMI = 0.0000

DF adjustment: Large sample
DF:
 min = .
 avg = .
 max = .

Model F test: Equal FMI
 F(1, .) = 17.48
 Prob > F = 0.0000

| | Odds Ratio | Std. Err. | t | P>|t| | [95% Conf. Interval] |
|----------------|------------|-----------|------|------|----------------------|
| FRL | .7244779 | .0558444 | -4.18| 0.000| .6228919 .8426315 |
| _cons | 2.054837 | .089876 | 16.47| 0.000| 1.886022 2.238762 |

Random-effects Parameters

<table>
<thead>
<tr>
<th>School: Identity</th>
<th>Estimate</th>
<th>Std. Err.</th>
<th>[95% Conf. Interval]</th>
</tr>
</thead>
<tbody>
<tr>
<td>sd(_cons)</td>
<td>.1670832</td>
<td>.0508942</td>
<td>.0919715 .3035373</td>
</tr>
</tbody>
</table>

. mi estimate, or: meqrlogit CollegePersist NotWhite || School:

Multiple-imputation estimates
Imputations = 20

Mixed-effects logistic regression
Number of obs = 4,808

Group variable: School
Number of groups = 60

Obs per group:
 min = 1
 avg = 80.1
 max = 294

Integration points = 7
Average RVI = 0.0000
Largest FMI = 0.0000

DF adjustment: Large sample
DF:
 min = .
 avg = .
 max = .

Model F test: Equal FMI
 F(1, .) = 0.44
 Prob > F = 0.5052

| | Odds Ratio | Std. Err. | t | P>|t| | [95% Conf. Interval] |
|----------------|------------|-----------|------|------|----------------------|
| NotWhite | .8916816 | .1534046 | -0.67| 0.505| .6364574 1.249253 |
| _cons | 1.926526 | .0824757 | 15.32| 0.000| 1.771472 2.095151 |

Random-effects Parameters

<table>
<thead>
<tr>
<th>School: Identity</th>
<th>Estimate</th>
<th>Std. Err.</th>
<th>[95% Conf. Interval]</th>
</tr>
</thead>
<tbody>
<tr>
<td>sd(_cons)</td>
<td>.1883101</td>
<td>.0498105</td>
<td>.1121294 .3162478</td>
</tr>
</tbody>
</table>

. mi estimate, or: meqreglogit CollegePersist ZSATVERBMATHWRIT || School:

Multiple-imputation estimates
Imputations = 20

Mixed-effects logistic regression
Number of obs = 4,808

Group variable: School
Number of groups = 60

Obs per group:
 min = 1
Integration points = 7 avg = 80.1
max = 294

Average RVI = 0.0943
Largest FMI = 0.2197

DF adjustment: Large sample
DF: min = 407.70
avg = 542,258.09
max = 1478349.17

Model F test: Equal FMI
F(1, 407.7) = 97.41
Prob > F = 0.0000

| CollegePersist | Odds Ratio Std. Err. t P>|t| [95% Conf. Interval] |
|----------------|--------------|-----------------|------|--------|---------------------|
| ZSATVERBMATHWRIT | 1.429438 .0517445 9.87 0.000 1.331254 1.534864 |
| _cons | 2.002642 .0748205 18.59 0.000 1.861236 2.154792 |

Random-effects Parameters	Estimate Std. Err. [95% Conf. Interval]	
School: Identity	sd(_cons)	.1245892 .0588818 .0493396 .3146045

. mi estimate, or: meqreglogit CollegePersist PARENTNODEGREE || School:

| Multiple-imputation estimates | Imputations = 20 |
| Mixed-effects logistic regression | Number of obs = 4,808 |

| Group variable: School | Number of groups = 60 |
| Obs per group: | min = 1 |
| max = 294 |

