Date of Award

2016

Document Type

Thesis

Degree Name

Master of Science (MS)

Department

Natural Resources

First Advisor

Carol Adair

Abstract

Intensive agriculture, coupled with an increase in nitrogen fertilizer use, has contributed significantly to the elevation of atmospheric greenhouse gases (GHGs), including carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O). Rising GHG emissions usually mean a decrease in soil carbon. Currently, soil C is twice that of all standing crop biomass, making it an extremely important player in the C cycle. Fortunately, agricultural management practices have the potential to reduce agricultural GHG emissions whilst increasing soil C. Management practices that impact GHG emissions and soil C include various tillage practices, different N fertilization amounts and treatments (synthetic N, cattle manure, or a combination of both), the use of cover crops, aeration, and water levels. Employing agricultural best management practices (BMPs) can assist in the mitigation and sequestration of CO2, N2O and soil C. Measuring soil carbon storage and GHG emissions and using them as metrics to evaluate BMPs are vital in understanding agriculture's role in climate change. The objective of this research was to quantify soil carbon and CO2 and N2O emissions in agroecosystems (dairy, crop, and meat producing farms) under differing management practices.

Three farms were selected for intensive GHG emissions sampling: Shelburne Farm in Shelburne, VT, a dairy in North Williston, VT, and Borderview Farm in Alburgh, VT. At each site, I collected data on GHG (CO2 and N2O) emissions and soil carbon and nitrogen storage to a depth of 1 meter. Soil emissions of CO2 and N2O were taken once every two weeks (on average) from June 2015 through November, 2015 using static flux chambers and a model 1412 Infrared Photoacoustic Spectroscopy (PAS) gas analyzer (Innova Air Tech Instruments, Ballerup, Denmark). Fluxes were measured on 17 dates at Shelburne Farms, 13 dates at the Williston site, and 13 dates in the MINT trial. Gas samples were taken at fixed intervals over a 10-14 minute time frame, with samples normally taken every one or two minutes. I also measured soil carbon to a depth of 1m in six BMPs at Borderview Farm.

Overall, I found that manure injection increased N2O and CO2 emissions, but decreased soil C storage at depth. Tillage had little to no impact on N2O emissions, except at Shelburne Farms, where aeration tillage decreased N2O emissions (marginally significant, P < 0.1). No-till did, however, decrease CO2 emissions relative to other conservation tillage practices (strip and vertical tillage) but we were unable to detect a significant change in soil C due to tillage practices. At Borderview farm, N2O emissions increased with soil NO3 and soil moisture, while CO2 emissions increased with soil temperature and nitrate. At Williston, CO2 emissions only increased with temperature; at Shelburne CO2 emissions increased with nitrate. N2O fluxes at Shelburne and Williston were not associated with any of the measured covariates.

Language

en

Number of Pages

71 p.