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ABSTRACT 

Aminoacyl-tRNA synthetases (ARS) are a family of enzymes that catalyze the 
charging of amino acids to their cognate tRNA in an aminoacylation reaction. Many 
members of this family have been found to have secondary functions independent of their 
primary aminoacylation function. Threonyl-tRNA synthetase (TARS), the ARS 
responsible for charging tRNA with threonine, is secreted from endothelial cells in 
response to both vascular endothelial growth factor (VEGF) and tumor necrosis factor-α 
(TNF-α), and stimulates angiogenesis and cell migration. Here we show a novel 
experimental approach for studying TARS secretion, and for observing the role of 
intracellular TARS in the endoplasmic reticulum (ER) stress response and in 
angiogenesis.  

Using Western blotting, immunofluorescence microscopy and RT-qPCR we were 
able to investigate changes in TARS protein and transcript levels. We initially 
hypothesized that TARS was secreted by exosomal release, and so we treated a human 
ovarian cancer cell line (CaOV-3) with monensin, an ionophore that increases exosome 
production, and VEGF to observe changes in intracellular and extracellular TARS 
protein. Monensin treatment consistently increased extracellular and intracellular TARS 
protein, however CD63, an exosome marker protein, levels were unaffected by monensin 
treatment. VEGF had no effect on intracellular TARS. We therefore hypothesized that the 
TARS response was a result of ER stress.  

The unfolded protein response (UPR) is a series of signaling pathways that are 
activated upon ER stress. When CaOV-3 cells were treated with increasing 
concentrations of monensin, intracellular levels of TARS and p-eIF2α, a downstream 
UPR target, increased accordingly.  Monensin increased intracellular TARS protein and 
transcript levels in CaOV-3 cells. Monensin also increased DNAJB9, an ER chaperone 
protein, transcript levels, further confirming ER stress. Interestingly, monensin increased 
VEGF transcript levels about 6-fold. Borrelidin, a natural TARS inhibitor, also increased 
VEGF transcript levels, and caused an increase in p-eIF2α protein.  

Although the mechanism of TARS secretion remains unresolved, these data 
indicate that intracellular TARS expression increases in response to ER stress by 
monensin. Given TARS and VEGF transcript expression increased accordingly, it is 
possible that intracellular TARS may have pro-angiogenic function. Future directions 
may include investigating TARS interactions with translational control machinery.
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CHAPTER 1: INTRODUCTION 

 

1.1 Aminoacyl-tRNA Synthetase Primary Function 

 

1.1.1 Aminoacyl-tRNA Synthetases are Vital for Translation 

 Aminoacyl-tRNA synthetases (ARSs) are responsible for charging transfer 

ribonucleic acid (tRNA) molecules with their cognate amino acids via an aminoacylation 

reaction. ARSs were first discovered by their ability to activate amino acids and transfer 

those amino acids to tRNA in the presence of microsomal RNA fractions from rat liver 

and adenosine triphosphate (ATP) (Zamecnik and Keller 1954, Hoagland, Stephenson et 

al. 1958). ARSs are evolutionarily conserved across kingdoms, as this reaction is 

necessary for global translation (Szymanski, Deniziak et al. 2001). In order to ensure 

amino acid fidelity when charging tRNA molecules each tRNA species has a subsequent 

ARS, with some exceptions (Ibba, Becker et al. 2000). The following highlights the two-

step reaction ARSs catalyze: 

a) AA + ATP ! AA-AMP + PPi  

b) AA-AMP + tRNAAA ! AA-tRNAAA +AMP 

In part (a) of this reaction, the synthetase reacts its cognate amino acid (AA) with 

a molecule of ATP to produce an adenylate intermediate (AA-AMP) and inorganic 

phosphate (PPi). AA-AMP remains bound in the active site of the enzyme. The 

corresponding tRNA (tRNAAA) then enters the active site, and the amino acid’s carboxyl 

group binds to either the 2’ or 3’-OH of the 3’end of the tRNA thus transferring from the 

ARS to the tRNA. The charged tRNA is then released from the ARS and can be recruited 
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for translation. This model suggests that these are two separate reactions where in reality 

there is coupling between the two reactions, which is vital for proper ARS function. This 

reaction comprises the primary function of all ARSs. 

ARSs can be categorized into two different classes. Class I synthetases have a 

Rossmann fold, a parallel β-sheet, located in their active site, and bind tRNA in the minor 

groove of the acceptor stem where they aminoacylate on the tRNA 2’-OH (Ibba, Becker 

et al. 2000). Class I synthetases also share the sequence motifs HIGH and KMSKS, and 

are typically monomeric when active (Arnez and Moras 1997). In contrast, class II 

synthetases have an antiparallel β-sheet in their active site, which is surrounded by α-

helices, and bind tRNA in the major groove of the acceptor stem where the 3’-OH is 

aminoacylated (Arnez and Moras 1997, Ibba, Becker et al. 2000). This class of 

synthetases typically exists as a dimer or multimer upon catalytic activation. Class II 

synthetases share sequence motifs, referred to as motifs 1, 2 and 3, which are structurally 

vital for enzyme function. Motif 1 consists of an α-helix linked to a β-strand, and is 

located at the dimer interface of class II ARSs, while motifs 2 and 3 are found in the 

active site of the enzyme, and consist of two anti-parallel β-strands linked by a loop and a 

β-strand followed immediately by an α-helix, respectively (Arnez and Moras 1997). Two 

exceptions to these parameters are lysyl-tRNA synthetase (KARS), which is both a class I 

and class II synthetase, and phenylalanyl-tRNA synthetase (FARS), which is a class II 

synthetase that aminoacylates on the 2’-OH of tRNA (Ibba, Becker et al. 2000).  
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1.1.2 Maintaining Fidelity When Charging tRNA Molecules 

ARSs are vital for proper protein synthesis, and so they must have a high rate of 

fidelity for aminoacylating tRNA molecules with their cognate amino acids. ARSs must 

distinguish correct tRNA and amino acid molecules to ensure the correct tRNA 

molecules are charged with their cognate amino acids. This process aims to combat 

mutations during translation. Cognate tRNA molecules are distinguished by interactions 

with specific nucleotides on the tRNA, known as identity elements (Giege, Sissler et al. 

1998). This recognition has shown little error. It is reported that 1 in 107 misidentification 

events occur, which would not contribute greatly to overall translational error 

(Jakubowski and Goldman 1992). Incorporation of cognate amino acids into AA-tRNAAA 

complexes requires a more complicated editing mechanism. 

ARSs need to be able to distinguish between cognate and non-cognate amino 

acids with high fidelity in order to mitigate mutational errors in translation. Some amino 

acids are structurally similar, and cannot be easily distinguished by ARSs. For example, 

valine and isoleucine differ in structure by a single methyl group. The fidelity of 

synthetases is maintained by a two-step editing process know as the “double sieve 

model” (Sankaranarayanan and Moras 2001).  

This enzyme hyperspecificity was first rationalized in 1976 by Fersht and 

Kaethner who showed a low rate of misincorporation of threonine onto tRNAVal by valyl-

tRNA synthetase (VARS) (Fersht and Kaethner 1976). They proposed a two-step model. 

First, cognate and near-cognate amino acids are filtered out from larger amino acids in 

the active site, and charged accordingly in an adenylation reaction. Second, mischarged 

amino acids are hydrolyzed to ensure misincorporation during translation does not occur. 
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For example, VARS will charge threonine and form a complex with a threonyl-adenylate 

at 1:1, however when a Thr-VARS-tRNAVal complex forms, the aminoacylated product is 

rapidly hydrolyzed (Fersht and Kaethner 1976). The term double sieve model was coined 

for this process shortly thereafter (Fersht and Dingwall 1979).  

Since then, the double sieve model has been further examined, and the original 

hypothesis by Fersht and Kaethner has been modified by crystal structure analysis and by 

monitoring acylation activity (Martinis and Boniecki 2010). The first step in editing 

consists of the “coarse sieve”, which refers to amino acids of similar size, cognate and 

non-cognate, binding in the active site of the ARS, while larger amino acids are typically 

excluded due to steric hindrance (Sankaranarayanan and Moras 2001). In the case of 

isoleucyl-tRNA synthetase (IARS), valine and isoleucine differ by only one methyl 

group, which translates to a difference of about 1 kcal/mol of binding energy difference 

(Nureki, Vassylyev et al. 1998). IARS therefore misincorporates valine for isoleucine at a 

rate of about one in five thus creating a thermodynamically unfavorable model for one-

step discrimination (Nureki, Vassylyev et al. 1998). A second editing step has evolved to 

counter this high rate of misincorporation.  

“Fine sieve” editing refers to hydrolysis of false cognates, and can be further 

categorized into pre-transfer and post-transfer editing. The pre-transfer mechanism 

involves hydrolysis of the false cognate adenylate intermediate, while the post-transfer 

mechanism involves deacylation of the incorrectly charged tRNA (Sankaranarayanan and 

Moras 2001). IARS primarily employs pre-transfer editing. Valyl-adenylate intermediates 

are hydrolyzed in the presence of tRNAIle while isoleucyl intermediates are successfully 

transferred to tRNAIle as demonstrated in E. coli and T. thermophilus (Baldwin and Berg 
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1966, Nureki, Vassylyev et al. 1998). Post-transfer editing occurs in a second hydrolytic 

site separate from the active site (Martinis and Boniecki 2010). ARSs that employ this 

mechanism will charge tRNA with non-cognate adenylate intermediates, and then 

transfer the complex to the hydrolytic site. tRNA molecules charged with cognate amino 

acids do no fit in this site and are released. Pre- and post-transfer mechanisms are 

sometimes both present in the same ARS, suggesting redundancy in editing (Martinis and 

Boniecki 2010). 

Class I synthetases have a conserved CP1 domain in their active site, which is 

employed for editing non-cognate substrates (Marintchev 2012). In contrast class II 

synthetases vary in their structural organization resulting in specific motifs that create 

variance in editing mechanisms across ARSs (Marintchev 2012). One of the most well 

understood mechanisms of class II synthetase editing is that of threonyl-tRNA synthetase 

(TARS). 

TARS has a molecular weight of 83 kiloDaltons and dimerizes to gain catalytic 

activity. During editing, TARS has to distinguish between threonine, serine and valine 

when charging tRNAThr molecules. Valine is isoteric with threonine, the cognate 

substrate, and serine differs from threonine by one methyl group. TARS has a zinc ion in 

its active site, which is coordinated by three residues and a water molecule (Marintchev 

2012). This zinc ion acts as a cofactor in amino acid recognition, interacting with the 

hydroxyl side chains of threonine and serine (Sankaranarayanan and Moras 2001). 

Therefore, valine is entirely excluded by TARS due to its lack of a hydroxyl group 

(Marintchev 2012). TARS then uses its N-terminal N2 domain to employ a post-transfer 

editing mechanism to hydrolyze Ser-tRNAThr complexes (Dock-Bregeon, 
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Sankaranarayanan et al. 2000, Sankaranarayanan and Moras 2001, Marintchev 2012). 

TARS utilizes a chemical “coarse sieve” following by a more traditional post-transfer 

“fine sieve” when discriminating between cognate and non-cognate amino acids. 

 

1.2 Aminoacyl-tRNA Synthetases in Disease 

 

1.2.1 Introduction to Synthetases in Disease 

Proper ARS function, including fidelity in aminoacylation, is not only important 

for maintaining translation integrity, but also for preventing disease. Mutations in ARSs 

play a role in pathology, as these mutations often inhibit tRNA aminoacylation and 

disrupt protein synthesis (Yao and Fox 2013, Abbott, Francklyn et al. 2014). Synthetase 

dysfunction has been linked with neurodegenerative disorders, angiogenesis, 

tumorigenesis and inflammation (Yao and Fox 2013, Abbott, Francklyn et al. 2014).  It 

has been reported in mice that a missense mutation in the editing domain of alanyl-tRNA 

synthetase (AARS) causes cerebellar Purkinje cell loss and ataxia showing direct 

correlation with loss of editing function and disease (Lee, Beebe et al. 2006). In contrast, 

Charcot-Marie-Tooth disease (CMT) has been linked with mutations in KARS, glycyl-

tRNA synthetase (GARS), AARS, tyrosyl-tRNA synthetase (YARS) and histidyl-tRNA 

synthetase (HARS) that do not lead to loss of editing function (Yao and Fox 2013, 

Abbott, Francklyn et al. 2014). ARSs’ roles in various diseases have yielded insight into 

secondary functions of this family of enzymes. 

Synthetases and their associated factors are well established in the roles they play 

in diseases. Specifically, these molecules contribute to neurodegenerative disorders, 
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autoimmune disorders and cancer progression. This has rendered many members of the 

ARS family valid targets for pharmacological intervention.  

 

1.2.2 Neurodegeneration 

The majority of the 20 standard amino acids have two synthetases associated with 

them, a cytoplasmic and mitochondrial species (Kurland and Andersson 2000). 

Mitochondrial synthetases play a role in synthesis of components of the mitochondrial 

oxidative phosphorylation system, while cytoplasmic synthetases are involved in more 

global protein synthesis (Konovalova and Tyynismaa 2013). As a result, there are 

diseases associated with synthetases of both mitochondrial and cytoplasmic ARSs.  

