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Abstract. Lateral carbon flux through river networks is an
important and poorly understood component of the global
carbon budget. This work investigates how temperature
and hydrology control the production and export of dis-
solved organic carbon (DOC) in the Susquehanna Shale
Hills Critical Zone Observatory in Pennsylvania, USA. Us-
ing field measurements of daily stream discharge, evapo-
transpiration, and stream DOC concentration, we calibrated
the catchment-scale biogeochemical reactive transport model
BioRT-Flux-PIHM (Biogeochemical Reactive Transport–
Flux–Penn State Integrated Hydrologic Model, BFP), which
met the satisfactory standard of a Nash–Sutcliffe efficiency
(NSE) value greater than 0.5. We used the calibrated model
to estimate and compare the daily DOC production rates (Rp;
the sum of the local DOC production rates in individual grid
cells) and export rate (Re; the product of the concentration
and discharge at the stream outlet, or load).

Results showed that daily Rp varied by less than an or-
der of magnitude, primarily depending on seasonal temper-
ature. In contrast, daily Re varied by more than 3 orders of
magnitude and was strongly associated with variation in dis-
charge and hydrological connectivity. In summer, high tem-
perature and evapotranspiration dried and disconnected hill-
slopes from the stream, driving Rp to its maximum but Re
to its minimum. During this period, the stream only exported

DOC from the organic-poor groundwater and from organic-
rich soil water in the swales bordering the stream. The DOC
produced accumulated in hillslopes and was later flushed out
during the wet and cold period (winter and spring) when Re
peaked as the stream reconnected with uphill and Rp reached
its minimum.

The model reproduced the observed concentration–
discharge (C–Q) relationship characterized by an unusual
flushing–dilution pattern with maximum concentrations at
intermediate discharge, indicating three end-members of
source waters. A sensitivity analysis indicated that this non-
linearity was caused by shifts in the relative contribution of
different source waters to the stream under different flow
conditions. At low discharge, stream water reflected the
chemistry of organic-poor groundwater; at intermediate dis-
charge, stream water was dominated by the organic-rich soil
water from swales; at high discharge, the stream reflected
uphill soil water with an intermediate DOC concentration.
This pattern persisted regardless of the DOC production rate
as long as the contribution of deeper groundwater flow re-
mained low (< 18 % of the streamflow). When groundwater
flow increased above 18 %, comparable amounts of ground-
water and swale soil water mixed in the stream and masked
the high DOC concentration from swales. In that case, the C–
Q patterns switched to a flushing-only pattern with increasing
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946 H. Wen et al.: The temperature and hydrology control on the production and export of DOC

DOC concentration at high discharge. These results depict
a conceptual model that the catchment serves as a producer
and storage reservoir for DOC under hot and dry conditions
and transitions into a DOC exporter under wet and cold con-
ditions. This study also illustrates how different controls on
DOC production and export – temperature and hydrological
flow paths, respectively – can create temporal asynchrony
at the catchment scale. Future warming and increasing hy-
drological extremes could accentuate this asynchrony, with
DOC production occurring primarily during dry periods and
lateral export of DOC dominating in major storm events.

1 Introduction

Soil organic carbon (SOC) is the largest terrestrial stock of
organic carbon, containing approximately 4 times more car-
bon than the atmosphere (Stockmann et al., 2013; Hugelius
et al., 2014). Understanding the SOC balance requires the
consideration of lateral fluxes in water, including dissolved
organic and inorganic carbon (DOC and DIC, respectively),
and vertical fluxes of gases such as CO2 and CH4 (Chapin
et al., 2006). Both lateral and vertical fluxes influence SOC
mineralization to the atmosphere (Campeau et al., 2019), al-
though lateral fluxes are arguably less understood and inte-
grated into Earth system models (Aufdenkampe et al., 2011;
Raymond et al., 2016). Lateral fluxes from terrestrial to
aquatic ecosystems are similar in magnitude to net vertical
fluxes (Regnier et al., 2013; Battin et al., 2009), highlight-
ing the importance of quantifying the controls on the lateral
carbon (C) flux. In addition to its role in the global C cycle,
DOC is an important water quality parameter that can mobi-
lize metals and contaminants as well as imposing challenges
for water treatment (Sadiq and Rodriguez, 2004; Bolan et al.,
2011). DOC also regulates food web structures by acting as
an energy source for heterotrophic organisms and interacts
with other biogeochemical cycles (Malone et al., 2018; Ab-
bott et al., 2016).

SOC decomposition and DOC production have been stud-
ied extensively (Abbott et al., 2015; Hale et al., 2015; Hum-
bert et al., 2015; Lambert et al., 2013; Neff and Asner, 2001),
yet the interactions between SOC and DOC and their re-
sponse to climate change at catchments or larger scales re-
main unresolved (Laudon et al., 2012; Clark et al., 2010).
Some regions have experienced long-term increases in DOC,
potentially due to recovery from acid rain or climate-induced
changes in temperature (T ) and hydrological flow (Laudon
et al., 2012; Perdrial et al., 2014; Evans et al., 2012; Mon-
teith et al., 2007), whereas others have observed decreases
or no change (Skjelkvale et al., 2005; Worrall et al., 2018).
Generally, the linkages among SOC processing, hydrolog-
ical conditions, and DOC export or concentration remain
poorly understood. Recent analyses indicate that the rela-
tionship between DOC concentration and discharge (C–Q)

at stream outlets is primarily positive (Moatar et al., 2017;
Zarnetske et al., 2018). Approximately 80 % of watersheds
in the USA and France show a flushing C–Q pattern (i.e.,
the stream DOC concentration increases with discharge),
whereas the rest shows dilution (decreasing DOC with dis-
charge) or chemostatic behavior (negligible concentration
change with discharge). These C–Q patterns generally cor-
relate with catchment characteristics, including topography,
wetland area, and climate characteristics, but it remains un-
certain how hydrological and biogeochemical processes reg-
ulate SOC decomposition, DOC production, and DOC ex-
port (Jennings et al., 2010; Worrall et al., 2018). This gap in
process understanding limits the integration of lateral carbon
dynamics into projections of future ecosystem response to
environmental change.

Stream DOC can be influenced by a variety of factors that
control SOC decomposition and DOC production rates. DOC
production generally increases as T increases; however, there
may be multiple thermal optima, and the local rates can vary
with SOC characteristics, soil type, and soil biota (Davidson
and Janssens, 2006; Jarvis and Linder, 2000; Yan et al., 2018;
Zarnetske et al., 2018). DOC production rates can exhibit low
temperature sensitivity in highly weathered soils with a high
clay content (Davidson and Janssens, 2006). They have also
been shown to increase with soil water content in sandy loam
soils (Yuste et al., 2007) and to have an optimum with a vol-
umetric water content of approximately 0.75 in fine sands
(Skopp et al., 1990). Because DOC export (or load) is the
product of discharge and DOC concentration, it may differ
from local DOC production rates in complex ways. For ex-
ample, high T can produce a peak soil water DOC concentra-
tion but not necessarily stream concentration or export, due
to temporal or spatial mismatches (D’Amore et al., 2015).
These confounding factors present significant challenges to
quantify the predominant mechanisms that regulate DOC
production and export under varying environmental condi-
tions.