<table>
<thead>
<tr>
<th>Integration points = 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>avg = 80.1</td>
</tr>
<tr>
<td>max = 294</td>
</tr>
</tbody>
</table>

| DF adjustment: Large sample |
| DF: min = 1,531.63 |
| avg = 1731843.83 |
| max = 5163079.20 |

| Model F test: Equal FMI |
| F(1, 2567.1) = 12.05 |
| Prob > F = 0.0005 |

| CollegePersist | Odds Ratio Std. Err. t P>|t| [95% Conf. Interval] |
|----------------|--------------|-----------------|------|--------|---------------------|
| PARENTNODEGREE | .786769 .0543476 -3.47 0.001 0.6871018 0.9008934 |
| _cons | 2.090948 .0990273 15.57 0.000 1.905586 2.29434 |

Random-effects Parameters	Estimate Std. Err. [95% Conf. Interval]	
School: Identity	sd(_cons)	.1649097 .051171 .0897678 .3029506

. mi estimate, or: meqreglogit CollegePersist EARLYTALK || School:

| Multiple-imputation estimates | Imputations = 20 |
| Mixed-effects logistic regression | Number of obs = 4,808 |

| Group variable: School | Number of groups = 60 |
| Obs per group: | min = 1 |
| max = 294 |

<table>
<thead>
<tr>
<th>Integration points = 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>avg = 80.1</td>
</tr>
<tr>
<td>max = 294</td>
</tr>
</tbody>
</table>

| DF adjustment: Large sample |
| DF: min = 1,531.63 |
| avg = 1478349.17 |
| max = 1478349.17 |

| Model F test: Equal FMI |
| F(1, 407.7) = 37.41 |
| Prob > F = 0.0000 |

| CollegePersist | Odds Ratio Std. Err. t P>|t| [95% Conf. Interval] |
|----------------|--------------|-----------------|------|--------|---------------------|
| EARLYTALK | .786769 .0543476 -3.47 0.001 0.6871018 0.9008934 |
| _cons | 2.090948 .0990273 15.57 0.000 1.905586 2.29434 |

Random-effects Parameters	Estimate Std. Err. [95% Conf. Interval]	
School: Identity	sd(_cons)	.1649097 .051171 .0897678 .3029506

123
Model F test: Equal FMI
F(1, 1531.6) = 7.01
Prob > F = 0.0082

CollegePersist | Odds Ratio Std. Err. t P>|t| [95% Conf. Interval]

EARLYTALK | 1.197928 0.0816977 2.65 0.008 1.047933 1.369392
_cons | 1.796671 0.0885468 11.89 0.000 1.631234 1.978887

Random-effects Parameters | Estimate Std. Err. [95% Conf. Interval]

School: Identity
sd(_cons) | 0.1914287 0.0497718 0.1149988 0.3186551

Random-effects Parameters | Estimate Std. Err. [95% Conf. Interval]

School: Identity
sd(_cons) | 0.1878738 0.0503522 0.1111054 0.3176853

. mi estimate, or: meqrlogit CollegePersist TIICollegeTown || School:

Multiple-imputation estimates
Imputations = 20

Mixed-effects logistic regression
Number of obs = 4,808

Group variable: School
Number of groups = 60
Obs per group:
min = 1
avg = 80.1
max = 294

Integration points = 7

Average RVI = 0.0000
Largest FMI = 0.0000

Model F test: Equal FMI
F(1, 4993) = 2.49
Prob > F = 0.1142

--
CollegePersist | Odds Ratio Std. Err. t P>|t| [95% Conf. Interval]
--
TIICollegeTown | 0.9943571 0.1142914 -0.05 0.961 0.7937894 1.245603
_cons | 1.920512 0.0848958 14.76 0.000 1.761123 2.094325

Random-effects Parameters | Estimate Std. Err. [95% Conf. Interval]

School: Identity
sd(_cons) | 0.1878738 0.0503522 0.1111054 0.3176853

. mi estimate, or: meqrlogit CollegePersist TIIITouristTown || School:

Multiple-imputation estimates
Imputations = 20

Mixed-effects logistic regression
Number of obs = 4,808

Group variable: School
Number of groups = 60
Obs per group:
min = 1
avg = 80.1
max = 294