Mitochondrial tRNA and mitochondrial ARS mutations contribute to many 

neurodegenerative diseases. Briefly, the mitochondrial genome encodes for all RNA 

necessary for translation in the mitochondria, however proteins necessary for protein 

synthesis in the mitochondria, such as ARSs, ribosomal proteins etc., are encoded for in 

the nucleus, and are synthesized in the cytoplasm and transported into the mitochondria 

(Abbott, Francklyn et al. 2014). Mitochondrial tRNA mutations accumulate over the 

course of an organism’s life cycle, and ultimately manifest in disease (Abbott, Francklyn 

et al. 2014). Two well characterized diseases resulting from this accumulation are 

mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS) 

and myoclonic epilepsy with ragged red fibers (MERRF) (Abbott, Francklyn et al. 2014). 

These diseases can lead to symptoms including epilepsy, seizures and limb weakness. 

80% of MELAS patients contain an A3243G mutation in the tRNALeu gene, while 80-

90% of MERFF patients exhibit an A8344G mutation in the tRNALys gene (Silvestri, 
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Moraes et al. 1992, Suzuki, Nagao et al. 2011). MELAS mutations lead to impaired 

oxidative phosphorylation due to defects in respiratory chain complexes I and IV 

(Abbott, Francklyn et al. 2014). In addition, in both MELAS and MERFF patients a 

G12147A mutation was found in tRNAHis, which was linked with a decrease in 

cytochrome c oxidase by succinate dehydrogenase staining and a decrease in 

mitochondrial protein synthesis (Melone, Tessa et al. 2004). These diseases highlight 

how mitochondrial tRNA mutations lead to dysfunctional mitochondria and subsequent 

modulation of brain function. 

Mutated mitochondrial ARSs have also been linked with diseases of the brain. 

Leukoencephalopathy with brain stem and spinal cord involvement and lactate elevation 

(LBSL) is an autosomal recessive disorder that manifests in and contributes to changes in 

the white matter, which can lead to cerebellar ataxia, spasticity and dorsal column 

dysfunction (van Berge, Dooves et al. 2012, Konovalova and Tyynismaa 2013). LBSL is 

caused by mutations in the mitochondrial aspartyl-tRNA synthetase (DARS) gene with 

the most common mutation found in intron 2 across patients, which is important in the 

proper splicing of exon 3 (van Berge, Dooves et al. 2012). It was found that this mutation 

has the largest effect on exon 3 exclusion in patient neural cells compared with non-

neural cells, and these neural cells also have more difficulty with correct inclusion of 

exon 3 than non-neural cells (van Berge, Dooves et al. 2012). This study not only links a 

mutated ARS with neurodegeneration, but also shows that these mutations are tissue 

specific. Tissue specificity is common in mitochondrial ARS and tRNA mutation 

phenotypes.  
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A common cytoplasmic ARS-associated disease is Charcot-Marie-Tooth 

syndrome (CMT). CMT is a neurodegenerative disease that is a result of peripheral 

neuropathy or degeneration of distal motor and sensory neurons. It ultimately leads to 

muscle weakness, altered gait and balance and general decline of leg and arm function. 

Six ARS mutations have been linked to CMT including AARS, GARS, HARS, KARS, 

methionyl-tRNA synthetase (MARS) and YARS (Yao and Fox 2013, Abbott, Francklyn 

et al. 2014). G41R, E196K and Δ153-156 deletion mutations in YARS are linked with 

CMT (Jordanova, Irobi et al. 2006). Specifically, these mutations are associated with 

deteriorated canonical function of YARS, but this loss of function is not linked with 

CMT contribution (Jordanova, Irobi et al. 2006). YARS localizes to neuronal cells, and 

transfection with either wild type (WT) or mutant YARS into N2a cells shows no 

difference in localization patterns (Jordanova, Irobi et al. 2006). Therefore mutant YARS 

can be expected to affect neuronal cells. This is an example of how investigating 

synthetase mutants further may yield insight into neurodegeneration.  

 

1.2.3 Synthetases are Involved in Autoimmunity 

The ARS family is also associated with the autoimmune response. Autoimmunity 

refers to in vivo synthesis of antibodies against epitopes of non-foreign proteins, typically 

leading to protein dysfunction and subsequent disruption of cell health. Therefore, 

synthetases provide autoantigens that the body creates autoantibodies against, which 

intermittently sustains the autoimmune response. Myositis is an autoimmune disorder 

resulting in inflammation and weakness of muscle tissue. HARS and TARS both contain 

autoantigens associated with myositis (Miller, Waite et al. 1990, Williams, Mirando et al. 
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2013, Zhou, Wang et al. 2014). With respect to HARS, it has been well established that 

in myositis patients there are autoantibodies against HARS that are dependent on 3D 

enzyme structure and on tRNAHis binding in the active site of HARS (Miller, Waite et al. 

1990, Zhou, Wang et al. 2014). HARS autoantibodies also undergo maturation to their 

target autoantigen, which solidifies the autoimmune response (Miller, Waite et al. 1990). 

TARS is the target of the autoantibody PL-7, and its targeting elicits a strong cytokine 

response, which has been associated with interstitial lung disease (Labirua and Lundberg 

2010). The involvement of ARSs with autoimmune disorders furthers their validity for 

pharmacological targeting. 

 

1.2.4 Synthetase Effects on Tumor Progression 

When a cell becomes cancerous, various molecular and physiological events must 

occur in order to promote the proliferation and spread of the mutated cell. The 

accumulated mutations must be maintained throughout cell division, and the cancer cell 

must promote proper nutrient and growth factor recruitment in order to survive and 

spread. There is recent evidence supporting many members of the cytoplasmic ARS 

family being involved in progression of various tumors (Kim, You et al. 2011). 

ARS involvement in tumor development has been widely categorized. 

Catalytically active MARS has been found to be elevated in colon cancer tissue 

(Kushner, Boll et al. 1976). This suggests that the tumor microenvironment may be trying 

to increase its total protein synthesis. Of note, MARS transcript was found to share a 55 

base pair sequence homology with C/EBP homologous protein (CHOP) transcript, 

overlapping in their 3’ UTR regions, which allows the two mRNAs to interact in vivo 
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(Ubeda, Schmitt-Ney et al. 1999). CHOP is typically a regulator of the unfolded protein 

response, however it has been found to be amplified in various cancers (Forus, Florenes 

et al. 1994). The interaction between the two transcripts promotes stability, and although 

this link has not been clearly linked with tumor progression, there is evidence supporting 

the possibility (Ubeda, Schmitt-Ney et al. 1999). In addition to its transcriptional 

interaction with CHOP, MARS is also a part of the multi synthetase complex (MSC), 

which serves as an integrating point for non-canonical ARS activity involved in 

tumorigenesis (Kim, You et al. 2011). 

The MSC consists of D-, glutamyl-prolyl (EP)-, I-, K-, leucyl (L)-, M-, glutaminyl 

(Q)- and arginyl (R)-tRNA synthetases, and it interacts with three auxiliary cofactors, 

ARS-interacting multifunctional protein-1 (AIMP-1), AIMP-2 and AIMP-3 (Ray, Arif et 

al. 2007). AIMP-1, AIMP-2 and AIMP-3 interact with RARS, KARS and MARS, 

respectively. These multifunctional proteins are intricately interwoven with tumor 

regulatory pathways. Upon DNA mutation, AIMP-2 is phosphorylated leading to its 

dissociation from the MSC (Han, Park et al. 2008). AIMP-2 then binds and activates p53 

protein, which inhibits binding of mouse double minute 2 homolog (MDM2) and 

subsequent ubiquitinylation and degradation of p53 (Han, Park et al. 2008).  AIMP-2 has 

also been found to increase HEK293 cell’s sensitivity to tumor necrosis factor-α (TNF-α) 

induced apoptosis by targeting TNF receptor associated factor 2 (TRAF2) for 

ubiquitinylation and degradation (Choi, Kim et al. 2009). This exemplifies the close 

interaction the MSC has with tumor regulatory pathways, and raises question as to what 

may occur if the complex were misregulated or mutated.  
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ARS protein expression in cancer cells themselves yields insight into possible 

roles different synthetases play in cancer. In SKOV-3 cells, an ovarian cancer cell line, 

TARS is secreted in response to TNF-α, similarly to endothelial cells (Williams, Mirando 

et al. 2013, Wellman, Eckenstein et al. 2014). TARS is overexpressed in ovarian 

carcinoma cells, and TARS concentration in these cells increases as tumor stage increases 

(Wellman, Eckenstein et al. 2014). Finally, TARS was found to coexpress with VEGF by 

immunohistochemistry in infiltrating leukocytes in ovarian cancer tumors (Wellman, 

Eckenstein et al. 2014). Taken together, these data propose ovarian cancer cells as a valid 

in vitro model for studying TARS expression as it relates to cancer.  

In contrast, tryptophanyl-tRNA synthetase (WARS) has low expression levels in 

colorectal cancer (Ghanipour, Jirstrom et al. 2009). Low WARS expression was 

correlated with an increased risk of lymph node metastasis, and a lower survival rate than 

patients with increased WARS expression in cancer cells (Ghanipour, Jirstrom et al. 

2009). WARS is anti-angiogenic, and so its decreased expression in colorectal cancer 

cells is likely acting as a protective mechanism to enable the tumor cell to increase its 

ability to promote angiogenesis (Tzima and Schimmel 2006). The difference in 

expression levels of different ARSs in cancer cells shows that the role of synthetases 

expands beyond increasing protein translation in tumor cells.  

ARSs have also been shown to incorporate molecular events into direct 

physiological responses related to cancer. Several ARS family members are involved in 

promoting the formation of new microvasculature through angiogenesis, which could 

enhance the tumor growth capacity and facilitate metastasis. 
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1.3 Angiogenesis 

 

1.3.1 Angiogenesis Background 

Angiogenesis is the growth of new blood vessels from pre-existing vasculature, 

and is carried out in healthy and diseased tissue (Adair and Montani 2010). Because of its 

involvement in cancer, heart disease and other common diseases, angiogenesis has gained 

attention over the past few decades. Although the core mechanism of angiogenesis is well 

understood, there are other molecular players in different tissues and diseases that are 

involved in angiogenesis whose mechanisms of action remain unknown. 

In a growing vertebrate embryo, mesodermal cells will ultimately differentiate 

into hematopoietic stem cells and angioblasts, which further differentiate into 

hematopoietic cells and endothelial cells respectively (Adair and Montani 2010). 

Endothelial cells arrange to form hollow tube structures that classify the vasculature. 

Therefore angioblast differentiation must be tightly regulated to ensure proper 

vasculogenesis in the developing embryo. Angiogenesis links two existing blood vessels 

together in poorly perfused tissue when the microenvironment becomes hypoxic (Adair 

and Montani 2010). When vascular endothelial cells are exposed to a high concentration 

of vascular endothelial growth factor (VEGF) under hypoxia they become tip-cells, 

which facilitate endothelial cell migration (Adair and Montani 2010). These tip-cells 

guide the new vasculature through the extracellular matrix, and ultimately lead to fusion 

with another blood vessel (Adair and Montani 2010). As aforementioned, this process is 

vital for tumor cell metastasis. VEGF also influences several ARSs’ angiogenic activity.  
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VEGF is a pro-angiogenic autocrine signaling molecule in many cancers that aims 

to promote angiogenesis (Duffy, Bouchier-Hayes et al.). It is believed that VEGF 

translation may protect tumor cells from apoptosis as a result of this signaling. In breast 

carcinoma cells α6β4 integrin signaling was found to upregulate VEGF translation, 

which led to an overall increase in cell survival (Chung, Bachelder et al. 2002). 

Specifically, α6β4 integrin activates phosphoinositide-3 kinase (PI3-K) and protein 

kinase-B (Akt) pathways which stimulate the nutrient sensing mTOR. This causes the 

phosphorylation of 4E-binding protein (4E-BP), which allows eukaryotic initiation 

factor-4E (eIF4E) to dissociate from 4E-BP and stimulate VEGF translation specifically 

(Fig. 1) (Chung, Bachelder et al. 2002). The increase in VEGF expression protects breast 

carcinoma cells from apoptosis, and increases their chances of proliferation and 

angiogenesis.  

 

Figure 1: Mechanism of increased VEGF translation by α6β4 integrin activation. 
Adapted from (Duffy, Bouchier-Hayes et al.).  
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1.3.2 Synthetase Angiogenic Activity 

Several ARSs have been found to affect angiogenesis both intracellularly and 

extracellularly. YARS, WARS and TARS are secreted out of the cell, and stimulate 

signaling events extracellularly that affect angiogenesis while seryl-tRNA synthetase 

(SARS) and EPRS act intracellularly to change levels of VEGF transcription and 

translation, which alters the angiogenic state of the cell (Mirando, Francklyn et al. 2014). 

YARS is cleaved by polymorphonuclear leukocyte (PMN) elastase upon secretion from 

endothelial cells yielding N- and C-terminal fragments (Mirando, Francklyn et al. 2014). 

