2017

Ecoenzymes as Indicators of Compost to Suppress Rhizoctonia solani

Deborah A. Neher  
*The University of Vermont*, dneher@uvm.edu

Lynn Fang  
*The University of Vermont*

Thomas R. Weicht  
*The University of Vermont*

Follow this and additional works at: https://scholarworks.uvm.edu/calsfac

Part of the Agricultural Science Commons, Environmental Microbiology and Microbial Ecology Commons, and the Plant Pathology Commons

Recommended Citation


This Article is brought to you for free and open access by the College of Agriculture and Life Sciences at ScholarWorks @ UVM. It has been accepted for inclusion in College of Agriculture and Life Sciences Faculty Publications by an authorized administrator of ScholarWorks @ UVM. For more information, please contact donna.omalley@uvm.edu.
Ecoenzymes as indicators of compost to suppress *Rhizoctonia solani*

Deborah A. Neher*1, Lynn Fang1,2, Thomas R. Weicht1

1Department of Plant and Soil Science, University of Vermont, Burlington, Vermont, USA
2Soil & Compost Consulting & Education at The Growing Club, Diamond Bar, California, USA

Correspondence*:
Department of Plant and Soil Science
University of Vermont
63 Carrigan Drive
Burlington, VT 05405 USA
Phone: 802-656-0474
Fax: 802-656-4656
Email: deborah.neher@uvm.edu

ACKNOWLEDGEMENTS
The authors thank commercial composters for providing samples of their product, including Highfields Center for Composting, Grow Compost, Vermont Compost, VT Natural Ag Products, Green Mountain Compost, and Worm Power Vermicompost. The Vermont Agricultural Experiment Station Competitive Hatch Program VT-HO1609 funded the research and Ms. Flore Costume extracted, counted and identified nematodes as an undergraduate research project.

ABSTRACT  Reports of disease suppression by compost are inconsistent likely because there are no established standards for feedstock material, maturity age for application and application rate. The overall goal of the study was to evaluate a suite of biological indicators for their ability to predict disease suppression. Indicators included both commercial available methods for compost stability (Solvita™, respiration) and metrics of soil ecology not yet adopted by the compost industry (e.g., ecoenzymes, nematode community index). Damping-off by *Rhizoctonia solani* on radish was chosen as a model system given its global importance, competitiveness affected by carbon quality, and lack of disease management options for organic production. Biological indicators were evaluated for their ability to consistently differentiate among curing process, maturity, and feedstock material as a function of disease severity of a seedling bioassay and a compost extract assay to test competition with *R. solani* growth. Compost processed as vermicompost and anaerobic digestate were more suppressive against *R. solani* than windrow or aerated static pile. Mature composts were more suppressive than immature components. Feedstocks containing dairy manure and/or hardwood bark tended to have suppressive qualities. In contrast, poultry manure based components were conducive to disease. Microbial ecoenzymes active on chitin and cellulose and nematode community indices
were better predictors of disease suppressiveness than microbial respiration. These indicators are quicker than plant bioassays and could be adopted as tools to certify commercial products.

**Keywords:** disease suppression, extracellular enzyme assays, indicators, nematode communities, vermicompost

**INTRODUCTION**

Finished compost should be stable and mature, two terms that are often used interchangeably, so it can be safely packaged and transported, and not cause adverse effects during its end use (Wichuk and McCartney 2010). Stability is a resistance to decomposition and is usually determined using indices of microbial activity. Commonly recommended of the stability tests is some variation of a compost self-heating test through respirometry (Gómez et al. 2006) or the 8-point color scale Solvita™ test produced by Woods End Laboratory (Brinton et al. 1995). Solvita™ is simple and practical but has been criticized for its imprecision and cost. In contrast, maturity infers that the material is ready for a particular use, and, for horticultural purposes, is determined by plant germination and growth assays. Plant bioassays are a gold standard because they empirically determine whether there are any deterrents to plant growth or development (Wichuk and McCartney 2010). Effective plant bioassays are standardized by plant cultivar and environmental conditions, but are time-consuming (2-4 weeks) to complete which may be longer than desired. Comparably robust, but quicker (1-2 day) assays would be ideal for quality control and quarantine programs.

