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PHYSICAL REVIEW E 85, 026201 (2012)

Empirical correction of a toy climate model

Nicholas A. Allgaier, Kameron D. Harris, and Christopher M. Danforth
Department of Mathematics and Statistics, Vermont Advanced Computing Core, Vermont Complex Systems Center,

The University of Vermont, Burlington, Vermont 05401, USA
(Received 3 July 2011; revised manuscript received 22 December 2011; published 2 February 2012)

Improving the accuracy of forecast models for physical systems such as the atmosphere is a crucial ongoing
effort. The primary focus of recent research on these highly nonlinear systems has been errors in state estimation,
but as that error has been successfully diminished, the role of model error in forecast uncertainty has duly
increased. The present study is an investigation of an empirical model correction procedure involving the
comparison of short forecasts with a reference “truth” system during a training period, in order to calculate
systematic (1) state-independent model bias and (2) state-dependent error patterns. An estimate of the likelihood
of the latter error component is computed from the current state at every time step of model integration. The
effectiveness of this technique is explored in a realistic scenario, in which the model is structurally different (in
dynamics, dimension, and parametrization) from the target system. Results suggest that the correction procedure
is more effective for reducing error and prolonging forecast usefulness than parameter tuning. However, the cost
of this increase in average forecast accuracy is the creation of substantial qualitative differences between the
dynamics of the corrected model and the true system. A method to mitigate dynamical ramifications and further
increase forecast accuracy is presented.

DOI: 10.1103/PhysRevE.85.026201 PACS number(s): 05.45.Pq, 47.52.+j, 92.60.Aa, 95.75.Pq

I. INTRODUCTION

Advances in computational power and increasingly accu-
rate techniques for estimating the current state of Earth’s
atmosphere have significantly improved numerical weather
prediction (NWP) [1–3]. As state estimation error is reduced
due to improved methods of data assimilation (DA), error in
the model tendency plays an increasing role in the uncertainty
of predictions at every temporal and physical scale [4–6].

In 1978, Leith introduced a statistical technique to correct
model tendency error, in which short model forecasts are
compared to a time series of reference “truth” states to estimate
both state-independent model bias, and state-dependent error
components which are approximated by a least-squares linear
function of the model state [7]. More recently, empirical cor-
rection has been employed with success in atmospheric models
with relatively few degrees of freedom (e.g., N = O(102)
in [8]), and low-dimensional modifications of the technique
involving, for example, singular value decomposition (SVD)
of the state-dependent correction operator (the least-squares
linear function proposed by Leith) have proven successful in
models with as many has O(105) degrees of freedom [9]. In this
study, we apply the original technique developed by Leith to
a simple three-dimensional Lorenz-like model [10], where in
addition to testing the effectiveness of empirical correction, we
aim to understand the dynamical ramifications of a statistical
approach to the correction of model tendency error.

The model tendency M(x) is defined as the change in state
variables over 1 time step of numerical integration, which we
denote as a time derivative:

M(x) ≡ ẋM, (1)

where x is the atmospheric state vector, typically with O(1010)
degrees of freedom for NWP. Note that xM represents the
model state, whereas xT will represent the true system state,
in terms of the model variables.

Given the state x of a physical system, M consists of all the
known physics, forcings, and parametrizations of sub-grid-
scale processes. To make a 1-time-step model forecast, we
approximate the true change in state variables over that time
by the model tendency, M(x) ≈ ẋT , and the error δM in that
approximation is called the tendency error:

δM = ẋT − M(x). (2)

Even with perfect estimates of the current state of the
atmosphere, the model tendency error would quickly separate
forecasts from the truth, due to the atmosphere’s chaotic
dynamics [11]. As a result, techniques for reducing the model
tendency error represent a current and active research area,
and those that are applicable independent of the specific
model are of special interest. Clearly, one would like to
improve the physics represented by M from first principles.
In what follows, we assume this improvement has met the
limit of diminishing returns, and move toward a statistical
approach.

The general strategy of empirical correction is to compare
short forecasts generated by a model to observations of the
system being modeled over some training period. If the state
space of the system is well represented by the training period,
and the model is a reasonable approximation of the true
system, the forecast error statistics can be used to create
an empirical correction that pushes the model closer to the
truth at each time step of numerical integration. Adjusting
the model every time step reduces the nonlinear growth of
tendency error, providing more effective error reduction than
a posteriori statistical correction [12]. This strategy is similar
to nudging or Newtonian relaxation in a DA context, where one
is assimilating observations, except that here we are nudging
with predicted, rather than observed, forecast error.

The present study is an investigation of a three-step
empirical correction procedure inspired by the work of Leith
[7], DelSole and Hou [8], and more recently Danforth et al.
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[9,13]. A preliminary experiment testing its effectiveness in
synchronizing Lorenz systems [10] with varied parameter
values is detailed in Appendix A. Here, we apply the correction
to an alternative model derived by Ehrhard and Müller [14]
tuned to approximate the evolution of a toroidal thermosyphon,
an experimental analog to the original Lorenz system. The
true climate is represented by a long-time, high-dimensional
computational fluid dynamics (CFD) simulation of the ther-
mosyphon. An analysis, which is an approximation of the
true system state in terms of model variables, is then created
by three-dimensional variational (3DVar) DA and used for
training and verification of the empirical correction. This
process mimics the application of empirical correction in an
operational NWP setting. We also verify the corrected model
by direct comparison with observations of the truth.

Results suggest that the correction procedure is effective
for reducing error. However, there is an associated cost of this
short-term error reduction, which is evidenced by substantial
qualitative differences between the dynamics of the corrected
model and the true system, differences that were not present
in the uncorrected model. Introduction of system-specific
knowledge into the correction procedure is shown to mitigate
some of that cost, and further improve error statistics.

The paper is structured as follows. In Sec. II we define the
procedure for a general model M , and in Sec. III we present
the thermosyphon model correction. Finally, we discuss the
results and conclude the paper in Sec. IV.

