Date of Award

2015

Document Type

Thesis

Degree Name

Master of Science (MS)

Department

Nutrition and Food Sciences

First Advisor

Jana Kraft

Abstract

Probiotic dairy foods, especially non- and low-fat dairy products, are becoming popular in the US. A non-fat goat's milk yogurt containing probiotics (Lactobacillus acidophilus and Bifidobacterium spp.) was developed using heat-treated whey protein concentrate (HWPC) as a fat replacer and pectin as a thickening agent. Yogurts containing non-heat treated whey protein concentrate (WPC) and pectin as well as one with only pectin were also produced. A fat-free cow's milk yogurt with pectin was also used as a control yogurt. The yogurts were analyzed for chemical composition, water holding capacity (syneresis), microstructure, changes in pH and viscosity, mold, yeast and coliform counts, and probiotic survivability during storage at 4°C for 10 weeks. The results showed that the non-fat goat's milk yogurt made with 12% HWPC (12.5% WPC solution heated at 85°C for 30 min at pH 8.5) and 0.35% pectin, had a significantly higher viscosity (P<0.01) than any of the other yogurts and low syneresis than the goat’s yogurt with only pectin added (P<0.01). After 10 weeks in storage, viscosity and pH remained constant throughout all of the yogurts. Mold, yeast, and coliform counts were negative throughout the 10 week study. Bifidobacterium spp. remained stable and counts remained above 10⁶CFU g⁻ ¹ during the 10 week storage. However, the population of Lactobacillus acidophilus dropped below 10⁶CFU g⁻ ¹ after 2 weeks of storage. Microstructure analysis of the non - fat goat’s milk yogurt determined by scanning electron microscopy revealed that HWPC interacted with casein micelles to form a more comprehensive network in the yogurt gel. The results indicate that HWPC could be used as a fat replacer to improve the consistency of non - fat goat’s milk yogurt and other products alike.

Language

en

Number of Pages

71 p.