Vegetable farming represents 14% of US agricultural market in 2016 (USDA-ERS 2016) and provides nearly double the return per acre than other agricultural operations in the Northeast (Chan et al. 2011). Total number of vegetable farms is increasing in the Northeast and market projections suggest the vegetable market overall and the organic vegetable market will increase in the coming decade. Additions of composted organic matter are considered beneficial for vegetable cropping systems because they contribute positively to soil quality and provide fertility. The recipe, curing process, and maturity have unique impacts on the soil microbiology (Neher et al. 2013) and influence the ecological succession of soil microbial communities. These impacts on soil biology are 26% effective in suppressing plant pathogens (Bonanomi et al. 2007; Jack et al. 2011).

*Rhizoctonia solani* Donk (Kuhn [teleomorph Thanatephorus cucumeris (Frank)]) is listed as one of most important pathogens on crop plants that provide the primary sources of human nutrition (Strange and Scott 2005). *R. solani* is an aggressive fungal pathogen with a wide host range, including Solanaceae, Fabaceae, Asteraceae, Brassicaceae, and has a global distribution. When alone with a host, it colonizes the root, monopolizing a resource to the point of competitive exclusion (Klein et al. 2013). It a difficult disease to manage because it is a facultative saprophyte and able to survive as sclerotia under adverse environmental conditions (González García et al. 2006). Few methods are available for managing *R. solani* aside from not planting too deeply, and removing weeds to ensure good air circulation. There is no genetic resistance to *R. solani* (Grosch et al. 2004) and a limited choice of seed varieties that meet the organic certification standards of seed production and pelleting.

Successful and reliable suppression of *R. solani* has been shown in greenhouse trials with vermicompost (Ersahin et al. 2009), and thermophilic composts made from hardwood bark
(Nelson and Hoitink 1983), organic household waste (Tuitert et al. 1998), viticulture and enological factory residues (Pane et al. 2010), cow manure (Pane et al. 2013), swine manure (Diab et al. 2003), municipal waste (Mathout 1987) and grape marc. However, grape marc compost also showed conducive versus towards *R. solani* (Santos et al. 2008), showing the inconsistency of compost use in disease suppression. Municipal waste compost stored near piles of composted hardwood bark suppressed *R. solani*, while those that were not stored near composted hardwood bark were not suppressive (Kuter et al. 1988). These conflicting findings stress the importance of consistent feedstock chemistry curing process, and maturity in *R. solani* suppression.

Fungi *Trichoderma harzianum* and *Gliocladium virens* are known antagonists of *Rhizoctonia* (Hoitink and Boehm 1999). Composts prepared from hardwood tree barks become colonized by *Trichoderma* spp. and *Gliocladium* spp. or other related Hypocreaceae (Hoitink and Boehm 1999; Neher et al. 2013). Wood-based carbon has higher lignin:cellulose ratios than hay or straw-carbon based composts. Pathogens, such as *Rhizoctonia solani*, are favored in early stages of composting when a concentration of labile carbon is high (Chung et al. 1988). Once labile carbons are depleted, the efficacy of biological control fungi such as *Trichoderma harzianum* increases (Chung et al. 1988). *T. harzianum* hyperparasitizes mycelium of *Rhizoctonia solani* by producing cellulases, glucanases, and chitinases. Given the variety of composts shown to suppress *R. solani* suggests that managing carbon quality and compost maturity will alter relative competition between biocontrol microbes and the pathogen (Nelson and Hoitink 1983; Ersahin et al. 2009).

The objectives of the study were: 1) determine whether process, maturity or feedstock of commercial compost products is a consistent predictor of disease suppression, and 2) identify the most reliable indicators of disease suppression. Indicators evaluated included current industry standards (Thompson et al. 2001) as well as indicators proposed by research laboratories including extracellular enzyme assays (Castaldi et al. 2008), nematode community indices (Neher 2010; Steel et al. 2010), and a compost extract plate competition assay (Alfano et al. 2011). The ultimate goal was to identify a quick and accurate test to predict suppressive potential of compost toward *R. solani*.

**MATERIALS AND METHODS**

**Model pathogen system**

Local isolates of *Rhizoctonia solani* Donk (Kuhn [teleomorph *Thanatephorus cucumeris*]) (Frank) were collected from Vermont grown potatoes and radishes. Infected pieces were excised, grown in water agar, and incubated at room temperature. We chose radish (*Raphanus sativus*), Ping Pong variety from Johnny’s Seeds (Fairfield, Maine USA), for its quick growth and ease of detecting *R. solani* infection at the white root crown. Radish is recommended for germination tests because of its precision and accuracy among compost types compared to other vegetable seeds (Komilis and Tziouvaras 2009). The isolates most virulent on radish were kept in long-term storage on a minimal media of corn meal agar slants (at 5°C), and used to infest soils for greenhouse bioassays. *R. solani* is less likely to lose virulence in culture than Oomycota or bacteria pathogens (personal observation).