II. EMPIRICAL CORRECTION

The correction procedure employed in this experiment
consists of three steps: (A) training, (B) state-independent
correction, and (C) state-dependent correction. The state-
independent correction can be thought of as aligning the time
average of the model state with that of the true state. Likewise,
the state-dependent correction can be considered an alignment
of the model variance with that of the truth. To determine
the correction terms, we compare short model forecasts to
observations of the true system over a training period in a
process called direct insertion, pictured in Fig. 1.

A. Training

In general, comparing model forecasts to a true physical
system requires estimates of the true system state in terms of
the model state variables. Consider a vector time series xT (t)
of such estimates, which we will call the reference truth. The
amount of time h, measured in model time steps, between
estimates is called the analysis window; we assume it to be
constant.

The process of direct insertion begins with the generation of
a time series xM (t) of duration-h model forecasts, where each
forecast in the time series is initialized from the previous state
in the reference truth. The first vector in the series, for example,
will be xM (t0 + h), which is the model state resulting from
an h-time-step forecast started with initial condition xT (t0).
Subtracting each of the model forecast states xM (t) from
the corresponding reference true state xT (t) produces a third
time series �x(t) which represents the forecast errors after h

time steps. These errors result from differences between the

xT(t0) xT(t0+h) xT(t0+2h) xT(t0+3h)

xM(t0+h) xM(t0+2h) xM(t0+3h)

x(t0+2h) x(t0+3h)

-
=

model
forecast

analysis
correction x(t0+h)

Direct Insertion
analysis window

FIG. 1. The direct insertion procedure for comparing short model
forecasts to the truth to obtain a time series of analysis corrections. xT

represents a time series of the reference truth, and the analysis window
represents the number of time steps between estimations of the true
system state. xM represents a time series of forecasts with duration
equal to the analysis window, each of which is initialized from the
previous true state. The time average of the analysis corrections
〈�x〉 divided by the number of time steps in the analysis window
h approximates the average (state-independent) model bias b.

model rate of change and the true rate of change, and they are
commonly referred to as analysis corrections (or increments).
See Fig. 1 for a schematic of the procedure.

Finally, we separate each of the time series into anomalous
and time-average components:

xT ′
(t) = xT (t) − 〈xT 〉,

xM ′
(t) = xM (t) − 〈xM〉, (3)

�x′(t) = �x(t) − 〈�x〉,

where the expectation operator 〈·〉 denotes averaging over
the training period, and the primes denote anomalies, which
are differences from the mean. The time-average components
will be used for state-independent correction as described
in Sec. II B and the anomaly time series will be used for
state-dependent correction as detailed in Sec. II C.

B. State-independent correction

We turn our attention first to a state-independent correction
of the form,

ẋT ≈ M∗(x) ≡ M(x) + b, (4)

where the constant vector b is the average model tendency
error (bias) to be determined.

Recall that our goal here is to empirically align the time
averages of the state variables in the model to those of the
true system. We call the time-averaged true system state the
climatology, and we approximate it by 〈xT 〉, the average of the
reference true state over the entire training period. The average
of the analysis corrections 〈�x〉 over the training period
provides an estimate for the systematic, state-independent
error generated by the model during the analysis window, as
explained in Fig. 1. Dividing by the number of time steps in
the analysis window, then, we approximate the model bias by
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b = 〈�x〉/h, and the bias-corrected model tendency is thus
given by

M∗(x) ≡ M(x) + 〈�x〉
h

. (5)

Note that at this point we are approximating the model
tendency error δM by the model bias b alone. We also wish
to estimate any component of error that may depend on the
system state, by approximating δM ≈ b + Lx′, where L is a
matrix operator to be described in the next section.

C. State-dependent correction

To generate a linear state-dependent correction operator
L, we follow Leith [7] and DelSole and Hou [8], by first
recomputing the forecast and correction time series in Fig. 1
using the state-independent corrected model, M∗, and then
decomposing into mean and anomalous components. We seek
an improved model of the form,

ẋT ≈ M+(x) ≡ M∗(x) + Lx′, (6)

where M+ includes both stages of correction. Letting g =
δM+ = ẋT − [M∗(x) + Lx′] be the tendency error of the
improved model, we minimize the expected square tendency
error 〈gtrg〉, (where gtr is the transpose of g), with respect to
L. The minimization results in the formula,

L = 〈�x′xT ′tr〉〈xT ′
xT ′tr〉−1 ≡ C�xxT C−1

xT xT , (7)

as explained by Danforth et al. [9]. C�xxT is the average over
the training sample of cross covariance matrices obtained by
taking the outer product [�x′(t)] · [xT ′

(t)]tr for each time t .
CxT xT is the average true-state covariance matrix, and L is
known as Leith’s state-dependent correction operator.

When L operates on the current anomalous state x′, we
can think of it as doing two things: (1) C−1

xT xT operates on x′,
effectively relating the current state to the reference truth in
the dependent sample (i.e., giving the best representation of
the current state in terms of past states); and then (2) C�xxT

operates on the result, determining what correction should be
made. This allows the model correction to adjust to different
regions of state space, and explains why the state-dependent
correction can be thought of as attempting to align the model
and true-state variances.

In the next section, we describe the application of this three-
stage procedure to couple a low-dimensional model to a high-
dimensional toy climate simulation. We also note here that
the term corrected will imply the application of both state-
independent and state-dependent correction, unless explicitly
stated otherwise.

III. TOY CLIMATE MODEL

We now investigate the effectiveness of the correction
procedure in a realistic situation, where the forecast model is
structurally different (in dynamics, dimension, parametriza-
tion, etc.) from the true system. Consider a fluid-filled,
vertically oriented natural convection loop, or thermosyphon,
with circular geometry. The constant temperature imposed
on the wall of the lower half of the loop is greater than
the constant temperature imposed on the wall of the upper

half, resulting in a temperature inversion. For large enough
temperature differences convection dominates, and the flow
undergoes chaotic reversals of direction referred to as flow
regime changes, while remaining laminar [14,15]. These
dynamics produce forecasting difficulties similar to those
encountered in weather and climate prediction, and thus the
thermosyphon provides a useful platform on which to test
potential improvements to forecasting methods.