One approach to understanding DOC production and ex-
port is the use of reactive transport models (RTM). These
models integrate multiple production, consumption, and ex-
port processes, enabling the differentiation of individual and
coupled processes (Steefel et al., 2015; Li, 2019; Li et al.,
2017b). The use of RTMs complements statistical tools for
the identification of influential factors (Correll et al., 2001;
Herndon et al., 2015; Zarnetske et al., 2018). Historically,
RTMs have been used in groundwater systems, where di-
rect observations are particularly challenging (Kolbe et al.,
2019; Li et al., 2009; Wen and Li, 2018; Wen et al., 2018).
At the catchment scale, biogeochemical modules have been
developed as add-ons to hydrological models. For example, a
DOC production module was coupled to the HBV hydrolog-
ical model using a static SOC pool that emphasized the influ-
ence of active-layer dynamics and slope aspect (Lessels et al.,
2015). The INCA-C (Futter et al., 2007) and extended LPJ-
GUESS (Tang et al., 2018) models have investigated the im-
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Figure 1. Attributes of the Susquehanna Shale Hills Critical Zone Observatory (SSHCZO): (a) surface elevation, (b) soil depth, and (c) soil
organic carbon (SOC). The surface elevation was generated from lidar topographic data (criticalzone.org/shale-hills/data), whereas soil
depths and SOC were interpolated using ordinary kriging based on field surveys with 77 and 56 sampling locations, respectively (Andrews
et al., 2011; Lin, 2006). The SOC distribution in panel (c) is further simplified using the high, uniform SOC (5 % v/v) in swales and valley
soils based on field survey information (Andrews et al., 2011). Swales and valley floor areas were defined based on surface elevation via field
survey and a 10 m resolution digital elevation model (Lin, 2006). Additional sampling instrumentation is shown in panel (b), including six
soil water sites (circles) and three soil T sites (squares).

portance of land cover in determining DOC terrestrial routing
and lateral transport. Terrestrial and aquatic carbon processes
have also been integrated into the Soil and Water Assessment
Tool (SWAT) to simulate aquatic DOC dynamics (Du et al.,
2019). These modules typically simulate individual reactions
without considering multicomponent reaction thermodynam-
ics and kinetics.

In this context, the recently developed BioRT-Flux-PIHM
model (BFP, Biogeochemical Reactive Transport–Flux–Penn
State Integrated Hydrologic Model) fills an important gap
by incorporating coupled elemental cycling, stoichiometry,
and rigorous thermodynamics and kinetics (Bao et al., 2017;
Zhi et al., 2019). We used the BFP to address the follow-
ing question: how do hydrology and T interact to deter-
mine rates of DOC production and export at the catchment
scale? We applied the BFP to a temperate forest catchment
in the Susquehanna Shale Hills Critical Zone Observatory
(SSHCZO). This small catchment (< 0.1 km2) has gentle to-
pography with a network of shallow depressions or swales
that have high SOC and deep soils (detailed in Sect. 2). It
is underlain by one type of lithology (shale) and land use
(forest), providing a useful test bed to evaluate biogeochem-
ical and hydrological functions (Brantley et al., 2018). Pre-
vious lab and field work have identified non-chemostatic C–
Q patterns of DOC at SSHCZO that are attributable to dif-
ferences in the hydrologic connectivity of organic-rich soils
during different flow conditions (Andrews et al., 2011; Hern-
don et al., 2015). SSHCZO has spatially extensive and high-
frequency measurements of soil properties, hydrology, and
biogeochemistry (Brantley et al., 2018). These data facilitate
detailed benchmarking of the BFP model and evaluation of
processes controlling DOC production and export. We ex-
pected that T and soil moisture would drive DOC produc-
tion in the soil, whereas DOC export and, thus, C–Q patterns
would be most related to hydrological connectivity. There-
fore, we predicted that DOC production and export might be
asynchronous (i.e., not occurring at the same time) because
they respond differently to changes in T and hydrology. Al-

though soil respiration is an important process, this study fo-
cuses on the net production and export of DOC.

2 Methods

2.1 Study site: a small catchment with an intermittent
stream

The Shale Hills catchment is a 0.08 km2, V-shaped, first-
order watershed with an intermittent stream in central Penn-
sylvania. It is forested with coniferous trees and is situated
on the Rose Hill shale formation. The annual mean air T
is 9.8± 1.9 ◦C (±SD) and the annual mean precipitation is
1029± 270 mm over the past decade. The watershed is char-
acterized by large areas of swales and valley floors with deep
and wet soils (Fig. 1b). These lowland soils contain more
SOC (∼ 5 % v/v) than the hillslopes and uplands (∼ 1 %
v/v; Fig. 1c).

Soil water DOC samples were collected using lysimeters
with a diameter of 5 cm installed at 10 or 20 cm intervals
from the soil surface to a depth of hand-auger refusal, which
varied from 30 to 160 cm depending on soil thickness. There
were a total of six sampling locations (Fig. 1b), including
three at the south planar sites – valley floor (SPVF), mid-
slope (SPMS), and ridgetop (SPRT) – and three at the swale
sites – valley floor (SSVF), mid-slope (SSMS), and ridgetop
(SSRT). No soil water DOC samples were collected on the
north side of the catchment. Stream water DOC samples were
collected daily in glass bottles at the stream outlet weir. All
soil water and stream water DOC samples were filtered to
0.45 µm using Nylon syringe filters and were analyzed with a
Shimadzu TOC-5000A analyzer (detailed in Andrews et al.,
2011). Real-time soil T (every 10 min) was measured at the
ridgetop, mid-slope, and valley floor (squares in Fig. 1b) us-
ing automatic monitoring stations at depths of ∼ 0.10, 0.20,
0.40, 0.70, 0.90, 1.00, and 1.30 m (Lin and Zhou, 2008).

www.hydrol-earth-syst-sci.net/24/945/2020/ Hydrol. Earth Syst. Sci., 24, 945–966, 2020
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Figure 2. A schematic representation of major processes in the catchment reactive transport model BFP (BioRT-Flux-PIHM). Stream dis-
charge Q includes surface runoff QS, soil water interflow (lateral flow) QL, and groundwater flow QG. In the vertical direction, soil pores
are not saturated with water in the shallow unsaturated zone and water flows vertically until it reaches the saturated zone where water forms
interflows and moves laterally to the stream. Soil water total storage ST is the sum of water in the unsaturated (Su) and saturated zones (Ss).
Some water also recharges further into deeper groundwater. Within the soil zone, SOC decomposes and releases DOC, which also sorbs onto
the soil surface to become ≡XDOC.

2.2 The BioRT-Flux-PIHM (BFP) model

BFP is the catchment reactive transport model of the general
PIHM (Penn State Integrated Hydrologic Modeling System)
family of code (Duffy et al., 2014). The code includes three
modules (Fig. 2): the surface hydrological module PIHM, the
land surface module Flux, and the multicomponent reactive
transport module BioRT (Biogeochemical Reactive Trans-
port). The code has been applied to simulate conservative
solute transport, chemical weathering, surface complexation,
and biogeochemical reactions at the catchment scale (Bao
et al., 2017; Zhi et al., 2019; Li, 2019). Here, we only in-
troduce the salient features that are relevant to this study;
readers are referred to earlier publications for further de-
tails. Flux-PIHM separates the subsurface flow into active
interflow in shallow soil zones and groundwater flow deeper
than the soil-weathered rock interface. Note that this “deeper
groundwater” is the groundwater that actively interacts with
the stream and shallow layer, not necessarily the water in the
deep groundwater aquifer. The PIHM module simulates hy-
drological processes including precipitation, infiltration, sur-
face runoff QS, soil water interflow (lateral flow) QL, and
discharge Q (Fig. 2). The Flux module simulates processes
including solar radiation and evapotranspiration. Flux-PIHM
calculates water variables (e.g., water storage, soil moisture,
and water table depth) in unsaturated and saturated zones
and assumes a no-flow boundary at the soil–bedrock inter-
face with high permeability contrast. In this version of Flux-
PIHM, the deeper groundwater flowQG is a separate input to
the stream and is decoupled from the shallow soil water. This
is supported by field data that show negligible seasonal varia-

tion in groundwater chemistry (Jin et al., 2014; Thomas et al.,
2013; Kim et al., 2018). The QG is estimated using conduc-
tivity mass-balance hydrograph separation (Lim et al., 2005).

The BioRT module takes in water calculated at each
time step to simulate reactive transport processes. BFM dis-
cretizes the domain into prismatic elements and uses a finite
volume approach based on mass conservation. The mass con-
servation governing equation for the reactive transport of a
single solute m is as follows:

Vi
d(Sw,iθiCm,i)

dt
=

Ni,x∑
j=Ni,1

(
AijDij

Cm,j −Cm,i

lij
− qijCm,j

)
+ rm,i,

m= 1,np, (1)

where i and j represent the grid block i and the neighboring
grid j ; the subscript x distinguishes between flow in the un-
saturated zone (infiltration and recharge) and saturated zone
(recharge and lateral flow); V is the total bulk volume (m3)
of each grid block; Sw is the soil moisture (m3 water m−3

pore volume); θ is porosity; C is the aqueous species con-
centration (mol m−3 water); t is time (s); N is the index of
elements sharing surfaces; A is the grid interface area (m2);
D is the diffusion/dispersion coefficient (m2 s−1); l is the dis-
tance (m) between the center of two neighboring grid blocks;
q is the flow rate (m3 s−1); rm is the kinetically controlled re-
action rates (mol s−1) involving speciesm, which is the DOC
production rate from SOC decomposition at the grid block i;
and np is the total number of independent solutes.