Inoculum was cultured in a sterile mix of 96 g sandy soil, 4 g corn meal, and 20 ml water. The culture medium was autoclaved for 1 hr over three consecutive days to ensure that any
endospores of *Bacillus* were killed. Plugs of *R. solani* growing on potato dextrose agar were transferred to the culture medium, covered with foil, and incubated at room temperature for 2-3 weeks until the culture medium was overgrown with mycelium.

**Compost types**

Composts from a variety of different commercial facilities were chosen based on maturity and pile type (Table 1). Production processes included 1) aerated static piles (ASP) often followed by windrow curing, 2) windrows aerated by a bucket loader or excavator, 3) vermicomposts produced by a 2-step process where materials were first composted past the thermophilic stage, then fed to compost worms (*Eisenia fetida*) for maturation. Immature and mature compost was just 0 and 3 to 6 months of curing after the thermophilic phase, respectively. Feedstocks were mixed food waste, poultry manure, food waste and poultry manure, dairy manure and silage only, or hardwood bark as the primary carbon substrate. We were not able to achieve a full factorial design, as we relied on what local producers had available in Vermont and New York.

**Plant bioassay**

Field soil (Adams and Windsor loamy sands) was steam pasteurized at 70°C for four hours to destroy native pathogens, then re-inoculated with its endemic microbial community by adding 4L of 10µm filtered soil extract, and sat for three weeks to allow the microbial community to re-establish itself. Half the soil was inoculated with mixed local isolates of *R. solani* (100ml inoculum per liter of soil), and was allowed one week to equilibrate with the soil before compost was incorporated. ASP, windrow and vermicompost were applied respectively at 10%, 10% and 1.25% (v/v). These application rates exhibited the greatest disease suppression in preliminary trials (Fang 2015). A negative control of no compost in uninfested soil served as a reference. Treatments were replicated four times. Compost-soil mixtures were allowed to equilibrate for 1 week after which 25 radish seeds were planted into each pot using a customized dibble-stick to ensure a distance of 254 mm between each seed. Four replicate pots were ascribed to each treatment sample. Plant bioassays were performed in the greenhouse under natural day lengths and watered daily. Radish seedlings were allowed to grow for 2 weeks until the emergence of one true pair of leaves after which each bioassay was harvested. Each seedling hypocotyl was examined under a stereoscope and rated for disease severity on a scale of 1-5. A percentage disease severity was ascribed for each rating, based on the Horsfall-Barratt scale (Horsfall and Cowling, 1978). The mean disease severity was computed from the midpoint percentages. Treatment results were expressed as a percent change in disease severity from the negative control.

**Indicators of disease suppression**

Each compost sample was homogenized and subsamples were analyzed for a variety of bioindicators: microbial carbon, CO₂ respiration, ratio of total carbon to total nitrogen (C:N), electrical conductivity (EC), pH, plate competition assay, extracellular enzyme activity (hereafter referred to as ecoenzymes), and nematode community indices (Table 2). Compost industry typically relies on measures of respiration, carbon, salinity and pH as indicators of stability and
phytotoxicity (Thompson et al. 2001). In addition, we evaluated three additional indicators described briefly below.

*Plate competition assay.* A half gram of compost was added to 50 ml sterile water and shaken overnight (adapted from Alfano et al. 2011). The next day, 1.5g agar was added to 50 ml deionized water and autoclaved for 30 minutes. It was cooled to 55°C, mixed in with the compost water extract, swirled gently to mix, and poured into 100 mm x 15 mm plastic petri plates. The next day, plugs of *R. solani* growing on potato dextrose agar were transferred onto the compost water extract plates, and pure water agar plates were used as a control. Plates were incubated for 24 hours at room temperature. The mycelium radius was then measured to the nearest 1 mm using a microscope. Three of the longest radii were recorded, and the mean was used as a representative measure to compare suppressive potential among different compost samples. This assay was completed five times in replicate per compost type. All measurements were standardized against the control of mean mycelium radial growth on water agar.

