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RESEARCH ARTICLE
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Using Data Assimilation
Andrew J. Reagan1*, Yves Dubief2, Peter Sheridan Dodds1, Christopher M. Danforth1

1Department of Mathematics & Statistics, Vermont Complex Systems Center, Computational Story Lab, &
the Vermont Advanced Computing Core, The University of Vermont, Burlington, VT 05405, United States of
America, 2 School of Engineering, Vermont Complex Systems Center & the Vermont Advanced Computing
Core, The University of Vermont, Burlington, VT 05405, United States of America

* andrew.reagan@uvm.edu

Abstract
A thermal convection loop is a annular chamber filled with water, heated on the bottom half

and cooled on the top half. With sufficiently large forcing of heat, the direction of fluid flow in

the loop oscillates chaotically, dynamics analogous to the Earth’s weather. As is the case

for state-of-the-art weather models, we only observe the statistics over a small region of

state space, making prediction difficult. To overcome this challenge, data assimilation (DA)

methods, and specifically ensemble methods, use the computational model itself to esti-

mate the uncertainty of the model to optimally combine these observations into an initial

condition for predicting the future state. Here, we build and verify four distinct DA methods,

and then, we perform a twin model experiment with the computational fluid dynamics simu-

lation of the loop using the Ensemble Transform Kalman Filter (ETKF) to assimilate obser-

vations and predict flow reversals. We show that using adaptively shaped localized

covariance outperforms static localized covariance with the ETKF, and allows for the use of

less observations in predicting flow reversals. We also show that a Dynamic Mode Decom-

position (DMD) of the temperature and velocity fields recovers the low dimensional system

underlying reversals, finding specific modes which together are predictive of reversal

direction.

Introduction
Prediction of the future state of complex systems is a fundamental challenge of science and
engineering, and ultimately integral to the functioning of society. Some of these systems
include weather [1], health [2], the economy [3], marketing [4] and transportation [5]. For
weather in particular, predictions are made using supercomputers integrating numerical
weather models, projecting our current best guess of the atmospheric state into the future. The
accuracy of these predictions depends on the accuracy of the models themselves, and the qual-
ity of our knowledge of the current state of the atmosphere.
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Model accuracy has improved with better meteorological understanding of weather pro-
cesses and advances in computing technology [6]. To solve the initial value problem, tech-
niques developed over the past 50 years are now broadly known as data assimilation (DA).
Formally, data assimilation is the process of using all available information, including short-
range model forecasts and physical observations, to estimate the current state of a system as
accurately as possible [7]. The best-guess of the current state is often referred to as the analysis
state.

Here, we employ a fluid dynamics experiment as a test bed for improving numerical weather
prediction algorithms, focusing specifically on data assimilation methods. Our approach is
inspired by the historical development of current methodologies, and provides a tractable sys-
tem for rigorous analysis. The experiment is a thermal convection loop, which by design sim-
plifies our problem into the prediction of natural convection. The thermosyphon, a type of
natural convection loop or non-mechanical heat pump, can be likened to a toy model of cli-
mate [8]. The dynamics of thermal convection loops have been explored under both periodic
[9] and chaotic [7, 10–19] regimes. A full characterization of the computational behavior of a
loop under flux boundary conditions by Louisos et. al. describes four regimes: chaotic convec-
tion with reversals, high Rayleigh number (Ra) aperiodic stable convection, steady stable con-
vection, and conduction/quasi-conduction [20]. For the remainder of this work, we focus on
the chaotic flow regime.

Physical Experiment and Computational Model
The reduced order system describing a thermal convection loop was originally derived by Gor-
man [13] and Ehrhard and Müller [14]. Here we present this three dimensional system in non-
dimensionalized form. In S2 Appendix, we present a more complete derivation of these equa-

tions, following the derivation of Harris [8]. For the mean fluid velocity dx1
dt
, temperature differ-

ence between the 3 o’clock and 9 o’clock positions dx2
dt
(also referred to presently as ΔT3−9), and

deviation from conductive temperature profile dx3
dt
, these equations are:

dx1
dt

¼ aðx2 � x1Þ; ð1Þ

dx2
dt

¼ bx1 � x2ð1þ Khðjx1jÞÞ � x1x3; ð2Þ

dx3
dt

¼ x1x2 � x3ð1þ Khðjx1jÞÞ: ð3Þ

The function h(x) is a defined piece-wise analytic polynomial, and is provided in the full deri-
vation in S2 Appendix. The parameters α, β, and K, along with scaling factors for time and
each model variable can be fit to data using standard parameter estimation techniques.