Hydrol. Earth Syst. Sci., 24, 945–966, 2020 www.hydrol-earth-syst-sci.net/24/945/2020/
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2.3 DOC production and sorption

In the model, DOC is produced by the decomposition of SOC
via the kinetically controlled reaction SOC(s)→ DOC. With
abundant SOC and O2 in soils serving as electron donors and
acceptors, a typical dual Monod kinetics can be simplified
into zero-order kinetics with additional temperature and soil
moisture dependence:

rp = kAf (T )f (Sw) , (2)

where rp is the local DOC production rate in individual grids
(rm in Eq. 1, m is DOC); k is the kinetic rate constant of
net DOC production (10−10 mol m−2 s−1) (Zhi et al., 2019;
Wieder et al., 2014); and A is a lumped “surface area” (m2,
(2.5×10−3 m2 g−1)× (g of SOC mass)) that quantifies SOC
content and biomass abundance (Chiou et al., 1990; Kaiser
and Guggenberger, 2003; Zhi et al., 2019). The functions
f (T ) and f (Sw) describe the rate dependence on soil T
and moisture, respectively. f (T ) follows a widely usedQ10-
based formation: f (T )=Q|T−10|/10

10 , where Q10 quantifies
the rate increases with T , with the superscript 10 referring to
a T value of 10 ◦C (Davidson and Janssens, 2006). Q10 in
the base case is set at 2.0, within the typical range of 1.2–3.8
for forest ecosystems (Liu et al., 2017). The f (Sw) has the
form f (Sw)= (Sw)

n in the base case, where n is the sat-
uration exponent with a value of 1.0, which is within the
typical range of 0.75–3.0 for most soils (Yan et al., 2018;
Hamamoto et al., 2010). The dependence of production rates
on soil T and moisture have been described using multi-
ple forms in existing studies (Davidson and Janssens, 2006;
Yan et al., 2018) and will be further explored via sensitiv-
ity analysis, as detailed in Sect. 2.6. The SOC content typ-
ically decreases with depth (Billings et al., 2018; Bishop et
al., 2004), although the specific pattern may vary with soil
texture, landscape position, vegetation, and climate (Jobbagy
and Jackson, 2000). The depth function of SOC at Shale Hills
has been observed to be exponential (Andrews et al., 2011),
which is typical of many soils (Billings et al., 2018; Currie
et al., 1996). To take this into account, we use the equation
Cd(z)= C0 exp

(
−

z
bm

)
, where Cd is SOC at depth z below

the surface; C0 is the SOC level at the ground surface, and
bm quantified the decline rate with depth, which is set here to
a value of 0.3 (Weiler and McDonnell, 2006).

DOC produced from SOC can also sorb on soils via the
following reaction:≡X+DOC↔≡XDOC, where≡X and
≡XDOC represent the functional group without and with
sorbed DOC, respectively (Rasmussen et al., 2018). This re-
action is considered fast and is thermodynamically controlled
with an equilibrium constant Keq that links the activity (here
approximated by concentrations) of the three chemicals via
Keq =

[≡XDOC]
[≡X][DOC] . The DOC concentrations calculated from

Eq. (1) were used to establish the concentrations of ≡X and
≡XDOC. TheKeq value represents the thermodynamic limit
of the sorption, i.e., the sorption affinity of the soil for DOC.

It depends on temperature but also on soil properties such as
the clay content and the abundance of iron oxides (Kaiser et
al., 2001; Conant et al., 2011). A Keq value of 100.2 was ob-
tained by fitting the stream and soil water DOC data (detailed
in Sect. 2.4). The sum of [≡X] and [≡XDOC] represents
the soil sorption capacity. A value ranging from 4.0× 10−5

to 6.0× 10−5 mol g−1 soil was used for Shale Hills (Jin et
al., 2010; Li et al., 2017a) depending on the mineralogy in
different zones of the catchment.

2.4 Domain setup

BFP is a model with full discretization in the horizontal
direction and partial discretization in the vertical direction
with three layers: ground surface, unsaturated, and satu-
rated zones. Although a new version of BFP explicitly in-
cludes a groundwater zone, it was not released in time for
this work, so the groundwater fluxes were estimated sepa-
rately. The study watershed was discretized into 535 pris-
matic land elements and 20 stream segments using PIHMgis
(http://www.pihm.psu.edu/pihmgis_home.html, last access:
11 February 2020), a GIS interface for BFP. The land el-
ements are unstructured triangles with mesh sizes varying
from 10 to 100 m. The simulation domain was set up using
national datasets: the USGS National Elevation Dataset for
topography; the National Land cover Database for vegeta-
tion distribution; the National Hydrography Dataset for wa-
ter drainage network; the North American Land Data Assim-
ilation Systems Phase 2 (NLDAS-2) for hourly meteorologi-
cal forcing; and the Moderate Resolution Imaging Spectrora-
diometer (MODIS) for leaf area index. In addition, extensive
characterization and measurement data at Shale Hills were
used to define soil depth and soil mineralogical properties
such as surface area and ion exchange capacity that are het-
erogeneously distributed across the catchment (Andrews et
al., 2011; Lin, 2006; Jin and Brantley, 2011; Jin et al., 2010;
Shi et al., 2013) (http://criticalzone.org/shale-hills/data/, last
access: 11 February 2020). Other soil matrix properties in-
clude conductivity, porosity, and van Genuchten parameters.
Soil macropores such as cracks, fractures, and roots can gen-
erate preferential flows. Their properties are represented us-
ing the area macropore fraction, depth, and conductivities.
They are parameterized based on values quantified in previ-
ous studies at Shale Hills (Shi et al., 2013; Lin, 2006), as
shown in Fig. S1 and Table S1 in the Supplement.

Based on field measurements, the SOC content in swales
and valley areas is relatively high (Andrews et al., 2011) and
was set at 5 % (v/v solid phase) compared with 1 % in the
rest of the catchment (Fig. 1c). The clay minerals were set
at 23 % (v/v solid phase) along the ridgetop and 33 % at
the valley floor (Jin et al., 2010; Li et al., 2017a). The in-
put DOC concentrations in rainfall and groundwater (below
soils) were set at reported medians of 0.6 and 1.2 mg L−1,
respectively (Andrews et al., 2011; Iavorivska et al., 2016),
as high-frequency DOC observations were not available. The

www.hydrol-earth-syst-sci.net/24/945/2020/ Hydrol. Earth Syst. Sci., 24, 945–966, 2020
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initial DOC concentration in soil water was set at 2.0 mg L−1,
which was the average concentration from the six field sam-
pling locations in Fig. 1.

2.5 Model calibration

We used stream (daily) and soil pore water (biweekly) DOC
concentration data from April to October 2009 for model cal-
ibration and the year 2008 as spin-up until a “steady state”
for both water and DOC was reached. The “steady state”
here refers to a state where the inter-annual difference be-
tween stored mass within the catchment is less than 5 % of
the total mass. The water input is precipitation, and its out-
put is ET and discharge. The DOC mass input is from rain-
fall, groundwater, and production, and the DOC output is the
export load at the stream outlet. The model performance was
evaluated using the monthly Nash–Sutcliffe efficiency (NSE)
(Nash and Sutcliffe, 1970) that quantified the residual vari-
ance of modeling output compared to measurements. The
general satisfactory range for monthly average outputs for
hydrological models is NSE> 0.5 (Moriasi et al., 2007), and
we used similar standards for biogeochemical solutes (Li et
al., 2017a). To reproduce the DOC data, we first set the SOC
surface area A using a literature range of 10−3–100 m2 g−1

(Zhi et al., 2019; Chiou et al., 1990; Kaiser and Guggen-
berger, 2003). We also set Keq using a literature range of
100–101 (Oren and Chefetz, 2012; Ling et al., 2006). Once
the simulated output captured the temporal trend of data, we
refined QG based on the estimation from hydrograph sep-
aration (Fig. S2) to capture the peaks of stream DOC con-
centration, especially under low-discharge periods. Because
not all soils are in contact with water, the calibrated sur-
face area represents the effective solid–water contact area,
and is orders of magnitude lower than the reported SOC sur-
face areas from laboratory experiments (Kaiser and Guggen-
berger, 2003). The calibrated hydrological parameters are
mostly from Shi et al. (2013), except groundwater estima-
tion. Groundwater estimates were based on Li et al. (2017a)
and further refined using conductivity mass-balance hydro-
graph separation (Lim et al., 2005) and then by reproduc-
ing the stream DOC concentration. In other words, stream
and groundwater chemistry data together helped constrain
the groundwater flow.