A. Experimental design

The true system was represented by numerical simulation
using the two-dimensional (2D) laminar Navier-Stokes equa-
tions along with the energy equation, and a finite-volume-
based flow modeling software package (FLUENT 6.3) was used
to perform the numerical integration; see [15] for details.
Almost 90 days of fluid behavior was generated, in which
O(104) flow reversals occurred. We also note that for the
Rayleigh number used in this experiment, Ra = 1.5 × 105,
the thermosyphon has two unstable convective equilibrium
solutions corresponding to steady clockwise and steady coun-
terclockwise flow [15,16].

The low-dimensional model used to make forecasts of the
CFD simulation is the Ehrhard-Müller (EM) system:

ẋ1 = α(x2 − x1),

ẋ2 = βx1 − x2(1 + KH (|x1|)) − x1x3, (8)

ẋ3 = x1x2 − x3(1 + KH (|x1|)),
where x1 is proportional to the mean fluid velocity, x2 is
proportional to the horizontal temperature difference in the
loop, and x3 is proportional to the deviation of the vertical
temperature profile from that of conduction. This system was
derived from physical principles to model a natural convection
loop [14,15], and for this study the parameters α = 7,β =
33,K = 0.07 were tuned empirically to best match the flow
reversal behavior of the CFD simulated thermosyphon.

The primary difference between EM and Lorenz systems is
H , a function that determines the velocity dependence of the
heat transfer between the fluid and the wall. This characteristic
of the flow is ignored by the Lorenz equations (i.e., K = 0).
H varies as the third root of the magnitude of the mean fluid
velocity for |x1| > 1, and as a fourth degree polynomial in
|x1| for |x1| � 1 to remain differentiable; the reader may see
[15] for more detail. We note that when K = 0 in the EM
equations (8), they are identical to the Lorenz system (A1)
shown in the appendix, with b = 1. Physically, the unitary
geometric factor (i.e., b = 1) in EM results from the forced
single circular convection cell in a thermosyphon, as opposed
to the unconstrained flow producing multiple cells between
two plates.

B. Training

Using a background forecast created with the EM model,
and observations of the CFD mean fluid velocity ū with
Gaussian noise added to simulate error, 3DVar data assimi-
lation was performed to generate an analysis, or best guess of
the true state of the system in terms of the variables of the
forecast model [15]. Approximately 3 days of 3DVar analysis,
corresponding to 432 time units in the EM forecast model, were
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used as the training period reference truth xT (t). The EM model
was integrated numerically with fourth-order Runge-Kutta and
a time step of κ = 0.01 time units. An analysis window of
h = 5 time steps, corresponding to about 30 s of simulated
flow, was used to match the frequency of observation in the
data assimilation scheme. Thus, 8640 short forecasts were used
to compute the model bias and Leith operator for the model,
as outlined in Sec. II.

C. Testing

Three forecast models were compared by verification
against both the 3DVar analysis and direct observation of the
mass flow rate ū in the CFD simulated thermosyphon: (1) the
uncorrected EM model with parameters tuned to best represent
observations of the CFD simulated mass flow rate; (2) the tuned
model with correction applied; and (3) an EM model whose
parameters differ from the tuned model by 10%, with correc-
tion applied. The purpose of the third test model is to gauge
the relative capabilities of empirical correction and parameter
tuning for error reduction and prolonging the usefulness of
forecasts.

A set of 1000 trial forecasts were performed, starting from
randomly chosen points in the analysis after (and independent
of) the training period. For each forecast, anomaly correlation
(AC) time series were computed with respect to the analysis
and averaged over all trials. Anomaly correlation is a metric
frequently used in weather and climate modeling to determine
the length of time for which a model forecast is useful. The
AC is given by

AC = xM ′ · xT ′

||xM ′ ||2||xT ′ ||2 , (9)

where xM ′
and xT ′

are the anomalous model state and
anomalous true state, respectively, at a particular time. AC
is essentially the dot product of the anomalous model state
with the anomalous true state, normalized such that AC = 1
for a perfect model. A forecast is typically considered useful
for as long as its AC remains above 0.6 [6]. See the top panel
of Fig. 2 for plots of average AC for each of the three tested
models.

We also verify the model forecasts against observed scalar
mass flow rate ū, for which time series of relative error were
averaged over the 1000 trials, pictured in the bottom panel
of Fig. 2. Two details are important in the computation of
the relative error. First, to compare model output to observa-
tions, it is necessary to convert the model state variables to
“observation-space” variables. In other words, an observation
operator determined by data assimilation was used to convert
the model state vector (x1,x2,x3)tr to an observation-space
value x̃1, which is the predicted mass flow rate of the system.
Second, the error is taken relative to the saturation point, which
we define as the average absolute difference between the mass
flow rates of the system at randomly chosen points in time.
Thus, an average relative error near 1 means that the forecast
model is no better than a random guess.

The results presented in Fig. 2 indicate that corrected
models, tuned or not, produce smaller short-term forecast
error on average than the uncorrected, optimally tuned model.
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FIG. 2. (Color online) Plots showing verification of the corrected
model with respect to (top) 3DVar analysis and (bottom) direct
observation of the CFD simulated mass flow rate ū. (Top) Empirical
correction produces forecasts that are useful approximately 25%
longer than forecasts of the uncorrected model. In addition, correction
of an untuned model (10% difference from optimal value in
every parameter) produces forecasts that are useful far longer than
the uncorrected but optimally tuned model. (Bottom) Corrected
models, tuned or not, show reduced error when verified against
direct observations of the mean fluid velocity in the simulation
as well.