Operated by Dave Hammond, UVM’s Scientific Electronics Technician, the experimental
thermosyphons access the chaotic regime of state space found in the principled governing
equations. We quote the detailed setup from Darcy Glenn’s undergraduate thesis [21] and pro-
vide Fig 1 for details of the experiment:

The [thermosyphon] is a bent semi-flexible plastic tube with a 10-foot heating rope wrapped
around the bottom half of the upright circle. The tubing used is light-transmitting clear
THV fromMcMaster-Carr, with an inner diameter of 7/8 inch, a wall thickness of 1/16
inch, and a maximum operating temperature of 200F. The outer diameter of the circular
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Fig 1. Schematic of the experimental, and computational, setup from Harris et al. (2012). The loop radius is given by R and inner radius by r. The top
temperature is labeled Tc and bottom temperature Th, gravity g is defined downward, the angle ϕ is prescribed from the 6 o’clock position, and temperature
difference between 3 o’clock and 9 o’clock positions ΔT3−9 is labeled.

doi:10.1371/journal.pone.0148134.g001
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thermosyphon is 32.25 inches. Together, the tubing inner diameter and outer diameter of
the thermosyphon produce a ratio of approximately 1:36. There are 1 inch ‘windows’ when
the heating cable is coiled in a helix pattern around the outside of the tube, so the heating is
not exactly uniform. The bottom half is then insulated using aluminum foil, which allowed
fluid in the bottom half to reach 176F. A forcing of 57 V, or 105 Watts, is required for the
heating cable so that chaotic motion is observed. Temperature is measured at the 3 o’clock
and 9 o’clock positions using unsheathed copper thermocouples from Omega.

We confirm that the experiment accesses the chaotic regime of state space using a time
series of the temperature difference as measured at the 3 o’clock and 9 o’clock positions in
Fig 2. We first test our ability to predict this experimental thermosyphon using synthetic data.

We perform all computational simulations of the thermal convection loop with the open-
source finite volume C++ library OpenFOAM [22]. The open-source nature of this software
enables its integration with the data assimilation framework that our present work provides.

We consider the incompressible Navier-Stokes equations with the Boussinesq approxima-
tion to model the flow of water inside a thermal convection loop. For brevity, we omit the equa-
tions themselves, and include them in S1 Appendix. The solver in OpenFOAM that we use,
with some modification, is buoyantBoussinesqPimpleFoam. Solving is accomplished
by the Pressure-Implicit Split Operator (PISO) algorithm [23]. We find that modification of
the code is necessary for laminar operation.

We create both 2-dimensional and 3-dimensional meshes using OpenFOAM’s native mesh-
ing utility blockMesh shown in Figs 3 and 4. After creating a mesh, we refine the mesh near
the walls to capture boundary layer phenomena and renumber the mesh for solving speed. We
use the refineWallMesh utility to refine the mesh near walls, and the renumberMesh
utility to renumber the mesh. The resulting 2D mesh contains 80,000 points (80 across the
diameter and 1000 around).

Available boundary conditions (BCs) we find to be stable in OpenFOAM’s solver are con-
stant gradient, fixed value conditions, and turbulent heat flux. Constant gradient simulations
are stable, but the behavior is empirically different from our physical system. While it is possi-
ble that a fixed value BC is acceptable due to the thermal diffusivity and thickness of the walls
of the experimental setup, we find that this is also inadequate. Simulations with a turbulent
heat flux BC implemented through the externalWallHeatFluxTemperature library
are unstable with the laminar turbulence model we use and resulted in physically unrealistic
results. We employ the third-party library groovyBC to use a gradient condition that com-
putes the flux using a fixed external temperature Tinf and fixed wall heat transfer coefficient
h as

� @T
@xj

¼ hðT � Tinf Þ

where we choose h to be the reference value for aluminum (the material used in the experimen-
tal setup).