The N-terminus, or “mini-YARS”, is found to have catalytic activity and to stimulate 

angiogenesis through extracellular signal-regulated kinase (ERK) 1, ERK 2, Akt, Src and 

endothelial nitric oxide synthase (eNOS) signaling pathways (Mirando, Francklyn et al. 

2014). These signaling pathways are pro-angiogenic, indicating likely involvement of 

VEGFR2 and integrin receptors (Munoz-Chapuli, Quesada et al. 2004). The C-terminus 

YARS fragment’s role is less characterized. WARS either undergoes a cleavage by PMN 

elastase once secreted from endothelial cells thus removing its WHEP domain, or WARS 

transcript can be alternatively spliced and translated yielding partial WARS that is then 

secreted from the cell (Mirando, Francklyn et al. 2014). The “mini-WARS” fragment 

then has an inhibitory effect on angiogenesis, which is a result of inhibition of 

phosphorylation of ERK, Akt and eNOS downstream targets and prevention of VEGF-

mediated angiogenesis (Tzima, Reader et al. 2003). The secretion mechanism of both 

WARS and YARS remains unresolved. 

 SARS and EPRS alter VEGF expression intracellularly to inhibit angiogenesis. In 

endothelial cells SARS is transported to the nucleus by a nuclear localization signal, and 
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inhibits c-Myc-mediated vegfa transcription by altering the epigenetics of the vegfa gene 

(Mirando, Francklyn et al. 2014). This produces an angiostatic effect. The bi-functional 

EPRS is bound in the MSC under normal conditions. Upon treatment of endothelial cells 

with interferon-λ (IFN), EPRS is phosphorylated and dissociates from the MSC 

(Sampath, Mazumder et al. 2004). EPRS has been found to been a part of the IFN-λ-

activated inhibitor of translation (GAIT) complex for binding ceruloplasmin mRNA 

(Sampath, Mazumder et al. 2004). Upon phosphorylation, EPRS will associate with this 

complex, and bind the 3’ UTR of ceruloplasmin mRNA directly, which inhibits 

translation of the transcript (Sampath, Mazumder et al. 2004). This result was extended 

when it was found that the GAIT complex also binds the 3’ UTR of VEGFA transcript 

thereby inhibiting VEGFA synthesis (Ray and Fox 2007). The WHEP domain of EPRS is 

responsible for this interaction. This shows that EPRS plays a role in inhibition of 

angiogenesis upon cytokine stimulation. 

 TARS exhibits extracellular, pro-angiogenic effects in endothelial cells. This 

property has predominantly been shown using the TARS inhibitor, borrelidin. Borrelidin 

is a compound produced in S. rocheii, which acts as an antibacterial, antiviral and 

antifungal agent. It is an 18-membered macrolide ring, and is a potent inhibitor of TARS 

as well as an inhibitor of angiogenesis and metastasis in various rat models (Mirando, 

Fang et al. 2015). Due to its strong inhibition of TARS, borrelidin is highly cytotoxic to 

cells, which is a result of the amino acid starvation response (Mirando, Fang et al. 2015). 

BC194 is a borrelidin analog that is less toxic to cells, but inhibits TARS just as strongly 

as borrelidin due to maintenance of key substrate binding residues in the active site 

(Mirando, Fang et al. 2015). Endothelial cells show decreased tube formation in tube 
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assays, a model for angiogenesis, and decreased cell migration upon treatment with 

BC914 (Williams, Mirando et al. 2013, Mirando, Fang et al. 2015). The anti-angiogenic 

property of BC194 has been confirmed in vivo using zebrafish as a model organism 

(Mirando, Fang et al. 2015). In addition, chorioallantoic membrane (CAM) assay on 

chicken embryos reveal that when TARS is added exogenously to embryos the 

vasculature expands, and when TARS is added exogenously to endothelial cells tube 

formation increases (Williams, Mirando et al. 2013). These findings confirm that TARS 

is pro-angiogenic. Similar to WARS and YARS, the secretion mechanism remains 

unknown for TARS. However, upon treatment with VEGF or TNF-α, endothelial cells 

have an increase in TARS in the cell culture media (Williams, Mirando et al. 2013). This 

further suggests that TARS is secreted for the purpose of promoting angiogenesis.  

 

1.3.3 Possible Mechanism of Synthetase Secretion  

One possible mechanism that synthetases are getting secreted out of cells is by 

exosomal release. Exosomes are small vesicular particles between 40-100 nm in diameter 

that are vital for cell signaling as they have been found to contain specific RNA and 

protein cargo. There is no definite consensus on how exosomes are secreted out of cells, 

however the predominant theory will be discussed here. Early endosomes pinch towards 

the cytosol from the plasma membrane of the secreting cell (Bobrie, Colombo et al. 

2011). Early endosome maturation to a multivesicular body (MVB) is characterized by 

further pinching of the membrane away from the cytosol, and towards the extracellular 

space. These smaller vesicles in the MVB are often exosomes. The MVB then fuses with 
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the plasma membrane releasing its contents, and the exosomes are secreted from the cell 

(Fig. 2) (Bobrie, Colombo et al. 2011).  

Various families of proteins known to facilitate vesicular trafficking and docking 

are thought to enable this process. Exosomes can be tracked experimentally by looking at 

proteins bound in exosomal membranes, including CD63 and MHC class II proteins 

(Bobrie, Colombo et al. 2011). In this study, we observed changes in CD63 protein levels 

to draw conclusions about exosome production in ovarian cancer cells. 

 

 

Fig. 2: Proposed mechanism of exosome formation and subsequent release. Used 
with permission from (Bobrie, Colombo et al. 2011). 
 

It has been observed that cytoplasmic synthetase mRNA from several family 

members is found in exosomes in Jurkat cells (Wang, Xu et al. 2013). This raises the 

question of what role these mRNA will ultimately play translationally, and begins to 

outline possible mechanisms for ARS secretion. In addition, many members of the ARS 
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family have been identified in exosomes of cancer cells. A large scale proteomic analysis 

found that several cytoplasmic and mitochondrial synthetase proteins can be found in 

both OVCAR-3- and IGROV1-, two ovarian cancer cell lines, derived exosomes, 

including TARS (Liang, Peng et al. 2013). With knowledge that extracellular TARS is 

pro-angiogenic in endothelial cells and that TARS is found in ovarian cancer cell-derived 

exosomes, we aimed to test whether TARS was secreted from ovarian cancer cells via 

exosomal release in order to further the mechanism by which TARS promotes 

angiogenesis.  

 

1.4 Endoplasmic Reticulum Stress Response  

 

1.4.1 Endoplasmic Reticulum Stress and the Unfolded Protein Response 

When cells are diseased they experience some level of stress, which is 

characterized by stimulation of the immune response, changes in intracellular molecular 

status or an alternate response. One specific type of stress response is endoplasmic 

reticulum (ER) stress. The ER is responsible for facilitating proper protein folding, and 

when unfolded protein accumulates the unfolded protein response (UPR) will be elicited. 

The UPR is a complex web of molecular cascades that trigger either a survival response 

or an apoptotic response following ER stress.  

 Three receptors are bound in the ER membrane that regulate the UPR, inositol-

requiring protein-1α (IRE1α), PRKR –like ER kinase (PERK) and activating 

transcription factor 6 (ATF6) (Oslowski and Urano 2011). IRE1α and PERK have similar 

ER-luminal domains and cytosolic kinase domains while ATF6 has a cytosolic cAMP 
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response element binding protein (CREB)-ATF basic leucine zipper domain (Wang and 

Kaufman 2016). All receptors constitutively bind immunoglobulin protein (BiP) on the 

ER-luminal side. Upon misfolded protein accumulation, BiP binds the misfolded protein 

and leaves the receptors nude. Nude receptors are believed to activate the UPR (Wang 

and Kaufman 2016). Activation of these three signaling cascades initially triggers three 

transcription factors that promote transcription of genes involved in protein folding and 

quality control, ER biogenesis, autophagy and other processes that aid in proper protein 

folding (Hetz 2012). IRE1α dimerizes and autophosphorylates upon activation, and 

facilitates splicing of X-box-binding protein-1 (XBP1) mRNA, which allows XBP1s to 

act as a transcription factor for genes promoting cell survival (Wang and Kaufman 2016). 

PERK and ATF6 pathways have also been shown to play a role in induction of XBP1 and 

its splicing, highlighting interplay often found in the UPR (Yoshida, Matsui et al. 2001, 

Tsuru, Imai et al. 2016). PERK dimerizes and autophosphorylates upon activation, which 

leads to phosphorylation of Ser51 on eukaryotic initiation factor-2α (eIF2α) thereby 

inhibiting global protein translation (Wang and Kaufman 2016). Phosphorylation of 

eIF2α also induces translation of ATF4, which acts as a transcription factor for survival-

promoting genes (Hetz 2012). ATF6 activation leads to ATF6α transit to the Golgi 

apparatus where it is cleaved by the enzymes S1P and S2P, and this cleavage product acts 

as a transcription factor at target genes (Wang and Kaufman 2016). These pathways 

promote proper protein folding and cell survival, which classifies the adaptive response 

(Fig. 3). 
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Fig. 3: Diagram of UPR signaling pathways. Used with permission from (Walter and 
Ron 2011). 
 

 The maladaptive UPR occurs as time of the ER stress increases, which 

subsequently increases the intensity of the stress. The maladaptive response results in 

apoptosis. Following prolonged exposure to tunicamycin or thapsigargin, two known ER 

stressors, fibroblasts exhibit decreased XBP1 mRNA splicing, increased full-length 

ATF6 coupled with decreased active ATF6, and increased p-eIF2α and ATF4 (Lin, Li et 

al. 2007). Levels of CHOP, a pro-apoptotic protein downstream of PERK, are also 

increased, suggesting an alternative function for ATF4 (Lin, Li et al. 2007). Additionally, 

in an ER stress model in Drosophila, PERK was found to independently trigger apoptosis 

(Demay, Perochon et al. 2014). Taken together, these data indicate that under prolonged 
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ER stress IRE1α and ATF6 pathways are diminished and sustained PERK activity leads 

to apoptosis. This outcome is likely a result of inability of the cell to facilitate proper 

protein folding, and so to avoid mutation or dysfunction it undergoes apoptosis.  

 

1.4.2 General Control Nonderepressible 2  

 The ARS family’s vital role in translation renders these enzymes likely players in 

the UPR. ARSs can act as nutrient detectors due to their interactions with amino acids. 

When specific amino acids are absent, ARSs will not be able to carry out aminoacylation 

reactions leading to loss of function. This amino acid deprivation response can be 

detected by the protein complex general control nonderepressible 2 (GCN2). Similar to 

PERK, GCN2 is activated by amino acid deprivation, and catalyzes phosphorylation of 

eIF2α (Hamanaka, Bennett et al. 2005). This regulation occurs independent of ER stress 

and PERK induction, however both PERK and GCN2 aim to regulate protein synthesis 

through eIF2α phosphorylation and cell cycle control (Hamanaka, Bennett et al. 2005). 

Interestingly, in yeast GCN2 and HARS have a region of homology between them, which 

in HARS is located near its catalytic core (Wek, Zhu et al. 1995). It was found that 

phosphorylation of eIF2α was observed under amino acid starvation conditions, 

including histidine starvation, and that HARS interacts directly with GCN2, which can 

impair GCN2’s ability to phosphorylate eIF2α upon HARS mutation (Wek, Zhu et al. 

1995). Additionally, uncharged tRNA molecules regulate GCN2 activity more so than the 

actual amino acid starvation response (Wek, Zhu et al. 1995). Uncharged tRNA was 

confirmed as the primary regulator of GCN2 in CHO-K1 cells with mutant LARS 
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(Harding, Novoa et al. 2000). This finding suggests ARS involvement in a key regulatory 

step that overlaps with the UPR. 

 

1.4.3 Synthetase Involvement in ER Stress 

TARS inhibition by borrelidin causes amino acid starvation, which leads to 

cytotoxicity, and phosphorylation of eIF2α (Mirando, Fang et al. 2015). This indicates 

that borrelidin is either triggering GCN2 activation by increasing the pool of uncharged 

tRNA, or is affecting the rate of translation and inducing the UPR. In addition, borrelidin 

induces caspase-3 cleavage suggesting that borrelidin may be causing apoptosis via the 

PERK UPR response pathway, however this remains to be confirmed (Mirando, Fang et 

al. 2015). In oral cancer cells, borrelidin was found to trigger CHOP-mediated apoptosis 

indicating TARS involvement in the UPR (Sidhu, Miller et al. 2015). In this study 

however, the concentration of borrelidin used and the time cells were treated with 

borrelidin were both much higher than other reported literature values. This evidence 

validates TARS as a potential target for UPR intervention. 

 It has also been reported that KARS is highly dependent on the UPR to promote 

hypoxia resistance in C. elegans (Anderson, Mao et al. 2009). By transfecting with a 

decrease in KARS function mutant, C. elegans shows an increase in hypoxia resistance, 

which is inversely proportional to rate of translation (Anderson, Mao et al. 2009). 

Additionally, hypoxia triggers the UPR, and using a dual decrease in functional 

KARS/ire1 gene knockout C. elegans, this hypoxia resistance was lost (Anderson, Mao 

et al. 2009). This indicates that KARS not only regulates translation rate in C. elegans, 
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but can also regulate hypoxia resistance given UPR induction occurs following hypoxia 

onset.  