*Ecoenzymes.* Hydrolase, oxidase, amino-peptidase, and esterase activity was quantified as indicators of microbial functional activity and expressed as nmol h⁻¹ g⁻¹ of dry compost. Hydrolases (BG= β-glucosidase and NAG= β-1,4-N-acetylg glucosaminidase) serve as an indicator for hydrolysis of plant and fungal cell walls, respectively. Oxidase (peroxidase and phenol oxidase), L-leucine aminopeptidase (LAP) and phosphatase (PP) activity are indicators for degradation of lignin, proteins, and phosphate, respectively (Moorhead et al. 2013). Sample suspensions were prepared by adding 0.5 g compost to 100 ml of 50 mM, pH 7.0, sodium bicarbonate buffer and homogenizing for 90 seconds with a Brinkman Polytron. The microplates were organized to assay three samples per plate, with two columns of 8 wells each, for 16 replicates for each sample, along with controls (250 μl buffer alone, 200 μl buffer with 50 μl reference, and 200 μl buffer with 50 μl substrate). The reference standard was a 50μM solution. Substrates were prepared as 200μM solutions in nanopure (18.2 megohm) water. Microplates are covered and incubated at 20°C for 2 hours. After incubation, they are quantified using a microplate fluorimeter (FLx800, Bio-Tek Instruments) with 360 nm excitation and 460 nm emission filters.

Oxidative enzyme substrates consisted of 50 mM L-DOPA for the phenol oxidase assay and 50 mM L-DOPA with 0.3% hydrogen peroxide for the peroxidase assay. The plates were covered and incubated for 1.5 hours at 20°C. Absorbance was read on a microplate spectrophotometer (Bio-Tek μQuant microplate reader) with a 520 nm filter. Actual oxidative activity is the sum of phenol oxidase and peroxidase.

*Nematode indicators.* Nematode communities were extracted from compost using a mist extraction method and collected in a water-filled tube. Total number of nematodes were counted per sample and a 10% subsample was identified to family (Bongers 1987) and placed into trophic group (Yeates et al. 1993). A maturity index (MI) was calculated as a weighted mean (Bongers 1990). The ratio of fungivorous to bacterivorous nematode abundance was calculated as F/B = fungivores/(fungivores + bacterivores).

**Statistical analyses**

Analysis of covariance was employed to analyze effects of compost process, maturity, and feedstock as independent variables on disease severity, ecoenzyme activity, and nematode
ecology as dependent variables. The source facility of the compost was held as a random effect, and the covariables were microbial biomass carbon, respiration, C:N, pH, EC, and the compost extract plate assay. Tukey post-hoc comparisons were performed to compare among levels of independent variables. Multiple stepwise regression (forward selection) was performed with disease severity as the dependent variable. Independent variables were microbial carbon, respiration, C:N, pH, EC, compost extract plate assay, ecoenzyme activity, and nematode indices. Normality, analysis of covariance, and multiple stepwise regression were performed using the UNIVARIATE, MIXED and REG procedures, respectively, in SAS version 9.3. All variables were assessed for normality using the UNIVARIATE procedure. Only C:N and EC required transformation, each with a natural log transformation (x+1). All statistically analyses were performed with transformed variables.

RESULTS

Process, maturity and feedstock

Disease severity was affected consistently by compost process and maturity (Figure 1, Table 3). Vermicompost and anaerobic digestate were more suppressive than windrow or ASP composts. Mature composts were more suppressive than immature composts. Feedstock containing dairy manure and/or hardwood bark tended to have significant disease suppression. In contrast, poultry manure based compost promoted disease. Growth of *R. solani* mycelium on compost extract was affected by process and feedstock but not maturity. Growth was reduced most by vermicompost and windrow processes and feedstock containing hardwood bark (Figure 2).

Effects of compost process, maturity and feedstock depended on ecoenzyme type. For example, NAG activity was greater in vermicompost than ASP and windrow. In contrast, PP and LAP activity was greater in windrow than ASP or vermicompost (Figure 3A). LAP activity was greater in mature than immature compost (Figure 3B), but activity of the other ecoenzymes was similar among maturity classes. PP and BG activity were greater in dairy manure than poultry, food waste or hardwood bark feedstocks (Figure 3C). Effects on oxidative activity was similar across process, maturity and feedstock.

Nematode indices differentiated levels of compost maturity and feedstock but not process (Figure 4). Specifically, F/B were greater in immature than mature composts (*P < 0.005*). Successional maturity was greater in hardwood bark than other feedstocks (Figure 4C). Relatively few fungivorous nematodes in three families (*Aphelenchidae, Paraphelenchidae, Qudsianematidae*) were present.

Best predictors of disease suppression

Disease severity was better predicted by the indicators not currently used by compost industry. Nematode MI, compost extract plate assay, and three ecoenzymes (phosphatase, BG and NAG) were the best predictors of disease suppressiveness (Table 4). In contrast, microbial carbon, CO₂ respiration, C:N, EC, pH, nematode F/B, oxidative and leucine amino peptidase ecoenzymes were less satisfactory predictors of disease suppression.