With the mesh, BCs, and solver chosen, we now simulate the flow. From the data of T; �;~u
and p that are saved at each timestep (temperature, cell face flux, velocity, and pressure, respec-
tively), we extract the mass flow rate and average temperature at the 12, 3, 6 and 9 o’clock posi-
tions on the loop. Since ϕ is saved as a face-value flux, we compute the mass flow rate over the
cells i of top (12 o’clock) slice as

X

i

�f ðiÞ � vi � ri ð4Þ
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where f(i) corresponds the face perpendicular to the loop angle at cell i and ρ is reconstructed
from the Boussinesq approximation ρ = ρref(1 − β(T − Tref)).

Methods

Data Assimilation
We perform initial tests of the data assimilation algorithms described here with the Lorenz ‘63
system, which is analogous to the above equations with Lorenz’s β = 1, and K = 0. The canoni-
cal choices of σ = 10, β = 8/3 and ρ = 28 produce the well known butterfly attractor, and we use
these values for all examples here. From these tests, we will find the optimal data assimilation
parameters (inflation factors) for predicting time series with this system. Having done so, we
then focus our efforts on making prediction using computational fluid dynamics models.

Fig 2. A time series of the physical thermosyphon, from the Undergraduate Honor’s Thesis of Darcy Glenn [21]. The temperature difference (plotted)
is taken as the difference between temperature sensors in the 3 and 9 o’clock positions. The sign of the temperature difference indicates the flow direction,
where positive values are clockwise flow. We note that the experimental thermosyphon is not perfectly balanced, resulting in non-symmetric residence in
each flow direction.

doi:10.1371/journal.pone.0148134.g002
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We first implement the 3D-Var filter. Simply put, 3D-Var is the variational (cost-function)
approach to finding the analysis. It has been shown that 3D-var solves the same statistical prob-
lem as optimal interpolation (OI) [24]. The usefulness of the variational approach comes from
the computational efficiency, when solved with an iterative method. Specifically, the multivari-
ate 3D-Var amounts to finding the xa that minimizes the cost function

JðxÞ ¼ ðx� xbÞTB�1ðx� xbÞ þ ðyo þ HðxÞÞTRðyo � HðxÞÞ: ð5Þ

Next, we implement the “gold-standard” Extended Kalman Filter (EKF). The tangent linear
model (TLM) is precisely the model (written as a matrix) that transforms a perturbation at
time t to a perturbation at time t + Δt, analytically equivalent to the Jacobian of the model.
Using the notation of Kalnay [25], this amounts to making a forecast with the nonlinear model

Fig 3. A snapshot of the mesh used for CFD simulations. Shown is an initial stage of heating for a fixed value boundary condition, 2D, laminar simulation
with a mesh of 40000 cells without wall refinement with walls heated at 340K on the bottom half and cooled to 290K on the top half. The cells have been
colored with a truncated temperature range (299–301K) to highlight the flow structures.

doi:10.1371/journal.pone.0148134.g003
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M, and updating the error covariance matrix P with the TLM L, and adjoint model LT:

xf ðtiÞ ¼ Mi�1½xaðti�1Þ�;
Pf ðtiÞ ¼ Li�1P

aðti�1ÞLT
i�1 þQðti�1Þ

whereQ is the noise covariance matrix (model error). In the experiments with Lorenz’63 pre-
sented in this section, Q = 0 since our model is perfect. In numerical weather prediction, Q
must be approximated, e.g., using statistical moments on the analysis increments [26–28].