Integration points = 7

Average RVI = 0.0000
Largest FMI = 0.0000

Model F test: Equal FMI
F(1, 4993) = 2.49
Prob > F = 0.1142

--
CollegePersist | Odds Ratio Std. Err. t P>|t| [95% Conf. Interval]
--
TIIITouristTown | 1.920512 0.0848958 14.76 0.000 1.761123 2.094325
_cons | 1.920512 0.0848958 14.76 0.000 1.761123 2.094325

Random-effects Parameters | Estimate Std. Err. [95% Conf. Interval]

School: Identity
sd(_cons) | 0.1878738 0.0503522 0.1111054 0.3176853

. mi estimate, or: meqrlogit CollegePersist TIIITouristTown || School:

Multiple-imputation estimates
Imputations = 20

Mixed-effects logistic regression
Number of obs = 4,808

Group variable: School
Number of groups = 60
Obs per group:
min = 1
avg = 80.1
max = 294

Integration points = 7

Average RVI = 0.0000
Largest FMI = 0.0000

Model F test: Equal FMI
F(1, 4993) = 2.49
Prob > F = 0.1142

124
| Study | Odds Ratio | Std. Err. | t | P>|t| | [95% Conf. Interval] |
|-------|------------|-----------|------|---------|---------------------|
| TIITouristTown | 1.303216 | .2185154 | 1.58 | 0.114 | .9381931 - 1.810259 |
| _cons | 1.896142 | .0803555 | 15.10| 0.000 | 1.745012 - 2.060361 |

Random-effects Parameters | Estimate | Std. Err. | [95% Conf. Interval]
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>School: Identity</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sd(_cons)</td>
<td>.1802786</td>
<td>.0492563</td>
<td>.10553 - .3079729</td>
</tr>
</tbody>
</table>

. mi estimate, or: meqrlogit CollegePersist SIIPercNSLP2009 || School:
Multiple-imputation estimates | Imputations = 20 |
Mixed-effects logistic regression | Number of obs = 4,808 |
Group variable: School | Number of groups = 60 |
Obs per group: |
Integration points = 7 |
 min = 1 |
 avg = 80.1 |
 max = 294 |
Average RVI = 0.0000 |
Largest FMI = 0.0000 |
DF adjustment: Large sample |
 DF: min = 1.08e+61 |
 avg = 1.08e+61 |
 max = . |
Model F test: Equal FMI |
 F(1, .) = 6.58 |
 Prob > F = 0.0103 |

| Study | Odds Ratio | Std. Err. | t | P>|t| | [95% Conf. Interval] |
|-------|------------|-----------|------|---------|---------------------|
| SIIPercNSLP2009 | .9909981 | .0034939 | -2.56 | 0.010 | .9841739 - .9978697 |
| _cons | 2.448802 | .2482207 | 8.84 | 0.000 | 2.007578 - 2.986999 |

Random-effects Parameters | Estimate | Std. Err. | [95% Conf. Interval]
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>School: Identity</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sd(_cons)</td>
<td>.1458198</td>
<td>.0535956</td>
<td>.0709513 - .2996906</td>
</tr>
</tbody>
</table>

. mi estimate, or: meqrlogit CollegePersist SIIPercSATTakers1012 || School:
Multiple-imputation estimates | Imputations = 20 |
Mixed-effects logistic regression | Number of obs = 4,808 |
Group variable: School | Number of groups = 60 |
Obs per group: |
Integration points = 7 |
 min = 1 |
 avg = 80.1 |
 max = 294 |
Average RVI = 0.0000 |
Largest FMI = 0.0000 |
DF adjustment: Large sample |
 DF: min = 3.83e+61 |
 avg = 3.83e+61 |
 max = . |
Model F test: Equal FMI |
 F(1, .) = 0.70 |
 Prob > F = 0.4019 |

| Study | Odds Ratio | Std. Err. | t | P>|t| | [95% Conf. Interval] |
|-------|------------|-----------|------|---------|---------------------|
| SIIPercSATTakers1012 | 1.002529 | .0030204 | 0.84 | 0.402 | .9966261 - 1.008466 |
| _cons | 1.654792 | .3011931 | 2.77 | 0.006 | 1.158281 - 2.364139 |
Random-effects Parameters | Estimate | Std. Err. | [95% Conf. Interval]
School: Identity
| sd(_cons) | .1820153 | .0506308 | .1055191 | .3139675

\[\text{Random-effects Parameters} \]