 

1.4.4 Monensin 

 Given the current connection between ARSs and the UPR, the question of what 

exact mechanisms comprise this connection arises. To tease out which “flavor” of ER 

stress different synthetases are involved in, different ER stressors must be examined. 

Monensin is a polyether, monovalent ionophore that acts on the Na+/H+ transmembrane 

pump, which subsequently collapses the Na+/H+ gradient maintained across the plasma 

membrane (Mollenhauer, Morre et al. 1990). This leads to an increase in intracellular 

Na+, and a subsequent increase in intracellular Ca+2 (Meral, Hsu et al. 2002). Monensin 

has been linked to stimulation of exosomal release as a result of its effects on intracellular 

Ca+2 concentrations (Savina, Furlan et al. 2003, Guo, Bellingham et al. 2016). In addition 

to its role in exosomal release, monensin has been linked to ER stress. One study found 

monensin was able to sensitize glioma cells to tumor necrosis factor-related apoptosis-

induced ligand (TRAIL)-mediated apoptosis through ER stress. Monensin led to an 

increase in ATF4, CHOP and p-eIF2α expression in glioma cells and decreased overall 

cell viability (Yoon, Kang et al. 2013). Monensin has been used to monitor ER stress in 

other studies as well (Badr, Hewett et al. 2007). Given the relatively undeveloped nature 

of the mechanism by which monensin induces ER stress, experimental data of monensin 

effects on synthetases would be invaluable. In the present study, we aim to further 

characterize the effects that monensin has on TARS levels intracellularly and 

extracellularly. 
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1.5 Experimental Model 

	
 We hypothesized that the mechanism for TARS secretion from human ovarian 

cancer cells was by exosomal packaging and subsequent release. We also hypothesized 

that intracellular TARS expression was effected by ER stress, and that this would affect 

the pro-angiogenic function of TARS. We measured TARS levels by Western blotting, 

reverse transcriptase-quantitative polymerase chain reaction (RT-qPCR), 

immunofluorescence (IMF) microscopy and exosome precipitation from media and 

subsequent Western blotting. We used monensin as a dual exosomal release stimulator 

and ER stressor. Upon stimulation with monensin, CaOV-3 cells had higher levels of 

TARS protein in the cell media compared to control, untreated cells. However when 

these media samples had exosomes precipitated out there was no difference in the CD63 

marker protein across samples. Monensin treatment caused TARS protein and transcript 

levels to increase in CaOV-3 cells, and also induced markers of ER stress at the transcript 

and protein level. Also noteworthy is we were able to show a significant increase in 

VEGF transcript levels in CaOV-3 cells in response to monensin treatment. These data 

indicate that CaOV-3 cells increase TARS expression and secretion in response to ER 

stress.  
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CHAPTER 2: EXPERIMENTAL PROCEDURES AND MATERIALS 

 
Cell Culture 

CaOV-3 human ovarian cancer cells were purchased from American tissue culture 

(ATCC), and cultured in Dulbecco’s Modified Eagle’s Medium (DMEM) high glucose 

(4500 mg glucose/L) (GE Healthcare or Sigma). Media was supplemented with 1% L-

glutamine, 1% penicillin/streptomycin and 10% fetal bovine serum (FBS). Cells were 

maintained between passages 2 and 16, and were split once they reached 70-100% 

confluence. Cells were grown in 21% oxygen, 5% CO2 and 37°C in a humidified 

incubator. Cell treatments were done overnight, 16-20 h, unless otherwise specified. 

 

Reagents 

Cell Culture treatments 

• Monensin (Sigma) 

• VEGF (R&D Systems) 

• Dimethyl sulfoxide (DMSO) (Fischer Bioreagents)  

• Borrelidin (Biotica Technology, LTD) 

 

Primary Antibodies for Western Blotting 

• Rabbit anti-TARS (GeneTex #GTX116359) at 1:1000 

• Mouse anti-CD63 (Novus #NB100-77913) at 1:1000 

• Rabbit anti-β-tubulin (Cell Signaling #2128) at 1:1000 

• Rabbit anti-LARS (Protein Tech #21146-1-AP) at 1:1000 



	

 27 

• Rabbit anti-AARS (GeneTex #GTX112477) at 1:1000 

• Rabbit anti-p-eIF2α (Cell Signaling #9721) at 1:1000 

• Rabbit anti-eIF4E2 (GeneTex #GTX82524) at 1:250 

• Rabbit anti-RBM4 (Protein Tech #11614-1-AP) at 1:1000 

• Rabbit anti-Hif-2α (Novus #NB100-122) at 1:1000 

 

*All dilutions made in 3% BSA/TBST. Solutions also contain 0.1% sodium azide 

 

Primary Antibodies for Immunofluorescence 

• Mouse anti-TARS (Abnova #H00006897-M01) at 1:200 

• Rabbit anti-TARS (GeneTex #GTX116359) at 1:200 

• Mouse anti-CD63 (Novus #NB100-77913) at 1:50 

• Rabbit anti-vimentin (Cell Signaling #5741) at 1:200 

 

Western blotting   

Cells were seeded on 10 cm plates and grown to 70-100% confluence prior to 

treatment. Treatments were done in serum-free media unless otherwise specified. 

Following treatment, media was collected and cell monolayers were washed in phosphate 

buffered saline (PBS) (Thermo Scientific) twice, and then lysed in modified RIPA buffer 

(150 mM NaCl, 50 mM Tris pH 8.0, 5 mM EDTA, 0.5% deoxycholate, 1% NP-40, 10% 

glycerol; Protease inhibitors: 2 mM Na pyrophosphate (Sigma), 1 mM phenylmethane 

sulfonyl fluoride (PMSF) in ethanol (Sigma), 111.17 KIU/mL aprotinin (Fischer)). Media 
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was concentrated 10-fold using Amicon©-Ultra 4-Centrifugal Devices 30,000 MWCO, 

and lysate was homogenized using a 25-gauge syringe. To correct for loading, a Bradford 

Assay was performed on each sample for each experiment (Bradford 1976). Samples 

were prepared in 4X Laemmli sample buffer (0.2 M Tris pH 6.8, 4% Sodium dodecyl 

sulfate (SDS), 4 mg/mL bromophenol blue, 4% β-mercaptoethanol, 40% glycerol, 4 µM 

pyronin Y), and resolved on Mini-PROTEAN TGX Stain-Free Precast Gels (Bio-Rad) 

for 15-20 min at 300V. Gels were transferred to PVDF membrane for 75 min at 4°C. 

Washes were done in Tris-buffered saline and Tween-20 (TBST). Blots were blocked in 

3% milk in BSA/TBST for 30 min at room temperature with rocking and then incubated 

in primary antibodies overnight at 4°C. Secondary antibodies used were either 

horseradish peroxidase (HRP)-goat-anti-rabbit IgG (Santa Cruz) at 1:5000 or HRP-goat-

anti-mouse IgG (Santa Cruz) at 1:5000 in 3% BSA/TBST. Antibody-bound proteins were 

detected by chemilluminescence. Blots were either developed on X-ray film or scanned 

on the VersaDoc 4000 MP (BioRad) using Pierce ECL Western Blotting Substrate or 

Super Signal West Femto Maximum Sensitivity Substrate (Thermo Scientific) as needed. 

Bands were analyzed using Quantity One 1-D Analysis Software for densitometry 

(BioRad). β-tubulin was used as a loading control.  

 Blots shown with multiple proteins are the same membrane reprobed with 

different primary antibodies. Following chemilluminescent detection, blots were washed 

in stripping buffer (1.5% glycine, 0.1% SDS, 1% Tween-20 at pH 2.2). Blots were then 

reblocked and reprobed with respective primary antibodies. 
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Exosome Precipitation  

Cells were seeded on 10 cm plates and grown to 70-90% confluence prior to 

treatment. Cells were treated using 10% FBS, exosome-depleted media (System 

BioSciences). Following treatment, media was collected and exosome isolation was 

performed according to manufacturer protocol. Cell lysates were not collected. Briefly, 

ExoQuick-TC™ Tissue Culture Media Exosome Precipitation Solution (System 

Biosciences) was added to media samples at 1 ml ExoQuick: 5 mL cell culture media. 

Samples were mildly agitated and incubated for 16 h at 4°C. Following incubation, 

samples were spun and the pellet, which contained exosomes, was resuspended in PBS. 

These samples were frozen at -80°C, which lysed exosomes, and samples were then 

resolved by Western blot. 10% FBS, exosomes-depleted media that was not exposed to 

cells was resolved by Western blot as a negative control. 

 

Immunofluorescence Microscopy 

Cells were seeded on glass coverslips in a six-well plate, and grown to 90% 

confluence prior to treatment. Following treatment, media was removed from the wells. 

Cells were fixed in 10% formalin (Sigma-Aldrich) for 15 min at room temperature, and 

then were treated with 100% methanol (Sigma-Aldrich) for 2 min at room temperature to 

promote membrane permeabilization. Each slide was then incubated in a primary 

antibody solution for 16 h at 4°C in a humidity box. Primary antibody solutions consisted 

of Novus mouse anti-TARS and anti-vimentin in one solution and GTX rabbit anti-TARS 

and anti-CD63 in another, diluted in 3% BSA/0.2% Triton X-100 (TX-100)/PBS. 

Following incubation in primary antibody, wells were incubated in a secondary antibody 
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solution of Alexa 488 donkey anti-mouse IgG (Invitrogen) at 1:500, Alexa 594 donkey 

anti-rabbit IgG (Invitrogen) at 1:500 and 10µg/mL of 4’-6-Diamidine-2’-phenylindole 

dihydrochloride (DAPI) (Roche Diagnostics) in 3% BSA/0.2% TX-100/ PBS for 1 h at 

37°C in the dark. Coverslips were then mounted on Superfrost® Microscope Slides 

(Fisherbrand) using Aqua Poly/Mount (Polysciences Inc.) and stored flat in the dark at 

4°C prior to imaging. Slides were imaged within 1-5 days using the Nikon TE 200 

inverted epifluorescence microscope from Dr. Alan Howe’s lab.  

 

Reverse Transcriptase-quantitative Polymerase Chain Reaction (RT-qPCR)  

Cells were seeded in a six-well plate, and grown to 90-100% confluence prior to 

treatment. Following treatment, total RNA was extracted from cells using the RNeasy® 

Plus Mini Kit (Qiagen) according to manufacturer’s instructions. Total RNA 

concentration was determined using NanoDrop ND-1000 (Thermo Fischer) for each 

sample. An equal mass of RNA from each sample for each trial was used to synthesize 

first strand cDNA using High Capacity cDNA Reverse Transcription Kit (Applied 

Biosystems), which includes MultiScribe Reverse Transcriptase (Applied Biosystems). 

RT-qPCR was performed using an ABI Prism 7900HT Sequence Detection System 

(Applied Biosystems) and TaqMan® Assay Primer pairs (Applied Biosystems) for tars, 

lars, aars, vegfa and dnajb9.  

During the PCR reaction, Taq polymerase will knock the fluorophore off the 

target gene, which emits fluorescence and is measured by the PCR detection system. The 

emitted fluorescence is directly proportional to the gene expression, as measured by 

threshold cycle (CT) values. Relative mRNA expression was determined using a 
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comparative CT (ΔΔCT) method, and target genes were normalize to the hprt gene as the 

housekeeping gene. All RT-qPCR work was performed in the University of Vermont 

Cancer Center DNA Analysis Facility and was supported in part by grant P30CA22435 

from the NCI. 

 

Immunoprecipitation 

Cells were seeded on 10 cm. plates, and grown to 60-80% confluence prior to 

treatment. Following hypoxic treatments, cells were lysed in 1X cell lysis buffer (CLB) 

(20 mM Tris pH 7.5, 150 mM NaCl, 1 mM EDTA, 1 mM EGTA, 1% TX-100; Protease 

inhibitors: 2.5 mM Na pyrophosphate, 1 mM Na orthovanadate, 1 µg/mL leupeptin, 1 

mM PMSF in EtOH, 1 µg/mL aprotinin), and lysates were homogenized using a 25-

gauge syringe. TARS protein was pulled down from solutions using Dynabeads® M-280 

Sheep anti-Mouse IgG (Thermo Fischer) bound to Novus mouse anti-TARS antibody. 

Protein bound to the beads was eluted off in Laemmli 4XSB and high heat. Total lysate, 

supernatant following the pull down and protein eluted from the beads was resolved by 

Western blot for each sample. The “no antibody control” refers to a sample that was 

exposed to Dynabeads that were not bound to Novus mouse anti-TARS antibody. This 

sample should not have any TARS or associated proteins in the pull down. 