Corrected model forecasts are thus typically useful for longer.
Though this is an important benefit, average short-term error
statistics may conceal considerable qualitative differences
between model dynamics and those underlying the true
system. Stability of equilibrium solutions, and changes of
flow regime characterized by aperiodic switching between
otherwise confined regions of state-space are examples of
qualitative characteristics for which it may be crucial that the
model dynamics match those of the truth.

To measure the accuracy of models with regard to matching
the flow reversal behavior of the true system, forecasts were
generated with both the corrected and uncorrected EM models
for 5000 initial states throughout the attractor, from the
testing portion of the 90-day 3DVar analysis. The time of
the first predicted flow reversal was recorded for each one. We
investigate the difference between the predicted times and the
actual times (from the analysis) of first flow reversal, taken
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uncorrected model

corrected

−40 −20 0 20 40

FIG. 3. (Color online) Difference (in minutes) between predicted
and actual time of first flow reversal, plotted by initial state, for
the uncorrected (top) and corrected (bottom) models. The difference
was taken tmodel − tactual, so that positive values (toward red, e.g.,
left lobe, and very center of right lobe, bottom panel) indicate late
predictions while negative values (toward blue, e.g., both lobes, top
panel, and ring around center of right lobe, bottom panel) indicate
early predictions. First, note that for initial states near the edge of
the attractor, in either lobe, each model performs well in predicting
the coming flow reversal. For these initial states the change of
flow regimes is imminent, and thus easily predicted. Next, observe
that when the uncorrected model errs, it almost always makes an
early prediction. Model trajectories close to the unstable convecting
equilibria oscillate with larger amplitude than in the true system.
One might expect that empirical correction would counteract the
effect, and in fact that is apparent (bottom). However, rather than
improving flow reversal prediction, the results here indicate extreme
overcorrection. The dark red dots are not 40-min late predictions; the
limit of the color axis was chosen to better illustrate the spread in the
remaining data. In actuality, the corrected model predicts that a flow
reversal will never happen for those initial states. Finally, observe
that the empirical correction has manufactured a lobe asymmetry,
characterized by the much smaller region of dark red in the right lobe.

tmodel − tactual, so that positive values indicate late predictions
while negative values indicate early predictions. See Fig. 3 for
plots of the results.

corrected
uncorrected

FIG. 4. (Color online) The first 20 min of a forecast for an initial
state attracted to the left-lobe convective equilibrium stabilized by the
empirical correction (i.e., one of the dark red dots near the center of the
left lobe in the bottom of Fig. 3). The uncorrected EM model trajectory
(blue dash) behaves as it should, winding away from the equilibrium
at the center of the lobe, whereas the trajectory of the corrected model
(solid red) collapses toward the equilibrium solution, indicating false
stability produced by correction. The source of the false stability is
the overcorrective nudging visible as jumps (every 30 s, the length of
the analysis window) on the red curve. The correction is attempting
to lengthen flow regimes, a consequence of the blue regions near the
equilibria in the top of Fig. 3.

Three unforeseen dynamical ramifications of empirical
correction for this system that are apparent in Fig. 3 can be
summarized as follows:

(1) Stabilization of convective equilibrium solutions
(2) Elimination of flow reversal behavior for states in a

neighborhood of either convective equilibrium
(3) Spurious dynamical asymmetry between lobes
The origins of these effects are derived mathematically

in Appendix B, and a single model trajectory demonstrating
equilibrium stabilization appears in Fig. 4. We emphasize that
the qualitative behavior of the corrected model is substantively
different from that of the uncorrected model, which matches
the behavior of the CFD simulated truth. This is true despite
the fact that the corrected model shows improved average
error statistics. However, it is possible to adjust the correction
procedure to mitigate this effect by directly incorporating
dynamical knowledge of the true system, which is the subject
of the next section. Note that in doing so, we sacrifice the
general applicability of the technique.

D. Incorporating dynamical knowledge

To encode dynamical knowledge of the system in the
empirical correction procedure, the state space is partitioned
into regions based on qualitative behavior, and then a separate
bias term b and state-dependent correction operator L are
computed for each region. For example, in the context of
weather forecasting, the state space of the atmosphere could
be divided by stage in the El Niño oscillation, or by day and
night, or local season for regional models. Figure 3 suggests
two ways to partition the state space in the present context:
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(1) by flow regime direction (lobe); or (2) by distance from
the nearest convective equilibrium solution. In each case, the
state space is decomposed into two regions, left vs right lobe,
or near vs far from equilibrium, respectively. In addition to
testing the correction procedure using each of these strategies
individually, a procedure applying them simultaneously, which
results in a partition of the state space into four regions, is also
tested.

1. Lobe dependence

To generate lobe-dependent bias correction terms and
state-dependent correction operators, two regions L1,2, cor-
responding to flow regimes of opposite direction, are defined
by

L1 = {x : x1 < 0}, L2 = {x : x1 � 0}, (10)

noting that their union is the entire state space. Physically,
L1 (L2) represents all states undergoing clockwise (counter-
clockwise) convection. Next, the direct insertion procedure
illustrated in Fig. 1 is modified to produce two subsequences
of the analysis correction time series, �xL1 and �xL2 , that
correspond to two subsequences of the analysis time series,
xT

L1
and xT

L2
, respectively, where

xT
L1

= {xT (t) : xT (t) ∈ L1}, (11)

and xT
L2

is defined similarly. These subsequences are separated
into mean and anomalous components, as in Eq. (3), using
means over each individual subsequence. Finally, the separate
correction terms and operators are computed by

bLk
=

〈
�xLk

〉
h

, LLk
= C�xLk

xT
Lk

C−1
xT

Lk
xT

Lk

, (12)

for k = 1,2. To apply the lobe-dependent correction, at
every time step of numerical integration the current state is
determined to be in either L1 or L2, and the appropriate bias
correction term and state-dependent operator are applied to
advance the model.