2.6 Quantification of water and DOC dynamics

2.6.1 Hydrological connectivity

Saturated soil water storage calculated from the model was
used to quantify hydrological connectivity Ics/Width. With
“Width” defined as the average width of catchment in the
direction perpendicular to the stream (230 m), the term
Ics/Width quantifies the average proportional width of the
catchment connected to the stream (e.g., Ics/Width= 0.10,
0.35, and 0.70 in Fig. S3). Depending on the catchment ge-

ometry and the extent of connectivity, Ics/Width may vary
from 0 to 1.0. A high Ics/Width value (i.e., high hydrologi-
cal connectivity) indicates that a large catchment area is con-
nected to the stream. To determine whether two grids are hy-
drologically connected, the spatial distribution of saturated
water storage was used to calculate connectivity following
the equation Ics =

∫
∞

0 τ(h)dh and an algorithm in the litera-
ture (Allard, 1994; Western et al., 2001; Xiao et al., 2019).
Here τ(h) is the probability of two grid blocks being con-
nected at a separation distance of h. Two grids are considered
“connected” if they are joined by a continuous flow path and
have saturated storages exceeding the threshold of the 75th
percentile of saturated storage (over the whole catchment).
Note that Ics/Width here only quantifies the hydrological
connectivity in soils and does not reflect the groundwater in
shallow aquifers below the soil–bedrock interface.

2.6.2 DOC concentration–discharge relationships

At the catchment scale, we differentiate the DOC produc-
tion rates and export rates. The production rate Rp is the
sum of the local DOC production rate rp in individual grid
blocks (Eq. 2) across the whole catchment. The export rate
Re is the product of discharge and the DOC concentration
at the stream outlet. Total stored DOC is the difference be-
tween stream output and input from production, rainfall, and
groundwater. The DOC input from the rainfall Rr (mg d−1)
is the precipitation rate (m d−1) times the rainfall DOC con-
centration (6.0×10−4 mg m−3

= 0.6 mg L−1
×10−3 L m−3)

and the catchment drainage area (m2). The DOC input
from groundwater Rg (mg d−1) is the total groundwater in-
flux (flow rate) times the groundwater DOC concentration
(1.2 mg L−1).

C–Q patterns were quantified using two complementary
approaches: the power law equation C = aQb (Godsey et
al., 2009) and the ratio of the coefficients of variation of the
DOC concentration and discharge CV[DOC]

CVQ
(Musolff et al.,

2015). The slope of the power law equation b does not ac-
count for the goodness of fit of the C–Q pattern itself. For
example, a slope of b = 0 would be considered chemostatic
(i.e., relatively small variation of concentration compared
with discharge), although high variability in solute concen-
trations would in fact reflect a chemodynamic behavior (i.e.,
solute concentrations are sensitive to changes in discharge).
We considered two general categories based on these met-
rics (Musolff et al., 2015): if b values fell between −0.2 and
0.2 and CV[DOC]

CVQ
� 1, C–Q patterns were considered chemo-

static; values of |b|> 0.2 or CV[DOC]
CVQ

≥ 1, indicated a chemo-
dynamic behavior. In the chemodynamic category, values of
b > 0.2 indicate flushing, whereas values of b <−0.2 indi-
cate dilution. We used the MATLAB curve-fitting toolbox to
obtain the best fit model parameters.
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Figure 3. Temporal dynamics of (a) daily precipitation, stream discharge Q, and evapotranspiration ET on the arithmetic scale; (b) stream
discharge Q, soil water interflow QL, and groundwater QG on a logarithmic scale with soil T on an arithmetic axis (right); (c) soil water
storage ST (unsaturated water storage Su+ saturated water storage Ss) and hydrological connectivity Ics/Width. The yellow dots in panel (b)
represent the average soil T from three sampling locations (square symbols in Fig. 1b) with the shading reflecting variation in measurement.
Q was highly responsive to intense precipitation events in spring and winter. Note high soil T , high ET, low Ss, and lowIcs/Width during
July–August 2009. Stream discharge was primarily comprised ofQL, except in July–October when the relative contribution ofQG increased.

2.7 Sensitivity analysis

We used a sensitivity analysis to explore the influence of soil
T and moisture in the DOC production kinetics. The Q10

in f (T )=Q|T−10|/10
10 was explored using a minimum value

of 1.0 (i.e., no dependence on T ) and a maximum value of
4.0 (Davidson and Janssens, 2006) (Fig. S4a), i.e., f (T )= 1
and f (T )= 4|T−10|/10. The rate dependence on soil moisture
was explored using the base case f1(Sw)= (Sw)

n (increase
behavior), and three additional functions (f2, f3, and f4) rep-
resenting the most commonly observed forms (Fig. S4b), in-
cluding decrease behavior, constant behavior, and threshold
behavior (Gomez et al., 2012; Yan et al., 2018):

the decrease behavior function was

f2 (Sw)=

(
1− Sw

0.6

)0.77

, (3)

the constant behavior function was

f3 (Sw)= 0.65, (4)

and the threshold behavior function was

f4 (Sw)=


(
Sw
0.7

)1.5
Sw ≤ 0.7(

1−Sw
1−0.7

)1.5
Sw > 0.7.

(5)

The constants in Eqs. (3)–(5) were selected to ensure sim-
ilar averages of f (Sw) across the whole Sw range such that

trajectories rather than absolute values of f (Sw) were com-
pared (Fig. S4b). The sensitivity of DOC sorption onto soils
was tested using Keq values of 0 (no sorption), 100.5 and
101.0.

The sensitivity of C–Q patterns and Re to changes in
groundwater was also tested with groundwater flow contri-
bution and DOC concentration. The groundwater flow rates
were varied from negligible (QG = 0) to 2.5 times those of
the base case (QG = 3.3×10−4 and 1.0×10−4 m d−1 for the
wet and dry periods, respectively). The corresponding frac-
tions (QG/Q) of groundwater flow to the total annual dis-
charge for the two cases were 0 % and 18.8 %, respectively.
The groundwater DOC concentration (DOCGW) was varied
by 2 orders of magnitude (0.12 and 12.0 mg L−1). Results
from these analyses were compared with the base case, in
which the groundwater contributed to 7.5 % of the total an-
nual streamflow at 1.2 mg L−1.