 

Separation of Nuclear Cell Lysate from Cytoplasmic Cell Lysate  

Cells were seeded on 10 cm plates and grown to 90% confluence. Following 

treatments, media was removed, and cells were lysed in hypotonic lysis buffer (1 M Tris 

pH 8.0, 1 M MgCl2, 2 M KCl; Protease inhibitors: 100 mM PMSF in EtOH, 2 mg/mL 
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Aprotinin, 2 mM Na Pyrophosphate). Total cell lysate was spun at 1000 x g, 5 min, 

which pellets the nuclear fragment. Cytosolic supernatant was removed, and the nuclear 

pellet was washed in hypotonic lysis buffer. The pellet was resuspended in hypotonic 

lysis buffer. Samples were resolved by Western blot.  
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CHAPTER 3: EXTRACELLULAR TARS PROTEIN LEVELS INCREASE IN 
CAOV-3 CELLS IN RESPONSE TO MONENSIN TREATMENT WHILE CD63 

PROTEIN IS UNAFFECTED  
 

3.1 Introduction 

 

 SKOV-3 cells, a human ovarian cancer cell line, overexpress TARS and show 

colocalization of TARS with pro-angiogenic markers (Wellman, Eckenstein et al. 2014). 

This renders human ovarian cancer cells as a valid in vitro model to study TARS and its 

effects on angiogenesis. TARS also promotes angiogenesis and cell migration 

extracellularly in endothelial cells (Williams, Mirando et al. 2013). We hypothesize that 

TARS is secreted from cells via exosomal release, as there is evidence for synthetase 

protein and mRNA packaging in exosomes (Liang, Peng et al. 2013, Wang, Xu et al. 

2013). To test for this we used an exosome stimulator, monensin, as a means to increase 

TARS secretion from CaOV-3 cells. 

 

3.2 Results 

	
 To first test the hypothesis that monensin stimulates TARS secretion, we 

performed Western blots on concentrated cell media from CaOV-3 cells treated with 

monensin compared to control. Upon treatment with 10 µM monensin, TARS protein 

levels increased in the cell media compared to a DMSO control (Fig. 4). The stock 

solution of monensin was dissolved in DMSO, and so DMSO was used as the control 

treatment to ensure all cell plates received equal volumes of DMSO. DMSO increases the 

permeability of lipid membranes, and so it is important to maintain experimental groups 
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in equal volumes of DMSO (Notman, Noro et al. 2006). This initial finding confirms that 

monensin is causing TARS protein levels to increase in the cell media. 

 

 

Figure 4: TARS is secreted out of CaOV-3 cells in response to monensin treatment. 
Western blot of concentrated cell media using an antibody against TARS. Cells were 
treated in serum-free media with respective reagents for 16 h before media was collected. 
Media samples were concentrated 12-fold. Blot was not quantified, but this result was 
duplicated.   
 
 
 
 With knowledge that TARS protein levels increased in CaOV-3 cell media 

following treatment with monensin, we next wanted to determine if the extracellular 

TARS we were detecting was packaged in exosomes. CaOV-3 cells were treated in 10% 

FBS, exosome-depleted media. Cell media was incubated with ExoQuick-TC™ solution, 

which precipitates exosomes out of solution. The exosome precipitant was pelleted, and 

resuspended in PBS. Samples were then resolved by Western blot and anti-TARS and 

anti-CD63 antibodies were used to detect protein (Fig. 5A). CD63 is an exosomal marker 

protein that is expressed on ovarian cancer-derived exosomes as well as breast cancer-

derived exosomes (Gercel-Taylor, Atay et al. 2012, King, Michael et al. 2012). We found 

that monensin and VEGF treatments both led to an increase in extracellular TARS 
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protein following exosome precipitation compared to the DMSO control (Fig. 5C), 

however this increase does not correspond to a change in CD63 protein levels (Figs. 5B). 

This confirms our initial result regarding increased levels of extracellular TARS protein 

in response to monensin treatment, and shows that extracellular TARS protein levels also 

increase in response to VEGF in CaOV-3 cells, similar to prior results in endothelial cells 

(Williams, Mirando et al. 2013). However, we fail to show extracellular TARS is 

secreted in exosomes. These trends did not match statistical significance. 

 IMF microscopy staining for CD63 further confirmed that neither monensin nor 

VEGF treatment of CaOV-3 cells causes an increase in CD63 protein levels. These 

images represent intracellular TARS and CD63. Monensin and VEGF both failed to 

cause an increase in intracellular CD63 (Fig. 6). The CD63 staining pattern is “spotted” 

and localized throughout the cytoplasm, which aligns with expected MVB distribution 

(Pols and Klumperman 2009). It can be assumed that the anti-CD63 antibody is marking 

exosomes that are either destined for secretion, or are being endocytosed from the 

extracellular space. In addition, intracellular TARS protein increases in CaOV-3 cells 

when treated with monensin or VEGF (Fig. 6). These results further our claim that 

monensin and VEGF treatments increase TARS protein levels, however this increase is 

not coupled with an increase in CD63 protein. The mechanism of TARS secretion 

therefore remains unresolved. 
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Figure 5: TARS protein secretion increases with monensin and VEGF cell 
treatments while CD63 is unaffected. (A) Western blot of exosomes precipitated out of 
cell media using antibodies against TARS and CD63. CaOV-3 cells were treated in 
exosome-depleted media and respective reagents. Cell media was collected and exosomes 
were precipitated out of solution using ExoQuick-TC™. A sample of exosome-depleted 
media was run as a negative control. The banding pattern on the lower blot was only 
observed in this trial, while the band indicated as CD63 could be replicated. CD63 is 
between 26-60 kD depending on its glycosylation state, which is why all three bands are 
shown. (B,C) Quantification of CD63 (B) and TARS (C) protein levels normalized to the 
negative control; mean±SEM, n=3, p>0.05 comparing experimental groups and negative 
control and comparing 10 µM monensin and 50 ng/ml VEGF treatments with DMSO 
control (Kruskal-Wallis, Dunn’s multiple comparisons test).   
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Fig. 6: Monensin and VEGF treatments of CaOV-3 cells do not affect intracellular 
CD63 protein levels. CaOV-3 cells were grown on glass cover slips and treated in 10% 
FBS. Cells were treated with DMSO, 10 µM monensin or 50 ng/mL VEGF for 18h. Cells 
were fixed with 10% formalin and stained with DAPI, rabbit anti-TARS and mouse anti-
CD63 antibodies. DAPI, TexasRed and FITC channels were used to acquire images.  
 

We conclude that both monensin and VEGF increase the extracellular 

concentration of TARS protein in CaOV-3 cells, however this increase is not confirmed 

to be a result of exosomal release. Although there is an increase in CD63 protein 

compared to the negative control (Fig. 5B), there is no increase when comparing 

monensin- or VEGF-treated cells to DMSO-treated cells. This confirms the presence of 

exosomes in experimental samples, but fails to confirm our hypothesis. Therefore, TARS 

protein levels increase extracellularly in response to either monensin or VEGF, but the 

mechanism of secretion remains unresolved.  
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CHAPTER 4: INTRACELLULAR TARS LEVELS IN CAOV-3 CELLS ARE 
AFFECTED BY MONENSIN TREATMENT 

 

4.1 Introduction 

 

 Many ARS genes are downstream targets of ATF4 and CHOP transcription 

factors in the UPR (Han, Back et al. 2013). This exemplifies how the maladaptive ER 

stress response induces transcriptional regulation of protein synthesis. TARS inhibition 

by borrelidin triggers the PERK maladaptive UPR through phosphorylation of eIF2α, and 

cleavage of caspase-3 (Mirando, Francklyn et al. 2014). This shows further induction of 

the UPR by disruption of protein synthesis. Here we wanted to investigate how ER stress 

that is separate from TARS inhibition affects TARS protein and transcript levels in 

ovarian cancer cells.  

 

4.2 Results 

 

 First we observed how intracellular TARS protein levels were affected in CaOV-3 

cells following monensin treatment. CaOV-3 cells were treated with either DMSO or 10 

µM monensin in serum-free media, and total cell lysates were resolved by Western blot. 

We probed these blots with anti-TARS, anti-LARS and anti-AARS antibodies (Fig. 7A). 

LARS and AARS were used to test whether results we observed with TARS were TARS-

specific, or whether these results could be extended to other synthetase proteins.  
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Fig. 7: TARS protein increases intracellularly in response to monensin by Western 
blot. (A) Western blot of total cell lysates from CaOV-3 cells treated with respective 
reagents using antibodies against TARS, LARS and AARS. (B-D) Quantified protein 
values for TARS (B), LARS (C) and AARS (D) relative to a β-tubulin loading control. 
Samples were normalized to DMSO; mean±SEM, n=4, p>0.05 comparing 10 µM 
monensin and DMSO (Wilcoxon signed-rank test).   
 
 
 
 We observed that in CaOV-3 cells, monensin induced an increase in expression of 

intracellular TARS protein (Fig. 7B), although the consistent trend did not match 

statistical significance. LARS protein levels did not change in response to monensin (Fig. 
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7C), and AARS protein levels decreased (Fig. 7D). More experimental trials would be 

necessary to confirm this result, and gain statistical significance. The lack of significance 

may also owe to the inconsistent nature of Western blotting.  

This result shows that TARS protein levels increase in response to an ER stressor 

that does not inhibit synthetase activity. The increase in TARS and not LARS or AARS 

indicates TARS protein is playing a specific role in response to ER stress separate from 

global synthetase expression. Interestingly, monensin caused AARS protein levels to 

decrease.  

 Intracellular TARS increasing in response to monensin was also observed by IMF 

microscopy. CaOV-3 cells treated in both 0.1% FBS and 10% FBS (low and high serum, 

respectively) media exhibit an increase in TARS staining with monensin treatment (Figs. 

8A-B). This increase is not seen following VEGF treatment. Vimentin is a common 

intermediate filament expressed in mesenchymal cells, which has recently been found to 

be overly expressed in tumor cells and to be a good marker of epithelial-to-mesenchymal 

transition (Eriksson, Dechat et al. 2009, Satelli and Li 2011). We did not expect vimentin 

expression to change in response to either monensin or VEGF, and so it was used here to 

confirm cytoplasmic integrity. There is a clear increase in TARS staining with monensin 

treatment, and this increase is most apparent in the low serum-treated cells (Fig. 8A). 

Low serum and monensin both highly stress the cells, which is correlated with an 

increase in TARS protein expression. TARS protein is localized in the cytoplasm with 

punctate structures distributed throughout.  

 We also found that monensin treatment decreased DAPI staining in both low and 

high serum-treated cells compared to DMSO controls, although the decrease was more 
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pronounced in low serum (Figs. 8A-B). DAPI stains cell nuclei, which confirms cell 

integrity upon formalin fixing. This indicates that cell death occurred as a result of 

monensin treatment, as cells were grown to equal confluence prior to treatments.  

However, even with the decrease in DAPI staining, monensin still caused an 

increase in TARS staining. Taken together with the Western blots of concentrated CaOV-

3 cell media (Fig. 4) and CaOV-3 total cell lysates (Fig. 7A), these data indicate that the 

observed increases in TARS protein in response to monensin treatment are a result of 

increased TARS expression, and not uncontrolled detection due to cell death.  

Intracellular TARS protein localizes in the cytoplasm of CaOV-3 cells regardless 

of treatment (Fig. 9). This aligns with the literature, which reports TARS localization in 

both the cytoplasm and the mitochondria of the bacterium T. brucei (Kalidas, Cestari et 

al. 2014). TARS localization in the cytoplasm was observed by both IMF microscopy 

(Fig. 8) and by Western blot (Fig. 9). We therefore conclude that ER stress stimulated by 

monensin does not affect TARS localization. 

To assess whether TARS induction by monensin was at the level of gene 

transcription, its effect on TARS and other ARS mRNA transcript levels was 

investigated. Transcript levels in CaOV-3 cells were quantified using RT-qPCR 

following respective treatments. Probes for AARS and LARS were used to test whether 

or not the TARS response was TARS-specific or if it was a general synthetase response. 

Following monensin treatment, TARS transcript levels increased 2-fold (Fig. 

10B). To confirm ER stress at the transcript level, DNAJB9 mRNA was quantified.  
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Fig. 8: Monensin-treated CaOV-3 cells have increased intracellular TARS by IMF 
microscopy. (A, B) CaOV-3 cells were grown on glass cover slips and treated with either 
0.1% FBS (A) or 10% FBS (B) and either DMSO, 10 µM monensin or 50 ng/mL VEGF 
for 18h. Cells were fixed with 10% formalin and stained with DAPI, mouse anti-TARS 
and rabbit anti-vimentin antibodies. DAPI, TexasRed and FITC channels were used to 
acquire images. 
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Fig. 9: TARS localizes to the cytoplasm of CaOV-3 cells. CaOV-3 cells were serum-
starved and treated with DMSO, 50 ng/mL VEGF or 10 µM monensin. Cells were lysed 
and nuclear and cytoplasmic lysates were separated and resolved by Western blot. A 
primary antibody against TARS was used. Anti-β-tubulin and anti-lamin A/C primary 
antibodies were used as loading control for cytoplasmic and nuclear fractions, 
respectively (not shown).   
  

DNAJB9 is a member of the DNAJ protein family, which act as accessory proteins to 

regulate the 70 kD heat shock protein family (Hsp70) (Shen, Meunier et al. 2002). 