2. Dependence on distance from equilibrium

A procedure analogous to that for lobe-dependent correc-
tion is applied here. Two regions E1,2, corresponding to near
and far from equilibrium, respectively, are defined by

E1 = {x : min(||x − x1||2,||x − x2||2) < rc},
(13)

E2 = {x : x /∈ E1},
where x1 and x2 are the convective equilibria (estimated
from the parameters of the uncorrected model [15]), and the
critical radius rc is a parameter for the procedure. We are
effectively approximating the neighborhoods attracted to the
convective equilibria by spheres of radius rc. For all results
shown in the paper, the critical radius rc = 8.5 was used,
though error statistics and dynamical matching capability
were virtually unaffected by changing this parameter by
25% in either direction. This range of critical values was
tested as estimates to the average radius of the dark red
region in the left lobe of Fig. 3 (bottom). Continuing with
the correction scheme, direct insertion is modified as in the
lobe-dependent correction, and the region-specific bias terms

and state-dependent operators are calculated as in Eq. (12),
substituting Ek for Lk . Application of the correction to a
forecast model also proceeds in the same fashion.

3. Simultaneous lobe and equilibrium dependence

Defining the lobe regions L1,2 as in the lobe-dependent
section, and the equilibrium regions E1,2 as in the previous
section, we define the four regions for simultaneous lobe and
equilibrium-dependent correction by

R1 = L1 ∩ E1, R2 = L1 ∩ E2,
(14)

R3 = L2 ∩ E1, R4 = L2 ∩ E2,

so that we modify direct insertion to produce four subse-
quences of analysis increments, each paired with the appro-
priate subsequence of the analysis time series. Note that the
critical radius rc used in defining the regions E1,2 does not
depend on the lobe in this scheme. Allowing a different rc for
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FIG. 5. (Color online) Average AC (top) and mass flow rate
relative error (bottom) over 5000 trials for models that were as
follows: uncorrected (thick solid blue), corrected (green dash-
dot), equilibrium-dependent (ED) corrected (cyan dash), lobe and
equilibrium-dependent (LD-ED) corrected (black dot), and lobe-
dependent (LD) corrected (solid red). Lobe-dependent correction
produces forecasts that are useful for almost twice as long as those
made by the uncorrected model, on average. When compared to
the dynamically uninformed correction scheme (green dash-dot),
lobe-dependent correction more than doubles the improvement over
the uncorrected model.
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each lobe is a possible modification that was not tested. We
compute the bias terms and Leith operators as in Eq. (12),
substituting Rk for Lk , where now k = 1,2,3,4. Again,
application of the correction proceeds as in the individual
dynamically informed schemes, where the current state is
determined to be in one of the four defined regions, and the
appropriate bias term and Leith operator are used to advance
the model.

E. Results of dynamically informed correction

Figure 5 shows average AC and mass flow-rate relative
error over 5000 trials for the three dynamically informed and
corrected models, as compared to the original biased model
and the dynamically uninformed, corrected model. Encoding
the current flow regime into the correction procedure results
in a forecast model that is useful for almost twice as long as
the original biased model, and doubles the improvement that

was gained by dynamically uninformed empirical correction.
Encoding distance from equilibrium, on the other hand, does
not greatly prolong usefulness, and in fact reduces it slightly
when applied simultaneously with lobe-dependent correction.

In Fig. 6, we see how the three forecast models resulting
from dynamically informed empirical correction compare with
the dynamically uninformed, corrected model, with regard to
matching the qualitative behavior of the true system. We see
a trend of improvement, characterized by smaller regions of
states whose dynamics are different in the models than in the
CFD simulated thermosyphon (dark red regions), as we apply
first lobe-dependent, then equilibrium-dependent, and finally
simultaneously lobe- and equilibrium-dependent correction.

Results shown in Figs. 5 and 6 suggest that encoding
flow regime direction into the correction procedure primarily
enhances forecast statistics, while encoding distance from
equilibrium primarily enhances dynamical matching. Simul-
taneous inclusion of the two types of dynamical cues results in

(a) corrected (b) LD corrected

(c) ED corrected (d) LD−ED corrected

−40 −30 −20 −10 0 10 20 30 40

291
718

1157 871

2240

2276

2772

2982

FIG. 6. (Color online) Difference in minutes between predicted and actual time of first flow reversal, plotted by initial state, for the (a)
corrected, (b) lobe-dependent corrected, (c) equilibrium-dependent, and (d) lobe and equilibrium-dependent models. Inset partial histograms
show the number of forecasts (out of 5000) predicting the first flow reversal within 3 min of the truth (light, green) and predicting that a
flow reversal will never happen (dark, red); bar colors correspond to dot colors. (b) Applying lobe-dependent correction [compared with (a)
dynamically uninformed correction] increases the number of initial states for which the first flow reversal is predicted accurately (bigger light
green bar). In addition, although the region of dark red (initial states attracted to convective equilibrium) in the left lobe has decreased in size,
the one in the right lobe has inflated (all dark dots in right lobe are now red). (c) Equilibrium-dependent correction shrinks the left-lobe red
region without inflating the one in the right lobe. However, it maintains the region of initial states for which flow reversal predictions are slightly
early (light ring around center of right lobe), which was reduced by the lobe-dependent correction. (d) Applying the simultaneously lobe- and
equilibrium-dependent correction results in a forecast model that demonstrates the smallest region of initial states whose qualitative dynamics
are different from the CFD simulated thermosyphon.
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TABLE I. Median absolute differences between predicted and
actual times of first flow reversal, and percentage of trials for
which the first flow reversal was predicted within 1 and 2 min,
for the uncorrected model (M), dynamically uninformed corrected
model (CM), lobe-dependent (LD), equilibrium-dependent (ED), and
simultaneously lobe and equilibrium-dependent (LD-ED) corrected
models.