3 Results

3.1 Water dynamics

The total precipitation from 1 April 2009 to 31 March 2010
was 1130 mm. Stream discharge was highly responsive to in-
tense precipitation events and was high (∼ 10−2 m d−1) in
spring and fall compared with summer with high soil T and
high ET (∼ 10−5 m d−1). The model captured the temporal
dynamics of daily discharge, ET, and soil T with NSE values
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Figure 4. (a) Temporal dynamics of measured and simulated stream DOC concentrations as well as groundwater and soil water DOC. The
stream DOC (bright blue line) was from the soil water (light blue line) and groundwaterQG (dark blue line). Under low-discharge conditions
(e.g., July–September),QG contributed a larger proportion of discharge and stream DOC was more similar to groundwater DOC. Under wet
conditions, stream DOC resembled soil water DOC from QL. (b–g) The local soil water DOC concentration for the six sampling locations
shown in Fig. 1b, including three planar (panels b–d) and three swale locations (panels e–g). The mean±SD for each location was calculated
based on measurements at different depths with 10 or 20 cm intervals from the soil surface down to a depth of hand-auger refusal.

of 0.68, 0.72, and 0.62, respectively (Fig. 3a, b). The model
estimated that 47.5 % of annual precipitation contributed to
discharge, whereas the rest contributed to ET. The stream
discharge has three components: surface runoff QS, soil wa-
ter interflow QL (lateral flow), and groundwater flow QG
from the shallow subsurface that interacts with the stream
(Fig. 2). On average, lateral flow QL is about 90.2 % and
surface runoff QS is about 2.3 %. Following the conductiv-
ity mass-balance hydrograph separation (Lim et al., 2005),
QG was estimated to be 1.3× 10−4 and 4.0× 10−5 m d−1

for the wet and dry periods (August–September), which is
equivalent to 6.9 % and 42.2 % of average stream discharge
at the corresponding times, respectively. Overall QG ac-
counted for ∼ 7.5 % of the annual Q, similar to previously
reported values (Li et al., 2017a; Hoagland et al., 2017). In
the dry months from August to September, the stream was
almost dry with no visible flow, and the relative contribu-
tion of groundwater to discharge was comparable to that of
QL (Fig. 3b). The unsaturated water storage Su was typically
more than 10 times larger than the saturated storage Ss such
that the ST and Su curves almost overlapped (Fig. 3c). Ss was
negligible in the dry period (close to 0 m), contributing neg-
ligibly to the stream. Hydrological connectivity (Ics/Width)
covaried with Ss but showed significant temporal fluctua-

tions. High summer ET drove the catchment to drier con-
ditions, thereby decreasing the connectivity to the stream.

3.2 Temporal patterns of DOC concentrations

The model captured the general trend of stream DOC (NSE
of 0.55 for the monthly DOC concentration; Fig. 4). Under
dry conditions (e.g.,Q< 1.0×10−4 m d−1),QG contributed
substantially to Q (∼ 32 %–71 %; Fig. 3), and the stream
DOC concentration reflected the mixing of groundwater and
soil water (Fig. 4a), with a contribution from groundwater
DOC of 7 %–17 %. Under wet conditions, the stream DOC
concentration overlapped with the soil water DOC concen-
tration (light blue line in Fig. 4). Only ∼ 1 %–8 % of stream
DOC was sourced from groundwater at these times.

The temporal dynamics of soil water data showed rela-
tively small temporal variation compared with stream DOC
(Fig. 4b, c, d, e, f, g), and local soil pools were not al-
ways hydrologically connected to the stream. The simulated
soil water DOC captured this small-variation trend with ac-
ceptable overall model performance (i.e., NSE> 0.5), al-
though the goodness of fit was lower in some locations, e.g.,
a NSE value of 0.36 (SPRT), 0.42 (SPMS), 0.60 (SPVF),
0.46 (SSRT), 0.40 (SSMS), and 0.51 (SSVF). The variation
in model performance at different locations may arise from
the lack of detailed information on local soil properties and
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Figure 5. Spatial profiles in May (wet), August (dry), and October
(wet after dry) of 2009: (a) soil T , (b) soil moisture, (c) hydro-
logically connected zones, (d) local DOC production rates rp, and
(e) soil water DOC concentration. The soil DOC and rp were high
in swales and the valley that had a relatively high soil water and
SOC content (Fig. 1c). Although water content in August was rela-
tively low compared with May and October, high soil T led to high
rp, with most DOC production and accumulation in zones that were
disconnected from the stream.

organic carbon content. Although the model explicitly con-
sidered spatial heterogeneities such as topography and soil
properties, averaged values represented grid sizes from 10
to 100 m, and this local scale was large compared with the
field sampling size (e.g., lysimeters with a diameter of 5 cm).
Geochemical processes are sensitive to local properties, in-
cluding SOC %, SOC surface area, and sorption sites, and
the representation of these properties was based on a few
measurements that were only coarsely defined as ridgetop,
mid-slope, and valley floor.

3.3 Spatial patterns and mass balance

Spatial patterns vary between May (wet), August (dry), and
October (wet after dry) (Fig. 5). In May, the average soil
T was around 12 ◦C with small spatial variations (< 3 ◦C).
Most flow-convergent areas (valley areas and swales) were
well connected to the stream and had a high water content
(Fig. 5b, c). The distribution resembles that of SOC (Fig. 1c)
and water content (Fig. 5b), with a high rp and soil water
DOC concentration in swales and valley. Low rp in rela-
tively dry planar hillslopes and uplands led to a low soil water
DOC concentration. In August, the average soil T increased
to around 20 ◦C. The hydrologically connected zones shrank
to the immediate vicinity of the stream, but rp increased 2-

Figure 6. Temporal dynamics of DOC storage, influent rate (rainfall
Rr, groundwater Rg, production Rp), and outflow rate (effluent Re)
at the catchment scale. The stored DOC mass (dark red line) was
calculated as follows: (DOC influent rate− outflow rate)× time.
The temporal Re dynamics mostly followed the trend of discharge
(black line, top panel), whereas Rp mostly followed the trend of soil
T (orange line, top panel).

fold from May. The simulated soil water DOC concentration
increased by a factor of 2 across the whole catchment, espe-
cially in hillslope and uplands on the north side, because the
DOC produced was trapped in low soil moisture areas that
were not hydrologically connected to the stream. This indi-
cates that DOC samples collected on the south side may not
represent the DOC dynamics of the entire catchment, espe-
cially in the summer and fall dry months. In October, rp de-
creased as soil cooled down, but increased precipitation and
decreased ET expanded the hydrologically connected zones
beyond swales and valley areas (Fig. 5c), promoting the des-
orption and the flushing of stored DOC. The soil water DOC
concentration, however, remained high because of the large
store of sorbed DOC produced during the antecedent dry
times.

Figure 6 shows the catchment-scale DOC production and
export rates and mass balance. Generally, the daily Rp (5.1×
105 mg d−1) was greater than the dailyRr from rainfall (1.6×
105 mg d−1) or groundwater Rg (1.2× 104 mg d−1). During
storm events,Rr occasionally exceededRp.Rp was generally
high in summer, despite low water storage. The export rate
Re did not follow the temporal patterns of the total input rate
(Rp+Rr+Rg) or Rp. Instead, it primarily followed the dis-
charge patterns: large rainfall events exported disproportion-
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Figure 7. (a) Relationship of daily discharge (Q) with stream DOC concentration: open circles are simulations and filled circles with a black
outline are data. (b) Relationship of daily discharge (Q) with soil water storage ST, connectivity (Ics/Width), the catchment-scale DOC
export rate Re, and the DOC production rate Rp. At low Q, the stream water transitioned from organic-poor groundwater to organic-rich
water from the valley floor and swales, leading to a flushing (positive) pattern. At higher Q, the stream water shifted from organic-rich
soil water from swales and valley areas to lower DOC water from planar hillslopes and uplands, decreasing the stream DOC concentration
and resulting in a dilution C–Q pattern. Re increased by 2 orders of magnitude with increasing Q, whereas Rp varied within an order of
magnitude.

Figure 8. The catchment-scale DOC production rate Rp and export rate Re as a function of (a) soil T , (b) soil water storage ST, and
(c) hydrological connectivity (Ics/Width). Cross symbols are daily values in the base case. Rp increased with soil T and decreased slightly
with ST and connectivity. In contrast, Re increased with ST and connectivity but decreased with soil T . Re tended to decrease with soil T in
the hot, dry summer due to low discharge during that period.

ally high DOC, plummeting the DOC mass within the catch-
ment. From the wet to dry period, as water levels dropped,
DOC accumulated within the catchment (Fig. 5e, May to Au-
gust). During the dry-to-wet transition, as the catchment be-
came wetter, the contributing areas expanded to the uplands
and the DOC was flushed out, reducing the overall DOC soil
pool to much lower values (Fig. 5e, August–October). The
DOC mass storage increased by 1.8× 106 mg over the year,
which was about 1.0 % of the overall DOC production, indi-
cating a general mass balance at the catchment scale.

