Date of Award

2017

Document Type

Thesis

Degree Name

Master of Science (MS)

Department

Electrical Engineering

First Advisor

Tian Xia

Abstract

Ground Penetrating Radar (GPR) is widely used in area of geologic exploration, hidden stationary subject detection and quality inspection on various infrastructures. The pulse generator, which offers very accurate timing information, is the most cardinal component in GPR systems. It is easy to design a pulse generator which produces pulse with pre-settled peak value and pulse width in nanosecond scale. However, since the system is working in complicated environments, various pulses in different pulse widths and amplitudes are needed. In this background, pulse generators in tunability and stability are precious in value and universal in use. Indeed, a few adaptive high voltage pulse signal generators in UWB circuit level have been developed.

A pulse generator with tunable pulse width and controllable voltage amplitude is proposed under these demands. The proposed circuit implementation combines System-On-Chip (SOC) design with Printed Circuit Board (PCB) design because we intend to realize modulation separately. We also design an easy input console named Binary Input Array in the research to realize control simplicity. Furthermore, we employ mathematical model to optimize parameters in each component in order to have an improved performance. Simulation data are obtained from Cadence Virtuoso and OrCAD Capture.

Language

en

Number of Pages

97 p.