M CM LD ED LD-ED

Median 4 10 1.5 10.5 1.5
% within 1 min 38.26 38.54 49.12 38.68 48.64
% within 2 min 47.04 43.40 54.38 43.58 57.08

the best dynamical matching, with only a slight cost in average
forecast accuracy (with respect to solely lobe-dependent
correction). For further evidence of this summary conclusion,
consider Table I.

The median absolute differences between predicted and
actual times of first flow reversal over the 5000 trials are
listed for the uncorrected model (M), dynamically uninformed
corrected model (CM), lobe-dependent (LD), equilibrium-
dependent (ED), and simultaneously lobe- and equilibrium-
dependent (LD-ED) corrected models. The LD and LD-ED
models predict the first flow reversal more accurately than the
uncorrected model. The bottom two rows show the percentage
of the 5000 trials for which the first flow reversal was predicted
within 1 and 2 min, respectively, for each of the models.
Again the LD and LD-ED models perform best. Note that
the LD-ED model boosts both the 1- and 2-min success rates
by approximately 10% over the uncorrected model.

We note, however, that even the LD-ED model exhibits a
spuriously stable convective equilibrium in each lobe (Fig. 6).
Incorporating dynamical knowledge of the true system in
the correction procedure, at least through the partitioning of
state space as we have done here, is not enough to avoid the
stabilizing effect of empirical correction on the equilibria of
the EM model. It is plausible that models of other systems
with weakly repelling (attracting) equilibria might be subject
to similar stabilizing (destabilizing) effects under empirical
correction. Such effects might be mitigated by the strategy
employed in the present work, but probably not avoided.

IV. CONCLUDING DISCUSSION

It is apparent from the results of this work that empirical
correction is successful in reducing forecast error in the low-
dimensional setting. Improved error statistics and prolonged
usefulness of forecasts were demonstrated by all corrected
models. Furthermore, the empirical correction procedure was
shown to provide greater improvement in average forecast ac-
curacy than fine-tuning of parameters, in both the preliminary
experiment detailed in Appendix A and the toy climate model.

These results suggest that empirical correction could be
a viable complement to the tuning of model parameters.
Particularly as degrees of freedom become large (e.g., N ≈
1010 in some operational numerical weather models), the
computational cost of parameter tuning is large in comparison
to that of empirical correction, when appropriately modified

for such models (see [9,13]). An example of such a modifi-
cation is to compute the first m 
 N principal components
(PCs) of L by singular value decomposition (SVD), where
m is determined so that a certain percentage of the state
covariance is explained by these first m PCs. A combined
tuning and correction approach could reduce the number of
model integrations necessary in the parameter tuning process
without sacrificing model accuracy. However, the dynamical
ramifications of this strategy must be considered.

The reduction in average forecast error provided by em-
pirical correction belies fundamental dynamical disturbances
born out of the correction procedure. Though these costs
can be mitigated somewhat by hard-wiring system-specific
dynamical cues into the correction procedure, they cannot
be eradicated without more fundamental alterations of the
technique (e.g., forcing the bias term b and Leith operator L to
preserve system symmetry). In operational practice, empirical
correction is known to introduce imbalances (e.g., violating
geostrophy), necessitating some mechanism for smoothing the
flow into a physically viable region of state space.

In fact, it may be impossible to avoid all dynamical
inaccuracies resulting from empirical correction, and even if
theoretically possible, it would likely be impractical to do so
in any operational setting. In considering the application of the
technique in operational settings, then, it must be determined
if the effects of misrepresented dynamics can be reduced to a
tolerable level on a case-by-case basis. In the ideal situation,
misrepresented regions of state space could be reduced by
minor modifications to the correction procedure, to encompass
only unrealistic or unlikely physical states. In any case, the
technique presented in this study should not be applied without
such considerations.
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APPENDIX A: PERFECT MODEL SCENARIO

As a first step in the investigation of empirical correction,
we consider its application to a model originally studied
by Lorenz [10]. The system of equations (A1) represents
fluid flow between two plates, Rayleigh-Bénard convection,
in which convection cells form for certain parameter ranges.
However, with only slight modification (the details of which
appear in Sec. III A), they also describe the flow in a
natural convection loop [14,15]. Lorenz systems are covered
exhaustively in publication [17,18], and thus provide a familiar
platform on which to perform preliminary tests of strategies
for predicting the future state of chaotic systems.
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truth
uncorrected
corrected

FIG. 7. (Color online) Trajectories of the truth (r = 28), a model
with r perturbation -2 (r = 26), and the corrected model using an
analysis window of h = 8 time steps. All start from the same initial
condition (circle), and represent 2 time units (200 time steps) of
integration (concluding with squares). Note that the corrected model
trajectory is well aligned with the true trajectory for much longer than
the uncorrected model trajectory. Even after it deviates noticeably,
the corrected model trajectory changes flow regimes (switches lobes)
with the true trajectory. In contrast, the uncorrected model trajectory
deviates from the true trajectory almost immediately, and remains in
the initial lobe.

1. Experimental design

In this perfect model scenario, the true system and the
models share the structure of (A1) and only differ in parameter
values. Specifically, a true or nature run was created by
integrating the Lorenz system,

ẋ1 = σ (x2 − x1),

ẋ2 = rx1 − x2 − x1x3, (A1)

ẋ3 = x1x2 − bx3,

with the standard parameter set: σ = 10, b = 8/3, r = 28.
Models with the same σ and b, but with r values varying
from 25 to 31 in increments of 0.5 (except for r = 28) were
the subjects for correction. For each of these 12 models, the
correction algorithm was performed using the four different
analysis windows h = 1,2,4, and 8 time steps, resulting in
48 distinct model-correction pairs in an exponential design.
The training and testing of the corrected models is detailed in
the following sections, and a picture showing one particularly
positive outcome appears in Fig. 7.