3.4 C–Q patterns and rate dependence

The C–Q relationships showed a slightly positive correla-
tion at low Q followed by a negative correlation at higher
Q (Fig. 7a). The simulated C–Q relationship captured this
trend but overestimated the positive relationship at low Q.

The simulated C–Q relationships showed a general dilu-
tion behavior with the C–Q slope b =−0.23 and CV[DOC]

CVQ
=

0.22, which was consistent with the general pattern exhib-
ited in the field data (Fig. 7a). This C–Q pattern can be ex-
plained by the dynamics of different water sources with dif-
ferent DOC contributing to the stream. At low discharges
(< 1.8×10−4 m d−1) with small water storage (0.25–0.28 m)
and connectivity (Ics/Width< 0.1) (Fig. 7b), the stream
DOC was a mix of organic-poor groundwater and organic-
rich swales and valley floor zones. As connectivity and dis-
charge increased and the stream expanded, the contribution
of organic-rich swales increased, elevating the DOC con-
centration to its maximum. Under even wetter conditions
with connectivity exceeding 0.1, the contribution from planar
hillslopes and uplands with a lower DOC concentration in-
creased, diluting the organic-rich DOC from swales and val-
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Figure 9. Sensitivity analysis of temporal DOC rates for (a) soil temperature f (T ) and (b) soil moisture f (Sw). A varying Q10 value in
f (T ) had a larger influence on Rp than varying f (Sw). Neither f (T ) nor f (Sw) had a significant influence on Re. Instead, Re mostly
followed the temporal trend of discharge, indicating the predominant control of hydrological conditions.

Figure 10. Sensitivity analysis of the sorption equilibrium constant Keq on (a) Rp and Re and on (b) DOC sorbed on soils averaged at
the catchment scale. High Keq led to more DOC sorbed on soils and, therefore, lower Re. However, Re showed similar temporal patterns
regardless of Keq.

ley areas. Daily Re correlated positively with ST, hydrolog-
ical connectivity, and Q, and increased by 2 orders of mag-
nitude as Q rose by 3 order of magnitude. The variation of
daily Rp withQ was small (105–106 mg d−1) compared with
that of Re (Fig. 7b). Values of Rp depended more on soil
T than on soil water storage and hydrological connectivity
(Ics/Width) (Fig. 8). In contrast, Re increased with soil wa-
ter storage ST but notably decreased with soil T (> 17 ◦C)
due to the low discharge during the hot and dry summer.

3.5 Sensitivity analysis

3.5.1 Control of temperature, soil moisture, and
sorption

Higher Q10 values in f (T ) led to more pronounced season-
ality in Rp (Fig. 9a). The Rp for Q10 = 4.0 was more than
4 times higher than that of Q10 = 1.0 in summer, and much
lower in winter with low soil T (< 10 ◦C). In contrast, the
temporal pattern of Re almost overlapped at different Q10
values, and it mostly followed the discharge dynamics (black
line in Fig. 9). Daily Rp varied only slightly (within 15 %)
with different f (Sw) (Fig. S4b), while Re showed very lit-
tle change (Fig. 9b). Although we varied Q10 from 1.0 to
4.0 in f (T ), it is worth noting that varying the kinetic rate

constant, SOC surface area, volume fraction, and biomass
amount could have similar effects (not shown here) because
they are all multiplied in Eq. (2).

Simulations showed that strong DOC sorption (Keq =

101.0) did not change Rp but lowered the stream DOC con-
centration and resulted in smaller Re (Fig. 10a). DOC sorp-
tion had little impact onRp, but strong sorption decreased the
magnitude of Re by 10 %–69 %. The sorbed DOC concen-
tration differed by more than a factor of 3, with more sorbed
DOC with larger Keq values (Fig. 10b). Large amounts of
sorbed DOC persisted until early fall, when large rainfall
events flushed out sorbed DOC and reduced DOC storage
(Fig. 6). This means that catchments can store large quan-
tities of DOC, although the specific amount of DOC stored
depends on sorption capacity.

Varying DOC production kinetics did not change the over-
all C–Q patterns, although the magnitude of overall dilu-
tion changed slightly in cases with different f (T ) and Keq
(Fig. 11). High Q10 values in f (T ) led to less dilution, due
to more accumulated soil DOC in the dry period (low dis-
charge) and, thus, more DOC flushing as discharge increased
in the dry-to-wet period. High Keq resulted in less dilution
as the higher sorption capacity acts as a stronger buffer to
compensate for the concentration variations.
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Figure 11. C–Q relationships under different (a) T , (b) f (Sw), and (c) sorption equilibrium constants Keq for the two extreme cases. The
C–Q patterns were similar in all cases, although the extent of dilution slightly changed. This indicates potential factors other than reaction
kinetics and thermodynamics that regulate C–Q patterns.

Figure 12. Sensitivity analysis of groundwater on rates (Rp and Re) and C–Q relationships: (a) scenarios with a different groundwater
volume contribution (%) to stream discharge and (b) scenarios with a different groundwater DOC concentration (DOCGW). DOCGW and
GW (QG/Q) in the base case were 1.2 mg L−1 and 7.5 %, respectively. “2.5 GW” in panel (a) represents the case with 2.5 times QG
compared with the base case. Increases in the relative groundwater contribution lowered Re and shifted the C–Q pattern from an overall
dilution pattern to an overall flushing pattern; changing DOCGW had negligible influence on the DOC rates and C–Q patterns.

3.5.2 Groundwater control on DOC export

As shown in Fig. 12, changing the groundwater volume con-
tribution to stream (GW) had more significant impacts than
changing the groundwater DOC concentration (DOCGW),
especially at low discharges (Q< 1.8× 10−4 m d−1). In-
creasing the GW contribution from no GW to 2.5 GW (i.e.,
18.8 %) lowered stream DOC at low discharges, shifting the
C–Q pattern from overall dilution (or a chevron pattern)
to overall flushing (or flushing until stable). More specifi-
cally, the threshold that separated distinct phases of these
segmented C–Q responses (Fig. 12a2) shifted from Q=

1.8× 10−4 to about 1.0× 10−3 m d−1. This reflects the rela-

tive groundwater contribution to streamflow for each case.
In contrast, varying the groundwater DOC concentration
(DOCGW) by 2 orders of magnitude while keeping the same
groundwater contribution (GW) did not change C–Q pattern.

Figure 13 summarizes the annual total Rp and Re in all
sensitivity test scenarios. Annual Rp was more sensitive to
T than to Sw or sorption thermodynamics. Annual Re was
less sensitive to T variation, although it also increased with
Q10 because a higher production led to higher DOC export.
Annual Rp also depended on f (Sw), with the threshold func-
tion f4(Sw) (Sect. 2.6) having the highest production rates.
However, Re did not follow the trend of Rp (Fig. 13b). Gen-
erally, under the same hydrological conditions, a doubling
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Figure 13. Total annual Rp (red) and Re (blue) under two groundwater volume contribution conditions (QG/Q= 7.5 % and 18.8 %) for
three different variables: (a) soil T , (b) soil moisture, and (c) sorption equilibrium Keq. Rp was not influenced by a deeper groundwater
contribution, so there is only one curve for each variable. Rp has higher dependence on temperature than on soil moisture function form and
sorption capacity.

of Rp only led to about a 50 % increase in Re. Higher sorp-
tion affinity (higher Keq) did not change production rates but
could reduce DOC export by about 30 % due to high DOC
storage in soils. High relative groundwater inputs (18.8 %
versus 7.5 %) loweredRe in all scenarios because more water
came from deeper organic-poor groundwater.

4 Discussion

This study revealed that DOC production was primarily regu-
lated by temperature, but the lateral export of DOC was con-
trolled by hydrological conditions. This work contributes to
the growing body of research concluding that lateral carbon
flux is determined by water routing and hydrological con-
nectivity and only secondarily by biological activity (Zar-
netske et al., 2018). Although soil respiration and vertical
CO2 fluxes are closely related, this work focuses on the net
production and export of DOC because it has been studied
and understood to a much lesser extent than soil respira-
tion (Tank et al., 2018). To better appreciate the relative im-
portance of land–water–atmosphere carbon fluxes, future re-
search needs to fully integrate lateral DOC fluxes in concert
with vertical fluxes of CO2 across terrestrial and freshwater
ecosystems.

