Document Type

Article

Publication Date

1-1-2011

Abstract

A major challenge in organic apple production in humid production regions is the available fungicide options for apple scab [Venturia inaequalis (Cooke) Wint.] management. The standard sulfur/lime sulfur fungicide program can be injurious to the applicator, the apple ecosystem, and the apple tree itself. The objectives of this study were to compare the efficacy of three potential alternative fungicides [potassium bicarbonate (PB), neem oil (NO), and Bacillus subtilis (Bs)] with a standard organic sulfur/lime sulfur (SLS) fungicide program and a non-treated control (NTC) for management of apple scab and to evaluate potential non-target impacts on pest and beneficial arthropod populations. The five treatments were applied to 'Empire' trees arranged in a completely randomized design with five single-tree replications at the University of Vermont Horticultural Research Center in South Burlington, VT. Fungicides were applied with a handgun to drip using maximum label rates. Applications began on 26 Apr. 2007 and 23 Apr. 2008 and continued on approximately a weekly schedule through the end of June and then every 2 weeks through 23 July 2007 and 17 July 2008, respectively. The standard SLS treatment resulted in the best scab control in both years. TheNOtreatment reduced foliar and fruit scab compared with the NTC and the other alternatives at the end of the 2008 growing season and had insecticidal activity. However, both the SLS and NO treatments had disadvantages, including phytotoxic burning on the fruit and/or significantly more russeting on the fruit at harvest. In each year of the study, one or more of the alternative treatments, particularly Bs, resulted in higher insect damage than the non-fungicide-treated control. This research showed that PB, Bs, and NO do not offer advantages over the standard SLS fungicide program in organic apple production and in some cases offer distinct disadvantages in terms of non-target impacts. Chemical names used: potassium bicarbonate (Armicarb "O"), Bacillus subtilis (Serenade MAX), neem oil (Trilogy), sulfur (Microthiol Sulfur)/lime sulfur (Miller Lime Sulfur).

Rights Information

© 2011 American Society of Agronomy

DOI

10.21273/hortsci.46.9.1254

Link to Article at Publisher Website

Share

COinS