The analysis step is then written as (for H the observation operator):

xaðtiÞ ¼ xf ðtiÞ þKidi; ð6Þ

PaðtiÞ ¼ ðI�KiHiÞPf ðtiÞ ð7Þ

Fig 4. The 3Dmesh viewed as a wire-frame fromwithin.Here there are 900 cells in each slice (not shown), for a total mesh size of 81,000 cells.
Simulations using this computational mesh are prohibitively expensive for use in a real time ensemble forecasting system, but are possible offline.

doi:10.1371/journal.pone.0148134.g004
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where

di ¼ yo
i �H½xf ðtiÞ�

is the innovation. We compute the Kalman gain matrix to minimize the analysis error covari-
ance Pa

i as

Ki ¼ Pf ðtiÞHT
i ½Ri þHiP

f ðtiÞHT ��1

where Ri is the observation error covariance. Since we are making observations of the truth
with random normal errors of standard deviation �, the observational error covariance matrix
R is a diagonal matrix with � along the diagonal. The most difficult (and most computationally
expensive) part of the EKF is deriving and integrating the TLM. For this reason, the EKF is not
used operationally, and later we will turn to statistical approximations of the EKF using ensem-
bles of model forecasts. With our CFD model we have no such TLM, and we provide more
detail on the TLM approaches applicable to the Lorenz’63 system in S3 Appendix.

The computational cost of the EKF is mitigated through the approximation of the error
covariance matrix Pf from the model itself, without the use of a TLM. One such approach is the
use of a forecast ensemble, where a collection of models (ensemble members) are used to statis-
tically sample model error propagation. With ensemble members spanning the model analysis
error space, the forecasts of these ensemble members are then used to estimate the model fore-
cast error covariance.

The only difference between this approach and the EKF, in general, is that the forecast error
covariance Pf is computed from the ensemble members, without the need for a tangent linear
model:

Pf � 1

K � 2

X

k6¼l

xf
k � �x f

l

� �ðxf
k � �xf

l ÞT :

The ETKF introduced by Bishop is one type of square root filter, and we present it here to
provide background for the formulation of the LETKF [29]. For a square root filter in general,
we begin by writing the covariance matrices as the product of their matrix square roots.
Because Pa and Pf are symmetric positive-definite (by definition), we can write

Pa ¼ ZaZ
T
a ; Pf ¼ ZfZ

T
f ð8Þ

where Za and Zf are the matrix square roots of Pa and Pf. We are not concerned that this
decomposition is not unique, and note that Zmust have the same rank as P which will prove
computationally advantageous. The power of the SRF is now seen as we represent the columns
of the matrix Zf as the difference from the ensemble members from the ensemble mean, to
avoid forming the full forecast covariance matrix Pf. The ensemble members are updated by
applying the modelM to the states Zf such that an update is performed by

Zf ¼ MZa: ð9Þ

To summarize, the steps for the ETKF are to Eq (1) form ZT
f H

TR�1HZf , assuming that com-

puting R−1 is easy, and Eq (2) compute its eigenvalue decomposition, and apply it to Zf.
The LEKF implements a strategy that becomes important for large simulations: localization.

Namely, the analysis is computed for each grid-point using only local observations, without the
need to build matrices that represent the entire analysis space. Localization removes long-dis-
tance correlations from B and allows greater flexibility in the global analysis by allowing
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different linear combinations of ensemble members at different spatial locations [30]. The gen-
eral formulation of the LEKF by Ott goes as follows, quoting directly from [31]:

1. Globally advance each ensemble member to the next analysis timestep. Steps 2–5 are per-
formed for each grid point.

2. Create local vectors from each ensemble member.

3. Project that point’s local vectors from each ensemble member into a low dimensional sub-
space as represented by perturbations from the mean.

4. Perform the data assimilation step to obtain a local analysis mean and covariance.

5. Generate local analysis ensemble of states.

6. Form a new global analysis ensemble from all of the local analyses.

7. Wash, rinse, and repeat.

Proposed by Hunt et al. (2007) with the stated objective of computational efficiency, the
LETKF is named from its most similar algorithms from which it draws [32]. With the formula-
tion of the LEKF and the ETKF given, the LETKF can be described as a synthesis of the advan-
tages of both of these approaches. The LETKF is the method sufficiently efficient for
implementation on the full OpenFOAM CFDmodel of 240,000 model variables, and so we
present it in more detail and follow the notation of Hunt et al. (2007). As in the LEKF, we
explicitly perform the analysis for each grid point of the model. The choice of observations to
use for each grid point can be selected a priori, and tuned adaptively. Starting with a collection
of background forecast vectors {xb(i): i = 1, . . ., k}, we perform steps 1 and 2 in a global variable
space, then steps 3–8 for each grid point:

1. Apply H to xb(i) to form yb(i), average the yb for yb, and form Yb.

2. Similarly form Xb. Now for each grid point:

3. Form the local vectors.

4. Compute C = (Yb)
T R−1 (perhaps by solving RCT = Yb.

5. Compute ~Pa ¼ ððk � 1ÞI=rþCYbÞ�1 where ρ> 1 is a tun-able covariance inflation
factor.

6. ComputeWa ¼ ððk � 1Þ ~PaÞ1=2.
7. Compute �wa ¼ ~PaCðyo � �ybÞ and add it to the column ofWa.

8. Multiply Xb by each wa(i) and add ~xb to get {xa(i):i = 1, . . ., k} to complete each grid point.

9. Combine all of the local analysis into the global analysis.

We implement the LETKF on our mesh using the full 80 cells across with zone sizes of cen-
ter 10, and sides 15, resulting in 3200 local variables for 100 zones. In parallel, these 100 local
computations can all be carried out simultaneously over an arbitrary number of processors.

Adaptive covariance localization
Using the “square” sections of the loop to localize, we shift the zone to the left or right to follow
the dominate flow direction at the center of that local window. In Fig 5 a schematic of localiza-
tion using square, circular, and adaptive location shows a situation in which adaptive
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Fig 5. Schematic of the adaptive covariance localization. In Panel A we see a zonal (square) covariance that is most similar to the covariance used for
both control experiments and sliding covariance experiments. Panel B shows a localized covariance using a “local radius”, and Panel C shows an idealized,
fully adaptive covariance. While we are motivated by localization around flow structures like Panel C, we simply shift the covariance in Panel A so that our
method is most general and computationally efficient.

doi:10.1371/journal.pone.0148134.g005
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localization will potentially capture more relevant information for finding the analysis state of
any given cell. As we note in the caption of Fig 5, while we are motivated by localization around
flow structures like Panel C, we simply shift the covariance in Panel A so that our method is
most general and computationally efficient.

Denote the velocity vector of cells on a perpendicular slice of the loop at ~U , the tangent vec-

tor to the slice ~U by ~T , the zone width as zmax and then the localization shift αlocal for that slice
of the loop is taken to be

alocal ¼ floorðð~U � ~T Þ=max ðUÞ � zmaxÞ: ð10Þ

Dynamic mode decomposition
We employ the “standard” algorithm of Tu to compute the Dynamic Mode Decomposition
[33]. Tu’s “standard” algorithm is as follows with X and Y taken as the first and last N − 1 col-
umns of the snapshot matrix D:

X ¼ USV ðTake SVD of X:Þ
~A ¼ UTYVS�1 ðBuild theAmatrix:Þ

~Aw ¼ lw ðCompute eigenvectors and values:Þ
ŷw ¼ Uw ðCompute corresponding modes:Þ

Given a system state U� we project this state onto the DMD basis by taking the real part of
F = re(U� � w) and use the psuedoinverse to compute the projection as

ðFT � FÞ�1 � FT � U�:

This projection is a vector which contains the linear coefficients on the basis of DMDmodes
for the given state.

Results

Data assimilation
We confirm the performance of the DA methods described above by testing each (on the
Lorenz’63 system) for increasingly long times between observations, by increasing the DA win-
dow length in Fig 6. As the time between observations increases, the nonlinearity of the
Lorenz’63 system results in the failure of the EKF and difficultly for the EnKF with small
ensemble size. The ETKF and EnSRF perform the best of the methods tested and we chose the
ETKF for future use with the CFD model.

The results in Fig 6 rely on tuned covariance inflation, both additive and multiplicative, pre-
computed for each window and DA technique. We choose optimal additive inflation μ and
multiplicative inflation Δ by selecting for the lowest error in an exhaustive search through a
maximum factors of 1.5 in each, an example is shown in Fig 7. We use these optimal data
assimilation parameters (inflation factors) for the remainder of this work.