Specifically, DNAJB9 localizes to the ER where it regulates the heat shock protein BiP, 

and has been found to combat cell death induced by ER stress (Shen, Meunier et al. 2002, 

Kurisu, Honma et al. 2003). DNAJB9 has also been found to interact with p53 protein, 

and act as an inhibitor of p53-induced apoptosis (Lee, Kim et al. 2015). We found that 

monensin caused DNAJB9 mRNA levels to increase 2-fold in CaOV-3 cells (Fig. 10A). 

VEGF treatment did not induce an increase in either DNAJB9 or TARS transcript levels 

(Figs. 10A-B). These data show that monensin is inducing ER stress, which is 

subsequently causing TARS transcript levels to increase.  

 Monensin treatment did not cause LARS transcript levels to increase (Fig. 10C), 

but did cause AARS transcript levels to increase 2-fold, similar to TARS transcript (Fig. 
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10D). VEGF treatment did not affect either LARS or AARS transcript levels. The 

increase in AARS transcript levels in response to monensin suggests that the synthetase 

transcript induction by ER stress may not be a TARS-specific response. This result could 

be indicative of the ARS family’s role in total protein synthesis. However, LARS 

transcript does not increase in response to monensin treatment, and so the ER stress-

induced synthetase transcript increase is not a family-wide response.  

 VEGF transcript levels increase 6-fold in response to monensin treatment (Fig. 

10E). The increase in VEGF transcript suggests a pro-angiogenic response by CaOV-3 

cells in response to monensin. It is unknown how this increase in VEGF transcript may 

be affecting TARS protein or transcript. However, we show that CaOV-3 cells exhibit a 

pro-angiogenic response that is coupled with an increase in TARS and AARS transcript 

levels following ER stress by monensin. 

 All transcript values discussed above are referring to the 0.1% FBS-treated cells. 

These cells were exposed to the additional stress of being treated in low serum media. 

Interestingly, DNAJB9 transcript levels increase slightly more in high serum-treated cells 

treated with monensin compared to low serum, monensin-treated cells.  

 These data confirm monensin is causing ER stress in CaOV-3 cells. TARS and 

AARS transcript levels both have a 2-fold increase in response to ER stress induced by 

monensin, while VEGF transcript levels increase 6-fold. Statistical significance was 

obtained for all monensin treated groups compared to the DMSO control within the 

respective serum level. 
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Fig. 10: Changing mRNA expression levels in CaOV-3 cells in response to ER stress. 
(A-E) RT-qPCR values for DNAJB9 (A), TARS (B), LARS (C), AARS (D) and VEGF 
(E) were measured. CaOV-3 cells were incubated in either 0.1% or 10% FBS for 18h. In 
addition, cells were treated with either DMSO, 10 µM monensin or 50 ng/mL VEGF. 
Total RNA was extracted using a Qiagen RNeasy® Mini Kit and expression levels were 
determined using the ΔΔCT method relative to the hprt gene as a housekeeper. Values 
were normalized to 0.1% FBS, DMSO-treated cells; mean±SEM, n=4, *p≤0.0008, 
**p<0.015 relative to DMSO at respective [FBS] (Two-way ANOVA). 
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 With knowledge that monensin was inducing ER stress, we next wanted to 

determine if titration of increasing monensin concentrations onto CaOV-3 cells would 

cause an increase in intracellular TARS protein that correlates with increased ER stress. 

CaOV-3 cells were treated with 0 µM-10 µM monensin with a logarithmic increase. 

TARS, LARS, AARS and p-eIF2α protein levels were determined by Western blot (Figs. 

11A-B). TARS protein levels increased accordingly with increasing monensin 

concentrations (Fig. 11C). A similar pattern of increase was observed in p-eIF2α protein 

levels (Fig. 11F). These data indicate that TARS protein levels and UPR induction are 

correlated upon treatment with monensin, and both increase as the concentration of 

monensin increases. These trends did not match statistical significance, and so further 

trials are required to confirm our results. 

 LARS and AARS protein levels did not show a clear increase that corresponded 

to increasing monensin concentration (Figs. 11D-E). The lack of correlation between 

monensin concentration and LARS and AARS protein levels further suggests that the 

CaOV-3 cell response to ER stress by monensin at the level of synthetase proteins is 

TARS-specific.  

 TARS and p-eIF2α protein levels both increase in CaOV-3 cells as monensin 

concentration increases indicating a correlation between ER stress induction and TARS 

protein expression. This dose-response effect was found to be TARS-specific, as LARS 

and AARS protein levels did not exhibit a similar monensin concentration-dependent 

increase. Due to the lack of statistical significance and the high error in this experiment, 

these conclusions are solely based on trends.  
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Fig. 11: TARS and p-eIF2α protein levels increase in response to increasing 
monensin. CaOV-3 cells were treated in serum-free media and respective concentrations 
of monensin. Total cell lysates were resolved by Western blot and primary antibodies 
were used against TARS, LARS, AARS and p-eIF2α. (A, B) Two representative blots are 
shown for TARS, LARS and AARS (A) and for p-eIF2α (B) proteins. (C-F) TARS (C), 
LARS (D), AARS (E) and p-eIF2α (F) protein levels were quantified relative to β-tubulin 
and normalized to 0 µM monensin; mean±SEM, n=3, p>0.05 comparing experimental 
groups and 0µM monensin (Kruskal-Wallis, Dunn’s multiple comparisons test). 
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These results were furthered by examining transcript levels in CaOV-3 cells in 

response to increasing monensin concentrations. TARS transcript levels increased 

accordingly with increasing monensin concentrations (Fig. 12B). TARS transcript levels 

increased 2-fold with 10 µM monensin, which agrees with earlier RT-qPCR data (Fig. 

10B). DNAJB9 transcript levels also exhibit a dose-dependent increase with increasing 

monensin concentration (Fig. 12A), however this increase is less pronounced than the 

increase in TARS. These data suggest that TARS is increasing at the transcript level as 

the ER stress response increases in strength. 

 LARS transcript levels increase following monensin treatment, however this 

increase does not correlate to monensin concentration (Fig. 12C). In contrast, AARS 

transcript levels increase accordingly with increasing monensin concentration (Fig. 12D). 

Similar to prior RT-qPCR results (Figs. 10B and D), TARS and AARS transcript levels 

in CaOV-3 cells show similar trends in response to monensin. Therefore, the ARSs seem 

to respond to monensin at the mRNA level differently than at the protein expression 

level, and this transcript response is not TARS-specific.   

 VEGF transcript levels show a clear increase that corresponds to increasing 

monensin concentrations (Fig. 12E). This furthers the argument that CaOV-3 cells 

become pro-angiogenic following ER stress by monensin. Following 10.0 µM monensin 

treatment of CaOV-3 cells, VEGF transcript levels increase 4-fold (Fig. 12E) while 

TARS transcript levels increase 2-fold (Fig. 12B). Both of these increases are statistically 

significant. Therefore, the VEGF transcript response to monensin is more strongly 

induced than the TARS transcript response in CaOV-3 cells.  
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 ER stress by monensin shows minor increase at the DNAJB9 transcript level as 

increasing concentrations of monensin are applied to CaOV-3 cells. TARS and AARS 

transcript levels increase in correlation with increasing monensin concentrations, 

indicating that the ARS transcript response to ER stress is likely not TARS-specific. 

These ARS transcript data agree with earlier results (Fig. 10). The value for TARS 

mRNA in CaOV-3 cells following 10 µM monensin treatment (Fig. 12B), however, was 

the only synthetase transcript value that had statistical significance. The VEGF transcript 

levels showed a clear, dose-dependent increase in response to increasing monensin 

concentrations, which furthers the claim that monensin promotes a pro-angiogenic tumor 

microenvironment.  

Next we wanted to test the effects of borrelidin, a known inhibitor of TARS and 

ER stress inducer, on CaOV-3 cells’ protein and transcript levels (Mirando, Fang et al. 

2015). CaOV-3 cells were treated with monensin, borrelidin or monensin and borrelidin, 

and protein and transcript levels were quantified. Monensin and borrelidin were both 

used at 1.0 µM for treatments. Whole cell lysates were resolved by Western blot and 

probed with anti-TARS, anti-LARS and anti-AARs antibodies (Fig. 13A) and an anti-p-

eIF2α antibody (Fig. 13B). 

We found that borrelidin decreased TARS protein expression compared to 

monensin treatment, and monensin and borrelidin treatment yielded slightly higher TARS 

protein expression compared to borrelidin treatment (Fig. 13C). This result confirms 

monensin is increasing TARS protein expression, and shows that borrelidin is 

suppressing TARS protein expression. 
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Fig. 12: TARS and VEGF transcript levels increase in response to increasing 
monensin. (A-E) RT-qPCR results for monensin titration onto CaOV-3 cells probing for 
DNAJB9 (A), TARS (B), LARS (C), AARS (D) and VEGF (E). Cells were treated with 
respective concentrations of monensin for 16 h in 0.1% FBS media, and total RNA was 
extracted using a Qiagen RNeasy® Mini Kit. Expression levels were determined using 
the ΔΔCT method relative to the hprt gene as a housekeeper. Values were normalized to 
0 µM monensin; mean±SEM, n=3, *p<0.05 relative to 0 µM monensin (Kruskal-Wallis, 
Dunn’s multiple comparisons test). 
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 Borrelidin treatment of CaOV-3 cells induces the UPR as expected, which can be 

observed by the large spike in p-eIF2α protein expression compared to untreated cells 

and monensin-treated cells (Fig. 13F). Interestingly, combined treatment with borrelidin 

and monensin caused a decrease in p-eIF2α protein levels compared to the borrelidin 

treatment.  

 LARS protein levels decrease in response to borrelidin (Fig. 13D), similar to 

TARS protein, while AARS protein levels remain relatively unaffected in response to 

borrelidin treatment (Fig. 13E). Therefore, it is likely that the decrease in TARS protein 

expression resulting from borrelidin treatment is independent of TARS inhibition.  

 Borrelidin elicits a strong ER stress response, which is apparent from the dramatic 

increase in p-eIF2α protein levels seen in CaOV-3 cells following borrelidin treatment. 

TARS protein levels decrease in response to borrelidin when compared to monensin 

treated cells, which suggests monensin and borrelidin are causing ER stress via separate 

mechanisms. No quantified protein values were statistically significant. To confirm these 

results more experimental trials would need to be performed. To further this experiment, 

we could look at how synthetases are modified in response to borrelidin treatment, and 

how these modifications may affect their function.  

 Borrelidin treatment of CaOV-3 cells had a more dramatic effect on transcript 

levels than it did on protein levels. Borrelidin’s ER stress response was again clear at the 

transcript level. DNAJB9 transcript levels increased 2-fold in response to borrelidin 

treatment (Fig. 14A). DNAJB9 mRNA was not highly affected by monensin treatment at 

1.0 µM.  
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At the transcript level, borrelidin led to a 4-fold increase in TARS (Fig. 14B) and 

AARS (Fig. 14D), and a 2.5-fold increase in LARS (Fig. 14C) compared to the DMSO 

control. This shows that the cell increases transcription rates of synthetases upon ER 

stress induction by borrelidin. Monensin and borrelidin dual treatment yields synthetase 

transcripts levels that are similar to just borrelidin treatment.  

VEGF transcript levels increase 11.5-fold in CaOV-3 cells in response to 

borrelidin treatment, and 15-fold in response to borrelidin and monensin dual treatment 

(Fig. 14E). This suggests that borrelidin and monensin both cause ovarian cancer cells to 

become pro-angiogenic intracellularly. Given the abundance of VEGF transcripts 

following borrelidin and monensin treatments, it could be hypothesized that the cells 

utilize α6β4 integrin signaling to gain angiogenic activity under ER stress (Fig. 1). 

Borrelidin induces ER stress, as is apparent by the increase in p-eIF2α protein 

(Fig. 13F) and DNAJB9 transcript (Fig. 14A) in CaOV-3 cells. Similarly, monensin 

treatment causes an increase in p-eIF2α protein that correlates with increasing monensin 

concentration (Fig. 11F). However, the mechanism of ER stress caused by borrelidin is 

different from that caused by monensin. Whereas monensin treatment causes an increase 

in TARS protein in a dose-dependent manner (Fig. 11C), borrelidin decreases TARS 

protein levels compared to monensin treatment (Fig. 13C). At the transcript level, both 

borrelidin and monensin elicit an increase in TARS transcript levels (Figs. 12B and 14B). 

In addition, borrelidin treatment causes a large increase in LARS and AARS transcript 

levels (Figs. 14C-D). Again, TARS and AARS transcript levels exhibit similar trends 

following cell treatment. Finally, borrelidin and monensin both induce an increase in 

VEGF transcript levels (Figs. 12E and 14E). Taken together, these data begin to suggest 
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what mechanism monensin is inducing the UPR by, and what affect that has on TARS 

and other synthetases. 