2. Training

A 100-time-unit nature run was generated by integrating
system (A1) from the initial condition x0 = [1.508870, −
1.531271, 25.46091]tr (see [19]) for 10 000 time steps of
κ = 0.01 time units each, using fourth-order Runge-Kutta.
For each of the 12 models and four analysis windows, a time
series of short forecasts was generated by direct insertion (see
Fig. 1). As an illustrative example, consider training with an
analysis window of h = 4. The first forecast, xM (t0 + 4), is a 4-
time-step model forecast started with the true initial condition

xT (t0) = x0. The second forecast, xM (t0 + 8), is a 4-time-step
model forecast started with the true state xT (t0 + 4), and so
on, resulting in 10 000/4 = 2500 total short forecasts. The
state-independent correction 〈�x〉/h and static Leith operator
L were then computed as described in Sec. II.

Note that the training design imparts a statistical disadvan-
tage upon the use of wider analysis windows. Specifically,
doubling the analysis window halves the number of samples
in the training period. The design was chosen, despite this
prejudice, to more accurately reflect an operational imple-
mentation in which the training data are likely to be drawn
from a fixed period of time. However, to further support
the validity of comparisons between models corrected with
different analysis windows, we note that letting the training
period be 10 000h, ensuring that the number of samples is
held constant at 10 000, yields results that are qualitatively
indistinguishable from those presented here.

3. Testing

A new nature run, 10 000 time units (one million time steps)
in length, was generated starting from the last true state in the
training period. The purpose of beginning at the end of the
training period was to obtain an independent truth with which
to test the effectiveness of the corrected models. For each of the
48 corrected models, 1000 randomly selected states from this
new nature run were used as the initial state, and both the uncor-
rected and corrected models were integrated for 20 time units.

The metric used to measure forecast accuracy was anomaly
correlation (AC), which is frequently used in weather and
climate modeling to determine the length of time for which a
model forecast is useful. The AC is given by Eq. (9) in the main
text. AC = 1 for a perfect model, and a forecast is typically
considered useful for as long as its AC remains above 0.6 [6].
The AC scores for each model, corrected and uncorrected, were
averaged over 1000 trials to provide a good representation of
model performance. See Fig. 8 for AC plots demonstrating
the effects of changing analysis window length and parameter
perturbation in the original model on the duration of useful
forecasts.

Results suggest that empirical correction has the potential
to provide forecasts that are useful for much longer. Training
with an analysis window of 1 time step, the corrected model
forecasts are useful for nearly four times longer than the
uncorrected model forecasts. In light of the sensitivity of
AC to analysis window length, the bottom panel of Fig. 8
suggests that the accuracy of parameter values matters less
for the effectiveness of the corrected model, as measured by
error statistics, than does the frequency of observations in
training.

A summary representation of the data in Fig. 8 is shown in
Fig. 9, where the duration of forecast usefulness is plotted
versus analysis window in the top panel, and versus r

perturbation in the bottom panel. The corrected models with
greatest r perturbation (parameter error > 10%) outperform
the uncorrected models with least r perturbation (parameter
error < 2%). Surprisingly, this remains true even when
correcting with an analysis window of 2 time steps (not shown).
For systems with reasonably small model errors, this indicates
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FIG. 8. (Color online) (Top) Plots of average AC over 1000 trials
for the uncorrected (thick solid blue) and corrected models (all with
r = 26) using analysis windows of h = 8, 4, 2, and 1, black dot, red
dash-dot, green dash, solid magenta, respectively. Performance drops
as the analysis window widens. Note, however, that even with h = 4
time steps the corrected model provides a useful forecast for twice
as long as the uncorrected model. (Bottom) Plots of average AC for
models corrected with an analysis window of 1 time step, and r =
25, 26, and 27, black dot, blue dash, and solid red, respectively. The
greater the magnitude of r perturbation, the more difficult it is to
correct successfully. Similar results are observed for r values greater
than 28.

that empirical correction may improve forecasts more readily
than parameter tuning.

APPENDIX B: DYNAMICAL RAMIFICATIONS
OF CORRECTION

1. Stabilization of equilibrium solutions

Jacobian analysis of the EM equations (8) provides analyt-
ical confirmation of the instability of the convective equilibria
in the uncorrected model. Specifically, the Jacobian evaluated
at each equilibrium has one negative real eigenvalue, whose
eigenvectors are in the local direction of (tangent to) the stable
manifold of the equilibrium, and a conjugate pair of complex
eigenvalues with positive real part, whose 2D eigenspace is
locally tangent to the unstable manifold of the equilibrium.
In fact, for both convective equilibria the positive real parts
of these unstable eigenvalues are quite small, on the order of
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FIG. 9. (Color online) Plots of the duration of useful forecasts
(first time AC=0.6) versus analysis window (top) and r perturbation
(bottom). (Top) The drop in duration of useful skill with analysis win-
dow suggests an asymptotic decrease in the value of correction toward
no improvement from the uncorrected r = 26 model. (Bottom) Using
an analysis window of 1 time step, we plot the duration as a function of
r perturbation. The black diamond is the average duration of a useful
forecast for an exact model (true system with initial state perturbed
on the order of 10−3), representing the limit of predictability imposed
by initial condition uncertainty. Note that the corrected models with
greatest r perturbation outperform the uncorrected models with least
r perturbation.

10−2, indicating weakly repelling instability. In the following
we explain analytically the mechanism by which empirical
correction overcomes this weak repulsion, producing a forecast
model with attracting, and thus stable, convective equilibria
(see Fig. 4).

