Document Type

Article

Publication Date

10-1-2017

Abstract

Aquatic ecosystem enrichment can lead to distinct and irreversible changes to undesirable states. Understanding changes in active microbial community function and composition following organic matter loading in enriched ecosystems can help identify biomarkers of such state changes. In a field experiment, we enriched replicate aquatic ecosystems in the pitchers of the northern pitcher plant, Sarracenia purpurea. Shotgun metaproteomics using a custom metagenomic database identified proteins, molecular pathways, and contributing microbial taxa that differentiated control ecosystems from those that were enriched. The number of microbial taxa contributing to protein expression was comparable between treatments; however, taxonomic evenness was higher in controls. Functionally active bacterial composition differed significantly among treatments and was more divergent in control pitchers than in enriched pitchers. Aerobic and facultative anaerobic bacteria contributed most to identified proteins in control and enriched ecosystems, respectively. The molecular pathways and contributing taxa in enriched pitcher ecosystems were similar to those found in larger enriched aquatic ecosystems and are consistent with microbial processes occurring at the base of detrital food webs. Detectable differences between protein profiles of enriched and control ecosystems suggest that a time series of environmental proteomics data may identify protein biomarkers of impending state changes to enriched states.

Creative Commons License

Creative Commons Attribution 4.0 License
This work is licensed under a Creative Commons Attribution 4.0 License.

Rights Information

© 2017 Northrop et al.

DOI

10.1002/ecs2.1954

Link to Article at Publisher Website

Included in

Climate Commons

Share

COinS