4.1 DOC production

The DOC production rateRp depends more on T than on wa-
ter storage or soil moisture. This finding is expected, as DOC
production is biologically mediated and, thus, influenced by
temperature and the metabolic dependence on temperature
(Gillooly et al., 2001). Although the local-scale soil moisture
varies from 0.40 at the ridgetop to 0.70 in swales and ripar-
ian zones (Fig. 5b), the averaged catchment-scale soil mois-
ture has relatively small variations across different seasons
in this temperate humid catchment (0.46 to 0.56 on average
over the whole catchment), especially compared with places

where water is limited and soil moisture can drop below 0.15
(Korres et al., 2015). This small variation is due to the ca-
pability of the shale-derived, clay-rich soils at Shale Hills to
hold water (Xiao et al., 2019). The influence of soil moisture
on DOC production is likely higher in catchments with more
pronounced seasonal changes and more fluctuations in soil
moisture.

This work also suggests that catchment-scale (Rp) and
local-scale (rp) production rates have different controls. The
rate law used at the local scale is measured at relatively small
scales, i.e., 0.1–2.0 m in soil pedons (Bauer et al., 2008; Yan
et al., 2016). Our results show that even when the rate law
with an optimum soil moisture was used at the local scale
(f4(Sw) in Fig. S4b), the catchment-scale rates do not exhibit
maximum rates at an “optimal” soil moisture (Fig. 8), indi-
cating different controls at the local scale versus the catch-
ment scale. In addition, due to the spatial heterogeneities of
T , soil moisture, and SOC content, the temporal variations
of Rp and rp may be not consistent. The daily Rp spanned
less than an order of magnitude with its maximum in the dry,
hot summer and its minimum in the wet, cold winter and
spring (Fig. 6). Local-scale rp exhibited similar temporal dy-
namics but varied by more than 2 orders of magnitude, with
rapid production mostly in “hot spots” (swales and riparian
zones) with persistently high water and SOC content (Fig. 5).
Note that the local-scale rate laws are often used directly at
the catchment scale or at even larger scales (Crowther et al.,
2016; Conant et al., 2011; Fissore et al., 2009; Moyano et
al., 2012). This work suggests that although local-scale rate
laws have been developed extensively, direct extrapolation
of rates from local to catchment scales can be misleading.
This speaks to the importance of understanding controls on
biogeochemical transformation rates and developing reaction
rate theories at the catchment scale for regional-scale and
global-scale simulations.

The simulations here suggest that DOC storage depends
on the sorbing capacity of soils such that clay content and
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the presence of organo-mineral aggregates might play a role
in mediating DOC dynamics (Lehmann et al., 2007; Cincotta
et al., 2019).

DOC production depends on catchment size, hydrogeo-
logic structure, vegetation, and climatic setting. Geomorpho-
logical and ecological processes have been shown to co-
generate systematic differences in the vertical and lateral
distribution of SOC and plant biomass, with a greater con-
centration of organic carbon in the valley floor than in hill-
slopes in some catchments (Piney et al., 2018; Temnerud et
al., 2016; Campeau et al., 2019; Thomas et al., 2016) and
enriched SOC in the uplands in other catchments (Herndon
et al., 2015). These differences may explain the large vari-
ation of stream DOC in catchments under diverse climate
conditions (Moatar et al., 2017). The median stream DOC at
Shale Hills is relatively high (10.0 mg L−1), compared with
3.0 mg L−1 in temperate humid catchments in Germany (Mu-
solff et al., 2018), 4.1 mg L−1 in some UK catchments with
oceanic climate (Monteith et al., 2015), and 4.5 mg L−1 in
France (Moatar et al., 2017). It is also close to 9.5 mg L−1

in boreal catchments in Sweden (Winterdahl et al., 2014),
and 8.1 mg L−1 measured in boreal wet and 10.5 mg L−1 in
boreal dry catchments in Norway and Finland (de Wit et
al., 2016). These differences suggest that climate, vegetation,
and landscape heterogeneity may together shape how much
DOC can be produced as well as when, where, and to what
degree a hill is connected to a stream and the export of DOC
at different times.

4.2 Temporal asynchrony of DOC production and
export

The contrasting temporal patterns of simulated DOC produc-
tion and export reflect the asynchronous nature of the two
processes at the catchment scale. Local DOC production is
influenced by the seasonal pattern of soil T , whereas the
export is predominantly controlled by precipitation events
and antecedent conditions that modulate the degree to which
DOC production zones are hydrologically connected to the
stream. This differs from studies showing the synchroniza-
tion of DOC production and export in temperate climatic re-
gions at soil pedons (Michalzik et al., 2001). This may be due
to the relatively short water residence time and high connec-
tivity at the pedon scale. The temporal asynchrony between
DOC production and export is therefore strongly influenced
by the seasonality of temperature and precipitation, which is
shaped by local climate. At Shale Hills the wet winter and
spring happens to be the cold season, whereas the dry sum-
mer is hot. In the summer, the catchment essentially produces
and stores DOC in soil water and soil surfaces and waits for
the arrival of the next storm to export. In other words, low
hydrological connectivity in the summer imposes a lag pe-
riod with respect to DOC export such that the DOC we see
today is often the DOC produced a while ago. As such, the

catchment acts as a DOC producer in the summer and a DOC
exporter in spring and winter when the soil is wetter.

These findings indicate a strong climatic control over DOC
production and export. In places where climate seasonality is
not as strong and catchments are hydrologically connected
to streams throughout the year, we can expect to see DOC
export all year long and, therefore, much less asynchrony.
In places with strong seasonality, a few high-flow events
can dominate the DOC export of the whole year. Under the
Mediterranean climate with strong seasonality, for example,
antecedent moisture conditions have been observed to be es-
sential for understanding the temporal pattern of DOC and
nutrient (N ) export (Bernal et al., 2005, 2002). Hydrologi-
cal connectivity and water flow paths become dominant as
subsurface saturation expands across valley floors and into
hillslopes (Covino, 2017; Abbott et al., 2016).

4.3 Implications for vertical and lateral carbon fluxes

This work focuses on DOC lateral fluxes and does not sim-
ulate the carbon loss through soil respiration and associated
vertical CO2 fluxes, which has been the focus of some previ-
ous work (Brantley et al., 2018; Hasenmueller et al., 2015).
Soil respiration is an important pathway of carbon flux that,
similar to DOC production, can be shaped by soil tempera-
ture and moisture. Generally, warm temperature and medium
soil moisture provide optimal conditions for microbial respi-
ration, leading to significant vertical losses of carbon during
summer months (Perdrial et al., 2018; Stielstra et al., 2015).
In contrast, low temperature and high soil moisture can hin-
der aerobic respiration and associated carbon losses as CO2
(Smith et al., 2018), effectively accumulating DOC until the
arrival of large storms. This pattern is consistent with ob-
servations that the total CO2 release and DOC production
are positively correlated (Neff and Hooper, 2002). The de-
pendence of DOC production and export on soil T and soil
moisture might also hold true for soil respiration. Conversely,
as part of the sorbed DOC may be respired by microbes into
CO2, our model might overestimate the DOC accumulation
in the catchment, especially in summer.

