Date of Award

2015

Document Type

Thesis

Degree Name

Master of Science (MS)

Department

Mathematics

First Advisor

Jeff Dinitz

Second Advisor

Christian Skalka

Abstract

In this paper we extend the study of Heffter arrays and the biembedding of graphs on orientable surfaces first discussed by Archdeacon in 2014. We begin with the definitions of Heffter systems, Heffter arrays, and their relationship to orientable biembeddings through current graphs. We then focus on two specific cases. We first prove the existence of embeddings for every K_(6n+1) with every edge on a face of size 3 and a face of size n. We next present partial results for biembedding K_(10n+1) with every edge on a face of size 5 and a face of size n. Finally, we address the more general question of ordering subsets of Z_n take away {0}. We conclude with some open conjectures and further explorations.

Language

en

Number of Pages

77 p.

Included in

Mathematics Commons

Share

COinS