Date of Award

2014

Document Type

Thesis

Degree Name

Master of Science (MS)

Department

Civil and Environmental Engineering

First Advisor

Donna M. Rizzo

Second Advisor

Mandar M. Dewoolkar

Abstract

In many events affecting our civil infrastructure, such as contamination or weathering, it is likely that only the surfaces of the affected building materials will be available for non-destructive measurements. In this work, we describe and analyze surface gas permeability measurements on a variety of natural and engineered building materials using two types of relatively new, non-destructive surface permeameters. It is shown that the surface gas permeability measurements correlate well with each other and could provide rapid estimates of macroscopic gas permeability and degradation of materials due to weathering. It is hypothesized that surface permeability can be used to predict macroscopic wicking of water. The results indicated that macroscopic wicking correlated reasonably well with surface permeability measurements of uniform materials with low permeabilities such as sandstones and clay brick.

Language

en

Number of Pages

166 p.

Share

COinS