This work does not consider the transport of particulate or-
ganic carbon (POC) in soil water and stream water, although
POC can play an important role in the carbon budget and bio-
geochemical cycles in some cases (Ludwig et al., 1996; Diem
et al., 2013). In Shale Hills, DOC comprises a major fraction
(between 70 % and 80 %) of the total organic carbon export
(Jordan et al., 1997). Similar patterns have been reported for
organic carbon export at the global scale (Alvarez-Cobelas
et al., 2012). However, POC export can be significant in an-
thropogenically impacted areas (Correll et al., 2001; Matts-
son et al., 2005) with significant disturbance (Abbott et al.,
2016). They follow a different temporal pattern from DOC,
due to different sources, transport mechanisms, and sensi-
tivity to hydrologic variations (Dhillon and Inamdar, 2014;
Alvarez-Cobelas et al., 2012).
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4.4 Regulation of C–Q patterns

During dry periods, stream water mostly reflects the carbon-
poor groundwater. As precipitation wets the catchment, the
valley floor area that is characterized by a high SOC and
DOC concentration is connected to the stream (Figs. 5, 7),
elevating the stream DOC. This increase in DOC concentra-
tion continues until the catchment becomes wetter and ex-
pands the connected zones to the whole valley and swales.
Under these conditions, the influence of high DOC in the
vicinity of the stream fades and the DOC concentration de-
creases. This occurs at a threshold connectivity of about
∼ 0.1 (≈ the valley width divided by the catchment width).
In other words, during wet periods when the whole catch-
ment is hydrologically connected to the stream, the stream
DOC reflects the “average” concentration across the catch-
ment (∼ 2.5 mg L−1). The increase and subsequent decrease
pattern (or chevron pattern) therefore indicates the presence
of three end-members from different sources: the ground-
water with a very low DOC concentration, the soil water at
stream beds and in organic-rich swales with the highest DOC
content, and the uphill soil water with a DOC level in be-
tween these two.

The overall dilution (or chevron) C–Q pattern observed
here with a maximum at a mid-range discharge contrasts the
commonly observed flushing pattern for DOC (Moatar et al.,
2017). In fact, it more closely resembles the hysteresis behav-
ior often observed in storm and snowmelt events for metals
and nutrients (Zhi et al., 2019; Duncan et al., 2017). Previous
field studies have illustrated that the hydrological connectiv-
ity to the stream versus the distribution of SOC ultimately
dictates the spatial and temporal dynamics of the DOC con-
centration in soil and stream water, leading to different C–
Q relationships (dilution versus flushing) (Bernhardt et al.,
2017; Bernal and Sabater, 2012; Covino, 2017). This has
been illustrated by different C–Q relationships at Shale Hills
(USA) and Plynlimon (UK) (Herndon et al., 2015). Stream
water at Shale Hills is derived from SOC-rich swales with a
high DOC concentration at low flow and from both swales
and hillslopes with a low DOC concentration when dis-
charge increases. Conversely, at Plynlimon, SOC is enriched
in uplands; therefore, concentrations are high at high flow
when water flows connect SOC-rich uplands. Our reactive
transport modeling provides a quantitative and mechanistic
approach to explain the overall C–Q patterns, which have
generally been interpreted as a production/source limitation
(Covino, 2017; Zarnetske et al., 2018). Our results suggest
that the spatial distribution of source zones and the degree
of their connectivity to the stream determine when they are
flushed out. Modeling approaches such as the one presented
here can help us understand the mechanisms underlying C–Q
patterns, and, thus, improve our ability to predict the evolu-
tion of C–Q trajectories under changing conditions.

C–Q patterns also relate to the mixture of different sources
of water in the stream, which is composed of the time-

varying relative contribution from the shallow soil water and
relatively deep groundwater. Their DOC contribution can
be affected by the vertical distribution of reacting materi-
als (Musolff et al., 2017; Bishop et al., 2004; Seibert et al.,
2009; Winterdahl et al., 2016) and the relative volume con-
tribution of source water (soil water versus groundwater be-
low the soil-weathered rock interface) to the stream (Zhi et
al., 2019; Radke et al., 2019; Weigand et al., 2017). Within
the shale bedrock, the groundwater contribution to the stream
is relatively small (∼ 7.5 %) at Shale Hills. Soil water (al-
though from a very limited swale area) dominates inflow to
the stream even during the summer dry period. When the
groundwater volume input increases to about 18.8 % of the
streamflow by volume (2.5 times the actual case; Fig. 12),
the C–Q relationships shift to an overall flushing pattern.
This may provide a potential explanation for the DOC C–Q
flushing pattern at sandstone-dominant Garner Run (a neigh-
boring catchment of Shale Hills), where the groundwater
contributions to the stream are typically higher (Hoagland
et al., 2017; Li et al., 2018). More interestingly, when the
groundwater contribution is “sufficiently” high, it can mask
the signature of the swale-derived soil water such that the
three-end-member chevron C–Q pattern become a two-end-
member pattern with monotonic flushing pattern that is simi-
lar to the observation in Coal Creek where groundwater con-
tributes about 20 % annually (Zhi et al., 2019). C–Q rela-
tionships have been categorized into nine patterns, includ-
ing three monotonic and six segmented types (Moatar et al.,
2017; Underwood et al., 2017). The shifting threshold that
separates segments of C–Q responses by the relative ground-
water contribution in this work (Fig. 12) suggests that the
relative contribution of groundwater to streamflow may play
a pivotal role in shaping the C–Q patterns. This threshold
value can potentially provide a rough estimation for the rela-
tive contribution of different end-members to the stream.

The mechanisms that regulate DOC C–Q patterns – sea-
sonally variable hydrological connectivity and groundwater
contribution – are consistent with previous literature on ge-
ogenic species (Mn, Fe), isotopes, and particle fluxes at Shale
Hills (Herndon et al., 2018; Kim et al., 2018; Sullivan et al.,
2016; Thomas et al., 2013). For example, Mn is associated
with DOC via biotic cycling and storage in plant species, and
Fe is associated with DOC via aqueous complexation. There-
fore, both solutes are more abundant in shallow soils. The
C–Q pattern of Fe and Mn shows a dilution pattern with con-
centrations decreasing as discharge increases (Herndon et al.,
2015; 2018). In the dry summer, stream water derives from
rich-organic swales and riparian zones with high concentra-
tions of soluble Fe and Mn (Herndon et al., 2018), leading
to corresponding high stream concentrations. At high flows,
these solutes are diluted by the influx of uphill soil water
without as much DOC. This again emphasizes the key role
of solute sources and hydrological dynamics in controlling
stream chemistry.
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5 Conclusions

The production and export of DOC remain central uncer-
tainties in determining the ecosystem-level carbon balance.
These uncertainties persist because of complex interacting
controls on DOC production and export. Indeed, few studies
have quantitatively addressed the linkages between SOC pro-
cessing, hydrological conditions, and corresponding DOC
processing and export at the catchment scale. We found that
DOC production was the major DOC source at Shale Hills
(75 % compared with 23 % from precipitation and 2 % from
groundwater). The simulations showed that the temporal dy-
namics of DOC export rates (Re) were more linked to hy-
drological flow paths and precipitation events. A sensitiv-
ity analysis further confirmed that the DOC production rates
Rp were primarily controlled by temperature: changing the
temperature dependence altered DOC concentrations signif-
icantly, whereas the effects of changing soil moisture depen-
dence were relatively small. Conversely, DOC export was
most sensitive to changes in hydrology, rendering more than
2 orders of magnitude differences in dry and wet periods.
This difference in environmental drivers led to an asynchrony
between DOC production and export. During the wet period
(spring and winter), the catchment was well connected and
DOC production and export occurred simultaneously. During
summer, DOC accumulated (often in sorbed form) in soils
disconnected from the stream, and DOC export was limited
and constrained to the near-stream areas. In other words, the
catchment serves as a DOC producer in the dry and hot sum-
mer but as an exporter in the wet and cold winter.

This work quantitatively demonstrates the key role of
hydrological flow paths and the degree of connectivity in
determining the C–Q patterns exhibited at the catchment
outlet. At low discharges where connectivity is limited
(Ics/Width< 0.1), stream DOC was mainly sourced from
groundwater or from the valley floor and swales with en-
riched SOC. At higher discharges, an increasing contribu-
tion of soil lateral flow from planar hillslopes and uplands
with low soil water DOC decreased the stream DOC con-
centration, ultimately rendering a dilution C–Q pattern. Al-
though changing DOC reaction characteristics alters the soil
water DOC concentration, there is little change in the over-
all C–Q patterns. However, when groundwater contributes
18.8 % of total annual discharge, the stream DOC concentra-
tion increases with discharge and flushing patterns emerge.
This underscores the significance of the relative contribution
and chemical signature of different water sources in shaping
DOC export patterns. This study provides new insights into
how DOC production and export interact at multiple scales
and emphasizes the importance of considering different con-
straints when projecting the response of lateral and vertical
carbon fluxes to climate changes.
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