Limited observations & adaptive covariance
An initial test of prediction skill with limited observations in a twin model experiment showed
that we needed 1000 spatial measurements of the temperature to predict flow reversals within
1 assimilation window. In an attempt to decrease the required observations to a experimentally
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realizable number, we implement a simple, adaptively localized covariance for data assimila-
tion. Since we first saw a modest improvement in the prediction skill with full temperature
observations, we hope that this improvement increases and is sufficient to get down to needing
as few as 32 observations to predict reversals 1 assimilation window (of length 10 seconds) into
the future.

In Fig 8 we see that over an assimilation of 200 seconds, the ensemble converges on the hid-
den, true state. To test the performance of flow reversal prediction, we take the average of the
ensemble flow direction (the average of each value of ϕ) as the predicted flow direction, and
count how often we predict reversals both when they do and do not occur. Varying both the
number of model variables and the strength of covariance shifting in Fig 9, we find that covari-
ance shifting improves flow reversal prediction skill even when spatial observation density is
decreased. With full observations (spacing of 1), we obtain a the best predictions with a

Fig 6. The RMS error (not scaled by climatology) for our EKF and EnKF filters. Error is measured as the difference between forecast and truth at the end
of an assimiliation window for the latter 2500 assimiliation windows in a 3000 assimilation window Lorenz’63 run. Error is measured in the only observed
variable, x1. Increasing the assimilation window led to an decrease in predictive skill, as expected.

doi:10.1371/journal.pone.0148134.g006
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covariance shift of 2. For 1/2 and 1/5 observations [a spacing of 2 (5) to observe every other
(fifth) variable], we again have the best predictions with a shift of 2. And for a spacing of 10,
observing every 10th variable, we achieve greater prediction skill with a covariance shift of 10.

Computing the average flow direction inside a localized covariance zone is straightforward,
and computationally easy since the velocity is immediately available, making incorporation of
this scheme into any data assimilation method easy. Since observations are also sparse in large
weather models, we expect that using an adaptive local covariance scheme could lead to
improved prediction skill with sparse observations [34].

Fig 7. The RMS error averaged over 100 model runs of length 1000 windows is reported for the ETKF for varying additive andmultiplicative
inflation factorsΔ and μ. Each of the 100 model runs starts with a random IC, and the analysis forecast starts randomly. The window length here is 390
seconds. The filter performance RMS is computed as the RMS value of the difference between forecast and truth at the assimilation window for the latter 500
windows, allowing a spin-up of 500 windows.

doi:10.1371/journal.pone.0148134.g007
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Dynamic mode decomposition
To incorporate limited observations into a high-dimensional CFD simulation, we combine
ideas from both CFD literature and data assimilation to make predictions. We proceed with
Tu’s algorithm using snapshots every 10 seconds for the first 900 seconds of model time. A full
picture of this time series can be found in the Figure in S4 Appendix.

In this reduced space, we extract the modes that correspond to the instability leading to flow
reversals. With a known low-dimensional model of the thermosyphon dynamics, we take this
opportunity to test whether DMD can discover the underlying system. The time series of the
model state projection onto a specific DMDmode will represent the time dynamics of a mode
that is representative of a single low dimensional variable.

To look at all of the modes at once, we examine the average magnitude of the projection
from all model states onto each mode in comparison to the projection of all states that 1, 3, 5,

Fig 8. Convergence of 20 ensembles using sliding windows, starting from initially random states.Here, as in most of the experiments, only
temperature is observed and assimilated. Flux is computed as in Eq (4), on the left hand side of the thermosyphon, and scaled by a factor of 108. Assimilation
takes place every 10 model seconds.

doi:10.1371/journal.pone.0148134.g008
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and 7 time steps before a reversal. The magnitude of the mode projection of a predictive mode
before a reversal should stand out against the projection average across all states, and decay
back towards the average further from the reversal in time. For modes 21 and 79, we directly
observe in Fig 10 that the average projection from states just 1 second before reversal is the
most different from the average state projection, and the further away from the reversal the
more similar the states become to the average.