 
 

Fig. 13: Borrelidin treatment causes p-eIF2α protein to increase but not TARS 
protein. CaOV-3 cells were treated in serum free media and respective reagents. 
Borr.=borrelidin; Mon.=monensin. DMSO served as the control treatment, and borrelidin 
and monensin were both used at 1.0 µM. Total cell lysates were resolved by Western blot 
and primary antibodies against TARS, LARS, AARS and p-eIF2α were used. (A, B) Two 
representative blots are shown for TARS, LARS and AARS (A) and p-eIF2α (B) 
proteins. (C-F) TARS (C), LARS (D), AARS (E) and p-eIF2α (F) protein levels were 
quantified relative to β-tubulin and normalized to DMSO. Monensin-only treated values 
are from the blots in Fig. 11; mean±SEM, n=3, p>0.05 comparing experimental groups 
and DMSO (Kruskal-Wallis, Dunn’s multiple comparisons test). 
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Fig. 14: Transcript levels increase in response to borrelidin and monensin 
treatments. (A-E) RT-qPCR results for borrelidin (Borr.) and monensin (Mon.) 
treatments onto CaOV-3 cells probing for DNAJB9 (A), TARS (B), LARS (C), AARS 
(D) and VEGF (E). Borrelidin and monensin were both used at 1.0 µM. DMSO was used 
as a control treatment. Cells were treated for 16 h in 0.1% FBS media and total RNA was 
extracted using a Qiagen RNeasy® Mini Kit. Expression levels were determined using 
the ΔΔCT method relative to the hprt gene as a housekeeper. Values were normalized to 
DMSO; mean±SEM, n=3, *p<0.05 relative to DMSO (Kruskal-Wallis, Dunn’s multiple 
comparisons test). 
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4.3 Conclusion 

 

We are able to show that monensin serves as a valid experimental tool in further 

deciphering non-canonical functions of TARS both extracellularly and as a participant in 

the UPR in ovarian cancer cells. Monensin stimulates TARS secretion from CaOV-3 

cells, however the mechanism of TARS secretion remains undefined. Additionally, 

monensin causes TARS protein and transcript levels to increase intracellularly. LARS 

and AARS protein levels and LARS transcript levels are affected inconsistently by 

monensin treatment. AARS transcript levels show a correlation to TARS transcript levels 

in response to monensin treatment. VEGF transcript levels are also increased 

significantly with monensin treatment of CaOV-3 cells. We confirm that monensin 

induces ER stress, and that the mechanism by which it stimulates the UPR likely differs 

from borrelidin UPR induction. Together these data yield insight into the role TARS 

plays in promotion of cancer cell survival. 
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CHAPTER 5: DISCUSSION AND FUTURE DIRECTIONS 

 

5.1 Monensin as a Novel Model to Study TARS 

 

5.1.1 Molecular Effects of Monensin 

 In this study we show that monensin treatment of ovarian cancer cells provides 

both a novel approach for studying TARS secretion, and for studying TARS expression 

in response to ER stress. Given the pro-angiogenic function of extracellular TARS in 

endothelial cells (Williams, Mirando et al. 2013), it is important to discern what 

molecular conditions affect TARS levels intracellularly and how TARS is being secreted. 

Studying TARS in a cancer model begins to expand the angiogenic potential of TARS. 

We provide evidence that monensin stimulates TARS secretion (Fig. 4), however the 

precise mechanism of secretion remains unresolved. We also show evidence that 

monensin promotes ER stress, and that TARS protein and transcript expression increases 

following monensin treatment. Although monensin is not widely found in nature, its 

effects on ovarian cancer cells with respect to TARS expression have yielded valuable 

information. 

 Monensin is an ionophore that disrupts the Na+/H+ gradient across the plasma 

membrane. In our experimental model we initially used monensin to increase exosome 

production, however the observation that monensin causes ER stress provides a clue to its 

other possible effect on cells. Not only has monensin been found to sensitize glioma cells 

to TRAIL-mediated apoptosis (Yoon, Kang et al. 2013), but monensin was also found to 

induce oxidative stress and apoptosis in prostate cancer cells, and to inhibit growth 
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through cell cycle arrest and apoptosis in lymphoma and renal carcinoma cells (Park, 

Seol et al. 2002, Park, Jung et al. 2003, Ketola, Vainio et al. 2010). The link to apoptosis 

raises concern over whether or not the detected extracellular TARS protein was a result 

of secretion. 

Apoptotic cells have distinct changes in their morphology referred to as 

“apoptotic bodies” that bleb off from the cell membrane, and are ultimately engulfed and 

destroyed by macrophages (Elmore 2007). This event does not result in an inflammatory 

response. Apoptosis is different from necrosis, which is another form of cell death where 

the cell membrane integrity is disrupted and the cell spills its contents into the 

extracellular space eliciting an inflammatory response (Elmore 2007). Since monensin 

has been specifically linked with apoptosis and not necrosis in carcinoma cells, we 

conclude that the TARS increase in the cell media of cultured CaOV-3 cells was a result 

of secretion. However, it is important to recognize that apoptotic cells experience 

dysfunctional mitochondria and a homeostatic imbalance. An alternative mechanism that 

arose from side effects of apoptosis could have played a role in the increase in 

extracellular TARS protein.  

 

5.1.2 Exosome Detection  

In the present study, we were unable to confirm that the detected extracellular 

TARS protein was secreted via exosomal release (Fig. 5). There are many methods for 

exosome purification and detection, and choosing the proper one has proved challenging 

for many researchers. Issues surrounding exosome isolation include avoiding aggregates 

(more than one particle stuck together), ensuring vesicles that fall within the size range of 
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40-100 nm have been purified, and labeling exosomes with biomarkers for detection. One 

common method for purifying exosomes is by ultracentrifugation (Thery, Amigorena et 

al. 2006). Other methods include separation of samples on a density gradient or by 

affinity chromatography (Greening, Xu et al. 2015), These methods, however, can lead to 

shearing of exosomes and incomplete separation. We isolated exosomes using a 

polyethylene glycol (PEG)-based reagent that creates a hydrophilic environment in 

solution, and allows for precipitation of exosomes upon low speed centrifugation. Using 

volume-excluding polymers like PEG has been shown to effectively purify exosomes as 

aggregates (Lane, Korbie et al. 2015, Weng, Sui et al. 2016).  

Currently there is little uniformity in standards for detection of exosomes. Some 

common methods of detection are transmission electron microscopy to actually visualize 

exosomes, tagging exosome-bound proteins with biomarkers or beads and detecting by 

flow cytometry, resolving samples by Western blot and probing for exosomal marker 

proteins and detection with a nanoparticle analyzer. Several of these techniques have 

been used to detect cancer cell-derived exosomes (Welton, Khanna et al. 2010, Peinado, 

Aleckovic et al. 2012). Nanoparticle detection devices are the gold standard, as they can 

accurately yield particle size and concentration as well as detect fluorescence.  

Given the wide range of options for detecting exosomes, our original hypothesis 

should be revisited. The isolation technique of exosomes from CaOV-3 cells seemed to 

efficiently purify exosomes (Fig. 5B), however our detection method relied too heavily 

on immunoreactivity, which ultimately yielded inconsistent and likely inaccurate results. 

We were able to detect nanoparticles from CaOV-3 cells on a NanoSight (Malvern) for 

one trial (Table 1.A). Since we are concerned with TARS packaging in exosomes, using 
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the NanoSight to detect fluorescent TARS in exosome fractions would be useful as well. 

Exosomal release is a primary mechanism cells use to send biochemical signals to other 

cells, and so it remains likely that the extracellular, pro-angiogenic function of TARS is 

enabled by exosomal release.  

 

5.2 Post-Translational Modifications 

 

5.2.1 Palmitoylation 

Chemical modifications of TARS may alter its localization and intracellular 

function, which could influence its extracellular role. Post-translational modifications 

(PTMs) are chemical additions to side chains of specific protein residues that alter 

biological function. TARS gets phosphorylated and acetylated, two common PTMs, 

which affects its function and localization in the cell (Choudhary, Kumar et al. 2009, 

Zhou, Di Palma et al. 2013). Another PTM is protein palmitoylation. Palmitoylation is 

the reversible, covalent attachment of a palmitic acid moiety to the side chain of cysteine 

residues (Aicart-Ramos, Valero et al. 2011). The reversibility of this modification enables 

palmitoylated proteins to localize to different areas of the cell through subcellular 

trafficking (Aicart-Ramos, Valero et al. 2011). This added localization function results 

from an increase in hydrophobicity, and ability to anchor into lipid membranes. N-Ras 

and H-Ras are two well-characterized proteins that utilize palmitoylation and 

depalmitoylation to traffic between the ER, the Golgi apparatus and the plasma 

membrane via vesicular transport (Linder and Deschenes 2007, Aicart-Ramos, Valero et 

al. 2011).  
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Initially we hypothesized that TARS palmitoylation facilitated its packaging into 

exosomes. Preliminary data testing the effects of monensin on TARS palmitoylation was 

inconclusive, and therefore is not shown here. Given our current hypothesis that TARS is 

secreted by exosomal release, testing for TARS palmitoylation would yield insight into 

how TARS may be packaged in exosomes. Using a Group-based prediction system 

algorithm that predicts protein palmitoylation sites based on protein sequence found here, 

http://lipid.biocuckoo.org/index/php, we found that TARS is likely to be palmitoylated at 

C137, C254 and C630. The TARS sequence was found at www.unitprot.org, Human 

Threonine tRNA Ligase, cytoplasmic (#P26639). By synthesizing plasmids with 

respective cysteine residues mutated, and transfecting these plasmids into CaOV-3 cells, 

we could compare WT TARS with cysteine-mutant TARS. We expect that mutating 

these cysteine residues would block TARS palmitoylation and subsequently would block 

TARS secretion in response to VEGF, TNF-α or monensin, and would inhibit the pro-

angiogenic function of TARS. Of note, there is evidence that tetraspanin proteins, 

exosome membrane localized proteins including CD63, are palmitoylated, which 

influences their association with other cell surface tetraspanins (Yang, Claas et al. 2002). 

Post-translationally modified proteins often have increased protein-protein interactions.  

 

5.2.2 The Ubiquitin Family of Modifications 

While palmitoylation is a small PTM, ubiquitin and ubiquitin-like modifications 

comprise a family of large peptide PTMs that modulate many different biological 

processes. Modification with ubiquitin has historically been associated with targeting to 

the proteasome, although alternative roles for this PTM have begun to emerge (Schwartz 
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and Hochstrasser 2003). Additionally, several ubiquitin-like protein modifications have 

been uncovered. SUMOylation refers to addition of a small ubiquitin-like modifier 

(SUMO) peptide to lysine residues typically following cell stress (Hay 2005). 

SUMOylation is a highly regulated process in eukaryotes, and has been found to 

participate in various proliferative events including cell cycle control, transcription 

regulation and chromatin organization (Schwartz and Hochstrasser 2003, Hay 2005). 

TARS has SUMOylation sites as revealed by large scale human proteome analyses, 

which raises the question of what conditions would cause TARS to become SUMOylated 

and how would TARS protein primary and secondary functions be affected in response to 

SUMOylation (Becker, Barysch et al. 2013, Hendriks, Lyon et al. 2017, Lamoliatte, 

McManus et al. 2017). 

To study TARS SUMOylation experimentally, treating human cells with MG132 

would be useful. MG132 has a structure that mimics a small peptide (Fig. 15A) and 

inhibits protein turnover following protein synthesis through inhibition of the 

proteasome. In HEK293 cells, it has been reported that treatment with MG132 

significantly increases protein SUMOylation including ribosomal and proteasomal 

elements, which get localized to the nucleus (Lamoliatte, Caron et al. 2014). MG132 also 

generates reactive oxygen species, and has been linked with apoptosis in tumor cells, two 

downstream UPR effects (Han, Moon et al. 2009, Guo and Peng 2013). The combined 

ability of MG132 to promote SUMOylation and stimulate maladaptive UPR responses 

would allow us to observe whether TARS is SUMOylated during ER stress.  

We report here that TARS protein expression decreases following borrelidin 

treatment (Fig. 13C) and TARS transcript levels increase following borrelidin treatment 
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(Fig. 14B) in CaOV-3 cells. Combined, these results suggest an increase in protein 

turnover and a decrease in protein stability. Therefore, we believe that TARS may be 

ubiquitinylated in response to ER stress by borrelidin. In contrast, monensin increases 

TARS protein (Figs. 7B and 11C) and transcript (Figs. 10B and 12B) in CaOV-3 cells. 

This result indicates that protein turnover rate is not increasing in response to monensin. 

Monensin elicits ER stress, although not as strongly as borrelidin, as revealed by p-eIF2α 

induction (Fig. 13F). Therefore, if monensin is stimulating PTM of TARS, it is likely not 

ubiquitinylation. However given the induction of the UPR by monensin coupled with the 

increased TARS expression, it is possible that TARS gains a PTM that enables it to 

interact with UPR elements. 

For future experiments, it would be useful to compare the effects of MG132, 

monensin and borrelidin (Fig. 15) treatments in CaOV-3 cells with respect to TARS 

protein and transcript levels and TARS PTMs. This would yield information about 

whether or not TARS is modified in response to ER stress, and if TARS modification is 

required for its involvement in the UPR.  