<table>
<thead>
<tr>
<th>Estimate</th>
<th>Std. Err.</th>
<th>[95% Conf. Interval]</th>
</tr>
</thead>
<tbody>
<tr>
<td>School: Identity</td>
<td>sd(_cons)</td>
<td>.1820153</td>
</tr>
</tbody>
</table>

\[. \text{mi estimate, or: meqrlogit CollegePersist Female FRL NotWhite ZSATVERBMATHWRIT PARENTNODEGREE EARLYTALK || School:} \]

Multiple-imputation estimates
Number of obs = 4,808
Imputations = 20
Group variable: School
Number of groups = 60
Obs per group:
 Integration points - 7
Average RVI = 0.0718
Largest FMI = 0.2467
DF adjustment: Large sample
DF: min = 324.13
avg = 704,539.79
max = 2716629.23
Model F test: Equal FMI
F(6, 14261.0) = 20.36
Prob > F = 0.0000

\[\text{CollegePersist | Odds Ratio | Std. Err. | t | P>|t| | [95% Conf. Interval] } \]

Female	1.094372	.0690088	1.43	0.153	.9671411	1.238341
FRL	.8194856	.0664668	-2.45	0.014	.699039	.9606854
NotWhite	.9767973	.1711244	-0.13	0.893	.6929199	1.376974
ZSATVERBMATHWRIT	1.406668	.0545633	8.80	0.000	1.303318	1.518213
PARENTNODEGREE	.9907454	.0742839	-0.12	0.901	.8552468	1.147711
EARLYTALK	1.060186	.07555	0.82	0.412	.9218278	1.219311
_cons	1.948673	.1162409	11.18	0.000	1.73365	2.190365

\[\text{Random-effects Parameters} \]

<table>
<thead>
<tr>
<th>Estimate</th>
<th>Std. Err.</th>
<th>[95% Conf. Interval]</th>
</tr>
</thead>
<tbody>
<tr>
<td>School: Identity</td>
<td>sd(_cons)</td>
<td>.1210277</td>
</tr>
</tbody>
</table>

\[. \text{mi estimate, or: meqrlogit CollegePersist Female FRL NotWhite ZSATVERBMATHWRIT PARENTNODEGREE EARLYTALK TIICollegeTown TIITouristTown || School:} \]

Multiple-imputation estimates
Number of obs = 4,808
Imputations = 20
Group variable: School
Number of groups = 60
Obs per group:
 Integration points - 7
Average RVI = 0.0718
Largest FMI = 0.2467
DF adjustment: Large sample
DF: min = 320.10
avg = 621,065.91
max = 2347605.96
Model F test: Equal FMI
F(8, 31653.5) = 15.77
Prob > F = 0.0000

\[\text{CollegePersist | Odds Ratio | Std. Err. | t | P>|t| | [95% Conf. Interval] } \]
Random-effects Parameters | Estimate Std. Err. [95% Conf. Interval]

School: Identity |
 sd(_cons) | .1144902 .0625038 .0392708 .3337847
--
.mi estimate, or: meqrlogit CollegePersist Female FRL NotWhite ZSATVERBMATHWRIT PARENTNODEGREE EARLYTALK TIICollegeTown TIITouristTown SIIPercNSLP2009 SIIPercentSATTakers1012 || School:

Multiple-imputation estimates Imputations = 20
Mixed-effects logistic regression Number of obs = 4,808
Group variable: School Number of groups = 60
Obs per group: min = 1
avg = 80.1
max = 294
Integration points = 7
Average RVI = 0.0500
Largest FMI = 0.2516
DF adjustment: Large sample
DF: min = 312.00
avg = 786.93130
max = 2161128.88
Model F test: Equal FMI
F(10,58314.1) = 12.78
Prob > F = 0.0000

CollegePersist | Odds Ratio Std. Err. t P>|t| [95% Conf. Interval]

Female | 1.09271 .0689245 1.41 0.160 .9656371 1.236506
FRL | .8213649 .0670056 -2.41 0.016 .6899699 .9637762
NotWhite | .9716382 .1703309 -0.16 0.870 .6891067 1.370007
ZSATVERBMATHWRIT | 1.405178 .055226 8.66 0.000 1.300611 1.518152
PARENTNODEGREE | .9947177 .0758801 -0.84 0.403 .9227239 1.22152
EARLYTALK | 1.061662 .0758801 0.84 0.403 .9227239 1.22152
TIICollegeTown | 1.177288 .190342 1.01 0.313 .8575548 1.616232
TIITouristTown | 1.722278 .1188663 10.84 0.000 1.722278 2.189362
_cons | 1.941827 .1188663 3.24 0.001 1.318617 3.070214

Random-effects Parameters | Estimate Std. Err. [95% Conf. Interval]

School: Identity |
 sd(_cons) | .1145281 .0625431 .0392714 .3340013
--
.mi estimate, or: meqrlogit CollegePersist Female FRL NotWhite ZSATVERBMATHWRIT PARENTNODEGREE EARLYTALK NonFRLNonTourist No > nFRLTourist TIICollegeTown SIIPercNSLP2009 SIIPercentSATTakers1012 || School:

Multiple-imputation estimates Imputations = 20
Mixed-effects logistic regression Number of obs = 4,808

127
Group variable: School
Number of groups = 60
Obs per group:
min = 1
avg = 80.1
max = 294
Integration points = 7
DF adjustment: Large sample
DF: min = 313.51
avg = 669,477.86
max = 2,156,302.25
Average RVI = 0.0497
Largest FMI = 0.2509
Model F test: Equal FMI
F(10,58796.1) = 12.70
Prob > F = 0.0000

| | Odds Ratio | Std. Err. | t | P>|t| | [95% Conf. Interval] |
|--------------------------|------------|-----------|------|---------|---------------------|
| Female | 1.093999 | .0690047 | 1.42 | 0.154 | .966778 | 1.237962 |
| NotWhite | .9744718 | .1707963 | -0.15| 0.883 | .69116 | 1.373915 |
| ZSATVERBMATHWRIT | 1.406155 | .0552533 | 8.67 | 0.000 | 1.301537 | 1.519182 |
| PARENTNODEGREE | .9923854 | .0750765 | -0.10| 0.920 | .8555322 | 1.15113 |
| EARLYTALK | 1.061553 | .0758107 | 0.84 | 0.403 | .9227366 | 1.221252 |
| NonFRLNonTourist | 1.217848 | .0995882 | 2.41 | 0.016 | 1.037496 | 1.42955 |
| NonFRLTourist | 1.178323 | .2150332 | 0.90 | 0.369 | .757838 | 1.174449 |
| TIICollegeTown | .9434203 | .1054348 | -0.52| 0.602 | .757838 | 1.174449 |
| SIIPercNSLP2009 | .9989936 | .0036109 | -0.28| 0.781 | .991944 | 1.006096 |
| SIIpercentSATTakers1012 | .9997222 | .0027841 | -0.10| 0.921 | .9942803 | 1.005194 |
| _cons | 1.680547 | .3854326 | 2.26 | 0.024 | 1.072081 | 2.634352 |

Random-effects Parameters | Estimate | Std. Err. | [95% Conf. Interval]
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>School: Identity</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sd(_cons)</td>
<td>.1140257</td>
<td>.063684</td>
<td>.0381595</td>
</tr>
</tbody>
</table>