Fig 9. Prediction skill as fraction of reversals that we correctly predicted across different numbers of observations and sliding windows of
localized covariance. Decreasing observation density makes the prediction problemmore difficult while at the same time make the data assimilation stable
numerically, and we see a decrease in prediction skill with no covariance shifting. With covariance shifting, skill improves for each observational density and
most dramatically with less observation density.

doi:10.1371/journal.pone.0148134.g009
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We are particularly interested in whether the mode projection time series is predictive of
flow reversals, as is true with the hidden system. The insets of Panel A and Panel B in Fig 11
show two such timeseries, with stars indicating the time of flow reversals. Individually, these
modes increase in amplitude when flow reversals happen. As a dominant mode, the time series
of Mode 2 tracks closely to the timeseries from which the modes were generated, while the
dynamics of the projection of Mode 79 are less obvious.

By combining the state projection onto specific mode time series into a phase plane, the
combined signal from two modes is used for discovering states that separate reversals in direc-
tion and from other states in the phase plane. In Fig 11 we see that the dominant dynamics
from mode 2 plotted with those of mode 79 are able to strongly separate reversals into quad-
rants of the low-dimensional space. This result indicates that DMD could be used to improve
predictability of reversals.

Fig 10. The log10 average projection onto each DMDmode for different sets of model states. DMD constructed as snapshots every 10 seconds for the
first 900 seconds of model time, and model states from the first 2000 seconds are all projected onto the DMDmodes. All states average shown in black, and
the average of the subset of states that occur 1 second, 3 seconds, 5 seconds, and 7 seconds before a reversal are shown in other colors. The symmetry of
the loop generates modes that often come in pairs.

doi:10.1371/journal.pone.0148134.g010
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Concluding Remarks
The first output of our work is a general data assimilation framework for MATLAB and Julia.
By utilizing an object-oriented (OO) design, the model and data assimilation algorithm code
are separate and can be changed independently. The principal advantage of this approach is
the ease of incorporation of new models and DA techniques (code available at https://github.
com/andyreagan/julia-openfoam).

We next present the results pertaining to the accuracy of forecasts for synthetic data (twin
model experiments). There are many possible experiments given the choice of assimilation
window, data assimilation algorithm, localization scheme, model resolution, observational
density, observed variables, and observation quality. We focused on considering the effect of
observations and observational locations on the resulting forecast skill, and we find that there
is a threshold for the required number of observations to make useful predictions. In general,
and unsurprisingly, we see that increasing observational density leads to improved forecast
accuracy. With too few observations, the data assimilation is unable to recover the underlying
dynamics. Using adaptively localized covariance holds promise for data assimilation with data-
scarce models, to overcome the lack of data.

The ability of DMD to recover the lower dimensional dynamics is expected but with
240,000 variables is nonetheless an accomplishment. When modeling systems for which there
are unknown but useful dimension reductions, as demonstrated here, DMD can be a useful
tool to find such dimension reductions. When computational model runs are exceedingly
costly or time consuming, the best-guess state projection onto DMDmodes provides insights
into the system dynamics that could not otherwise be obtained.

The numerical coupling of CFD to experiment by DA should be generally useful to improve
the skill of CFD predictions of experiments. In addition, the CFD model can provide better
knowledge of unobservable quantities of interest in fluid flow that use the experimental data to

Fig 11. Panel A: The temperature profile of the thermosyphon of Mode 2, with inset of the projection of time series states onto Mode 2 (the projection
coefficient). The color scale on the thermosyphon spans the values 1 to 0 in the DMDmode. The inset figure is the projection coefficient from time 100 to time
5000, with the projection range being shown from -300 to 300 (as in Panel C) and the starred reversals labeled as in Panel C. Panel B: Likewise, the
temperature profile of the thermosyphon of Mode 79, with inset of the projection of time series states onto Mode 79 (the projection coefficient). The color
scale and inset figure axes are the same as Panel A. Panel C: A butterfly-shaped phase plane shows the value of the projection onto modes 2 and 79 for
each time in the first 2000 time steps of our ground truth model run. In blue and green stars the states that occur directly before a flow are highlighted, and are
isolated into separate quadrants of phase space.

doi:10.1371/journal.pone.0148134.g011
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find the analysis state provided by DA. Adaptive covariance localization further enhances the
benefit provided by DA in this context.
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