 

A    B         C  
 
Fig. 15: Structures of MG132, Monensin and Borrelidin. (A-C) Stick structures of 
MG132 (A), monensin (B) and borrelidin (C).  
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Another PTM of interest is modification by interferon-stimulated gene 15 

(ISG15). ISG15 codes for a protein that is added to peptides in response to IFN activation 

(Zhang and Zhang 2011). Viral infection typically causes an increase in IFN levels in the 

organism. This enables increased ISG15ylation of proteins, which leads to new protein-

protein interactions.  These new interactions increase the antiviral response, and have 

potential to influence protein turnover (Zhang and Zhang 2011). In various cancer cell 

types, TARS is modified by ISG15 following IFN treatment (Giannakopoulos, Luo et al. 

2005, Zhao, Denison et al. 2005, Wong, Pung et al. 2006). Of note, WARS is also found 

to be ISG15ylated in these cancer cell types following IFN treatment. This furthers the 

role of TARS in disease, and proposes possible mechanistic intervention. Going forward, 

we could look at the TARS-ISG15 interaction more closely with respect to TARS 

localization, TARS protein interactions and UPR induction. We could also investigate 

whether TARS ISG15ylation affects the pro-angiogenic function of TARS. Another 

protein relevant to this study that gets ISG15ylated is eukaryotic translation initiation 

factor-4E2 (eIF4E2) (Okumura, Zou et al. 2007). 

 

5.3 Integration of Eukaryotic Translation, ER Stress and Hypoxia 

 

5.3.1 Hypoxic Translation Machinery  

 Eukaryotic translation is regulated by various initiation factors that bind to and 

facilitate proper mRNA translation. eIF4E is responsible for binding to and directing the 

ribosome to the 5’-cap of mRNA. eIF4E is inactivated by 4EBP, which constitutively 

binds to eIF4E and inhibits its interaction with mRNA. When 4EBP is phosphorylated it 
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dissociates from eIF4E, which enables eIF4E to carry out its translation initiation 

function. Phosphorylation of 4EBP is stimulated by the mTOR complex, which is 

regulated by upstream signaling cascades (Hsieh and Ruggero 2010). A recent study 

found that under hypoxia the mTOR pathway is inhibited in several types of cancer cells, 

which inhibits 4EBP phosphorylation (Uniacke, Perera et al. 2014). These carcinoma 

cells were found to recruit eIF4E2 to drive protein synthesis under hypoxia, which led to 

tumor cell survival and proliferation (Uniacke, Perera et al. 2014). Furthermore, eIF4E2 

was found to form a complex with ribosomal binding protein-4 (RBM4) and hypoxia-

inducible factor-2α (Hif-2α) under hypoxia, which binds the 5’-cap of mRNA and 

enables recruitment to polysomes (Uniacke, Holterman et al. 2012). Given the universal 

nature of a hypoxic microenvironment in tumor cells, we hypothesize that TARS is 

interacting with the eIF4E2/RBM4/Hif-2α complex when cancer cells are hypoxic.  

 

5.3.2 Does TARS Interact with Hypoxic Translation Machinery in Cancer Cells? 

We tested this hypothesis in CaOV-3 cells by exposing cells to increasing time 

points of hypoxia, and immunoprecipitating (IP) TARS from total cell lysates to detect 

whether eIF4E2, RBM4 and Hif-2α interact with TARS under hypoxia. CaOV-3 cells 

were exposed to 0, 4 or 16 h of hypoxia, and cells were immediately lysed once taken out 

of hypoxia. TARS was pulled down using magnetic Dynabeads® annealed to an anti-

TARS antibody, and samples of total cell lysate (Fig. 16A), supernatant following pull 

down (Fig. 16B) and pelleted protein (Fig. 16C) were resolved by Western blot.  

We were able to successfully pull down TARS as seen by comparison of the 16h 

vs. 16h no antibody control TARS blot of the pellet (Fig. 16C). However, these results do 
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not clearly show an interaction between TARS and eIF4E2, RBM4 and Hif-2α that is 

dependent on hypoxia. In the pelleted protein Western blot (Fig. 16C), the highest levels 

of eIF4E2 are seen in the no antibody control, and RBM4 and Hif-2α levels do not 

correlate with TARS levels at different time points of hypoxia. Supernatant protein levels 

(Fig. 16B) also do not decrease in accordance with TARS pull down of eIF4E2, RBM4 or 

Hif-2α. Therefore, we cannot confirm at this time that TARS interacts with hypoxic 

translation machinery in cancer cells in a hypoxic-dependent manner. 

We were able to show TARS does potentially interact with elements of the 

hypoxic translation machinery. Pelleted protein blots confirm that TARS, eIF4E2, RBM4 

and Hif-2α are present in samples following IP (Fig. 16C). The levels of these proteins in 

the pelleted samples are inconsistent with our hypothesis, however we do show presence 

of these four proteins across samples. One point of concern is that the highest levels of 

eIF4E2 protein in the pelleted samples (Fig. 16C) are observed in the no antibody control 

where we expected the lowest levels of eIF4E2. Therefore, our hypothesis should not be 

abandoned entirely, but instead we plan to alter our experimental parameters to observe 

this interaction. 

In this IP, TARS was pulled down and TARS and hypoxic translation machinery 

proteins were blotted back for. Future experiments include a pull down with eIF4E2 to 

confirm its interaction with translational machinery. This method was not performed 

initially because the necessary eIF4E2 antibody was not available. It is also possible that 

the lack of interaction was because we did not leave the CaOV-3 cells in hypoxia for long 

enough. In the original study that discovered this hypoxia-induced translational 

functionality of eIF4E2, carcinoma cells were in hypoxia for up to 48 h (Uniacke, Perera 
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et al. 2014). We also plan to retest this interaction in other cell lines, cancerous and 

noncancerous, and to observe how borrelidin affects TARS interaction with this 

machinery under hypoxia. Based on this preliminary result, we will continue to pursue 

our hypothesis that TARS interacts with hypoxic translation machinery under hypoxia by 

modifying our initial experimental parameters. 

 

 

Figure 16: TARS interacts with members of the hypoxic translation machinery 
complex independent of hypoxia. (A-C) Immunoprecipitation of TARS from total cell 
lysates of CaOV-3 cells treated with increasing time in hypoxia. Samples were resolved 
by Western blot and antibodies against TARS, eIF4E2 (31 kD), RBM4 (40 kD) and Hif-
2α (118 kD) were used. Representative blots of total cell lysate (A), supernatant 
following pull down (B) and protein that was pelleted out in the IP (C) are shown.           
* indicates no TARS antibody was bound to the magnetic beads (no antibody control). In 
theory, this lane should not pull down any TARS or TARS-interacting proteins from 
solution. 
 

Of note, one study found that in breast cancer cells, eIF4E is the dominant cap-

binding initiation factor under both hypoxia and normoxia, and following Hif-1α 

stimulation (Yi, Papadopoulos et al. 2013). The researchers also found that inhibiting the 

eIF4E complex under hypoxia decreases VEGF protein levels in a dose-dependent 

manner and has no effect on VEGF mRNA levels (Yi, Papadopoulos et al. 2013). 

Although this contradicts the Uniacke, Perera et al., 2014 paper, it highlights the 
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possibility of tissue-specific mechanisms with respect to translational control under 

hypoxia. 

 

5.3.3 Comparison of Monensin and Borrelidin Effects on TARS 

 TARS protein’s possible interaction with eIF4E2 has potential to be linked with 

stimulation of angiogenesis and promotion of tumor cell survival and proliferation. We 

speculate that upregulation of TARS protein in the hypoxic tumor microenvironment may 

be responsible for facilitating translation of pro-angiogenic proteins, such as VEGF. 

There does exist evidence supporting the role of synthetases as mediators of VEGF 

translation. Stimulation of human myeloid cells with IFN causes phosphorylation of 

EPRS at serine residues leading to the formation of the GAIT complex and subsequent 

binding of eIF4G, which inhibits formation of the pre-initiation complex (Jia, Yao et al. 

2013, Yao and Fox 2013). In addition to its association with the GAIT complex, a 

truncated domain of EPRS counters translational repression by the GAIT complex 

creating a “translational trickle” of GAIT target proteins, including VEGF (Yao, Potdar et 

al. 2012, Yao, Eswarappa et al. 2015). Unpublished data from our lab confidently 

suggests that TARS and EPRS interact in HEK293 cells, suggesting TARS involvement 

in regulating translation initiation. If TARS protein is found to directly interact with 

eIF4E2 under hypoxic conditions, the next question would be whether or not this 

contributes to its pro-angiogenic function. 

Extracellular TARS has a well-defined role in angiogenesis while the pro-

angiogenic role of intracellular TARS remains undefined. Previous studies in our lab 

found that borrelidin treatment of endothelial cells increases ATF4, TARS and VEGF 
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transcript levels, indicating ER stress activation and pro-angiogenic function resulting 

from ARS inhibition. This effect was amplified under hypoxic conditions. Similarly, 

monensin treatment of CaOV-3 cells caused a dose-dependent increase in TARS, AARS 

and VEGF transcript levels (Fig. 12) and a dose-dependent increase in p-eIF2α protein 

levels (Fig. 11F), which suggests a simultaneous increase in synthetase expression, 

promotion of a pro-angiogenic environment and ER stress induction. Given that the direct 

mechanism of action for monensin on ARSs and transcription/translation machinery is 

unknown, we can conclude that ER stress stimulation of the PERK pathway by monensin 

seems to be coupled with increased VEGF transcript levels and an increase in certain 

ARS family member’s expression. Borrelidin and monensin treatments both suggest that 

the synthetase transcript increase is not TARS-specific in CaOV-3 cells. This is likely a 

survival mechanism that cells use to compensate for ER stress by increasing synthetase 

transcript levels, but not necessarily increasing their translation. In contrast, TARS 

protein levels in CaOV-3 cells increase in response to monensin (Figs. 7B and 11C) and 

decrease in response to borrelidin (Fig. 13C). Theses results were not seen with LARS or 

AARS protein levels. This suggests that monensin and borrelidin elicit different ER stress 

mechanisms, and that TARS protein plays a specific role in the ER stress response. The 

increase in TARS protein and VEGF transcript in response to monensin also furthers the 

possible angiogenic roles TARS may have intracellularly. A summary of our observed 

ER stress effects in CaOV-3 cells and possible integration with hypoxic translation 

machinery is depicted below (Fig. 17). 
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Figure 17: Summary of effects of monensin and borrelidin on ER stress and 
integration with hypoxic translation. The ER stress effects of borrelidin and monensin 
treatments on CaOV-3 cells are represented here. *ATF4 transcript increase has only 
been observed with borrelidin treatment of endothelial cells. Possible integration between 
the ER stress effects and the hypoxia translation mechanism in cancer cells is depicted. 
These two processes could theoretically occur in the same cell simultaneously.  
 
 
 

5.4 Final Remarks 

 

The ARS family is necessary for protein synthesis, and has gained attention over 

the past few decades due to the involvement of various family members in disease. 

Extracellular TARS stimulates angiogenesis and cell migration in endothelial cells, 

however its mechanism of secretion remains unresolved. TARS is secreted from CaOV-3 
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cells in response to an exosome stimulator, monensin, suggesting that exosomal release is 

the mechanism for TARS secretion. In addition, monensin stimulates ER stress in CaOV-

3 cells, which causes an increase in TARS protein and transcript levels as well as an 

increase in VEGF transcript levels. TARS protein has potential to be post-translationally 

modified, which would affect TARS’ intracellular localization and would enable new 

protein-protein interactions for TARS. It is possible ER stress may cause TARS to be 

post-translationally modified. TARS may also have increased expression in order to 

maintain basal translation rate of specific proteins, such as VEGF, under ER stress or 

hypoxia. Comparison of monensin and borrelidin treatments on various cell types has 

yielded insightful data about regulation of TARS expression following cell stress. 

Although we were unable to confirm TARS secretion by exosomal release from CaOV-3 

cells, we gained invaluable information regarding conditions surrounding increased 

intracellular TARS expression, which allowed us to predict other non-canonical functions 

of TARS.  
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CHAPTER 7: APPENDIX 
 
 
Table A.1: NanoSight particle analysis of exosome-precipitated samples from 
CaOV-3 cells. 
 

 Exosome-
Depleted 

Media 

Control 10 µM 
monensin 

50 ng/mL 
VEGF 

Mean Particle 
Size ± Std. 
Error (nm) 

96.4 ± 1.7 138.5 ± 3.0 135.2 ± 9.2 117.6 ± 6.5 

Mode Particle 
Size ± Std. 
Error (nm) 

99.6 ± 16.7 98.1 ± 4.7 86.0 ± 7.1 83.7 ± 6.5 

Std. Dev. ± 
Std. Error 

(nm) 

24.4 ± 1.7 72.4 ± 5.4 68.8 ± 10.2 52.5 ± 9.1 

Concentration 
± Std. Error 

(particles/mL) 

1.21x108 ± 
8.30 x 106 

6.07x108 ± 
4.27x107 

5.95x108 ± 
6.08x107 

6.74x108 ± 
1.49x107 

 
Cell media was collected and exosomes were precipitated out of solution using 
ExoQuick-TC™. A sample of exosome-depleted media was precipitated as a negative 
control. Pelleted exosomes were resuspended in clean PBS, and run on the NanoSight 
instrument. Nanoparticle Tracking Analysis tracked particles between 10-2000 nm in 
diameter for 749 frames to yield these results.  
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