Empirical correction of the EM model effectively alters the
right-hand side of the differential equations (8) by first adding
a constant related to the bias term b, and then adding a term that
depends linearly on the model state (i.e., something related to
Lx′). Letting fM be the vector-valued EM differential equation,
and fM+

be the corrected equation, we write

fM+ = fM + b0 + L0x′, (B1)

where

b0 = lim
κ→0

b and L0 = lim
κ→0

L (B2)
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can be thought of as the computed bias term and Leith operator,
respectively, for an infinitesimal time step κ . Because of the
nonlinearity of the system, we cannot determine the exact
relationship between the infinitesimal correctors b0 and L0,
and the bias term b and Leith operator L, respectively, that we
compute using a time step of κ = 0.01 and analysis window
of h = 5 time steps. However, since we discretize fM+

in
numerical integration, we can determine the b0 and L0 that
we actually apply. We effectively approximate the correction
terms,

b0 ≈ b
κ

= 100b and L0 ≈ L
κ

= 100L, (B3)

within the fourth-order Runge-Kutta scheme.
Now, armed with an analytical representation of the

differential equations fM+
, we note the following relationship

between the corrected model Jacobian DfM+
, and that of the

uncorrected EM model DfM :

DfM+ = DfM + L0 ≈ DfM + 100L, (B4)

since the constant bias term b0 disappears and L0 operates
on a translation of the model state. We evaluate the Jacobian
of the corrected model at each convective equilibrium, and
determine its eigenvalues. Indeed, the real part of the complex
conjugate eigenvalues, for each convective equilibrium, is
negative for the corrected model fM+

, and thus the convective
equilibria have stabilized.

The equilibria attract all states inside neighborhoods around
them, which thereby separate state space near the attractor into
regions whose trajectories will either change flow regime at
least once, or not at all. See Fig. 4 for an example of this
effect. Furthermore, any trajectories that land in one of these
neighborhoods after only one or two flow reversals, which
might occur within the expected 17-min duration of useful
forecasts for the corrected model reported in Fig. 2, will then
approach steady convection. This behavior is in qualitative
opposition to that of the true system, and that of the original
uncorrected EM model, for which steady convection in a single
direction is an unstable equilibrium.

2. Broken symmetry

The size discrepancy between left- and right-lobe regions
attracted to the convective equilibria of the corrected model
revealed in Fig. 3 demonstrates that empirical correction
breaks the symmetry of the EM system. As in the conventional
Lorenz system (A1), the EM system (8) is symmetric under
the mapping (x1,x2,x3) �→ (−x1, − x2,x3). Again letting fM

be the vector-valued EM differential equation, this symmetry
implies that fM commutes with a certain matrix A, that is,

AfM (x) = fM (Ax), A =
⎡
⎣

−1 0 0
0 −1 0
0 0 1

⎤
⎦ . (B5)

Empirical correction breaks this symmetry in two ways.
First, recall that after bias correction alone we have changed
the EM system by adding a constant vector to the right-hand
side of the differential equation. Letting fM∗

represent the bias-

corrected differential equation, fM∗
does not commute with A

unless there is zero bias in x1 and x2, that is,

AfM∗
(x) = fM∗

(Ax) ∀ b0 =
⎡
⎣

0
0
b3

⎤
⎦ , (B6)

where b3 can be any constant, and we recall that b0 = limκ→0 b
can be thought of as the computed bias term for an infinitesimal
time step κ . Note that even if no bias in x1 or x2 existed, the
probability of statistically computing a bias term b that would
preserve the symmetry of the EM system is zero.

In the unlikely case that a bias term is computed that
preserves symmetry, or such a bias term is forced, state-
dependent correction will break it. Assuming that fM∗

does
commute with A, and letting fM+

be the fully corrected
differential equation, then

AfM+
(x) = fM+

(Ax) ⇐⇒ AL0 = L0A. (B7)

In other words, fM+
commutes with A if and only if L0 =

limκ→0 L commutes with A. This forces the computed L to be
of the form,

L =

⎡
⎢⎣

�11 �12 0

�21 �22 0

0 0 �33

⎤
⎥⎦ , (B8)

where the �ij can be any constants. Of course the probability
of computing such an L statistically is also zero. Therefore,
both bias and state-dependent correction break the symmetry
of the EM model.

APPENDIX C: BIAS CORRECTION VERSUS
LEITH OPERATOR

State-independent error correction by itself produces almost
no improvement in any of the forecast models in this study.
This is in contrast to what has been observed in operational
weather and climate model studies, where state-independent
bias correction typically outperforms state-dependent correc-
tion in reduction of forecast errors [20]. The inaccuracies
of ad-hoc forcings included in such models to compensate
for external and/or irresolvable phenomena (e.g., solar and
cloud forcings, respectively) are likely responsible for a large
component of the bias. In light of the lack, or minimal
nature of such external and subgrid-scale influences in the toy
models considered here, the ineffectiveness of bias correction
is logically consistent with this explanation.

The state-dependent Leith operator is entirely responsible
for the success of the corrected models in this study. In the
perfect model scenario this makes sense because the difference
between the forecast models and the “truth” model are
inherently multiplicative (i.e., the parameters are coefficients
weighting the interaction between state-variable values) and
thus resulting errors must depend on state. For the EM
model of the CFD system, it seems that errors resulting from
the low dimensionality of the forecast model may also be
multiplicative in nature. If this is the case, state-dependent
correction may reduce error patterns in operational models that
result from reduced dimensionality (e.g., coarse resolution).
The correction will not likely compensate for processes that
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are irresolvable due to coarse resolution, but rather may reduce
the propagation of error resulting from the omission of such
phenomena. This hypothesis is consistent with demonstrated
improvement of local behavior in state-dependent corrected
atmospheric models with N ≈ 105 degrees of freedom [9].

In previous studies of state-dependent correction in models
that are much more realistic than those considered here,
resulting error reduction has been minuscule in comparison to

what is achieved by bias correction. However, this is not cause
to reject the usefulness of parameterizing state-dependent
error. Though globally averaged error reduction may not be
significant, improvement in the local behavior of models
can have a large impact on forecast uncertainty, particularly
in an ensemble strategy where state-dependent correction
can increase the spread in previously unsampled state-space
directions.
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