DISCUSSION
This study was designed to identify a biological indicator(s) that could be used to routinely test compost for general or specific disease suppression properties. A mature vermicompost containing hardwood bark as a carbon source has the greatest potential for suppressing *Rhizoctonia solani* on radish. This result is sufficiently robust to span a representative sample of commercial products that have all meet thermophilic requirements to kill plant pathogens and weed seeds established by the National Organic Standards Board (www.ams.usda.gov/nop). Achievement of these temperatures requires feedstock blends that average 25:1 to 30:1 C:N ratio, have 55-60% moisture, and a plentiful supply of oxygen, whether it be by turning piles or forcing air through a pile.

**Process**

Regardless of feedstock mixture, this study supports other reports that thermophilic compost cured by vermicompost holds unique properties that foster more disease suppression than thermophilic composts cured by windrow or ASP. This has been shown not only for *R. solani* on radish (this study), but also *Pythium aphanidermatum* on cucumber (Jack et al. 2011; Jack 2012). Vermicompost has substantially different bacterial and fungal communities when compared to those from a common recipe produced by windrow, and also has much greater bacterial diversity, which may support its ability to outcompete pathogens (Neher et al. 2013). Earthworms promote the growth of bacteria including Bacteriodetes, Verrucomicrobia, Firmicutes, and Proteobacteria. There is also a trend for greater diversity of fungi in vermicompost and a relatively high abundance of fungi including *Mortierella* and *Arthrobotrys* (Neher et al. 2013). Application rates of < 5% promoted disease suppression and rates exceeding 25% promoted phytotoxicity. Vermicompost typically contains much nitrate but may have high EC that can result in germination problems and phytotoxicity in some plants (Pathma and Sakthivel 2012). In other cases, the benefits of vermicompost do not correlate with dosage, but affect plant growth indirectly possibly through plant microbial interactions (Zaller 2007, Jack et al. 2011). These organisms may manipulate plant growth by excreting exogenous microbial plant hormone analogs (Robert-Seilaniantz et al. 2011; Pangesti et al. 2013), and may further be responsible for disease suppression.

**Maturity**

Specific communities of saprophytic fungi and bacteria can be found at different successional stages of composting (Neher et al. 2013). Maturity or curing time is an indicator of substrate composition and microbial community, not necessarily stability (Oviedo-Ocaña et al. 2015). This study suggests that mature composts offer more disease suppression of *R. solani* than immature composts. This finding affirms other studies of *Rhizoctonia* diseases that report immature compost was conducive to disease development (Kuter et al. 1988; Hoitink et al. 1996). Compost that had been cured for five months showed better suppression than compost that had been cured for three or seven months (Tuït et al. 1998). Mature composts with high chitin content contain abundant rhizosphere bacteria producing chitin and β-glucosinase that damage cell walls of fungal pathogens (Kavourakis et al. 2010). Chitin amendments increase populations of Actinobacteria and γ-Proteobacteria (Postma and Schilder 2015).

**Feedstock**
Use of hardwood bark compost suppressed hyphal growth of *R. solani* in the compost extract plate assay. Pathogens, such as *R. solani*, are favored in early stages of composting when concentrations of labile carbon are high (Chung et al. 1988). Once labile carbons are depleted, the efficacy of biological control fungi such as *Trichoderma hamatum* increases (Chung et al 1988). *T. hamatum* hyperparasitizes mycelium of *R. solani* by producing cellulases, glucanases, and chitinases. Contrary to other studies, we did not find *Trichoderma* (Hypocreaceae) in our composts. However, other fungi in the Hypocreales were common at the end of the curing process, e.g., *Acremonium* (Neher et al. 2013). This supports the hypothesis that specific biocontrol organisms may not be as important as microbial consortia (Postma and Shilder 2015).

**Best Predictors of Disease suppression**

Similar to the conclusions and recommendations of Alfano et al. (2011), the plate competition assay is a quick preliminary assessment of disease suppression, but not reliable as a standalone assay. Confirmation by a greenhouse bioassay makes a more robust assessment. There is more complexity in the soil and compost ecosystem than could be mimicked entirely by a laboratory assay. Microbial communities play a significant role, as does the presence of a plant. Two other *in situ* measures that contributed to predicting disease severity related to ecoenzyme activity and nematode communities in the soil food web.

Among all of the indicators assessed, ecoenzymes were the best potential indicator of disease suppressive compost. Ecoenzymes integrate information about environmental substrate composition, microbial nutrient acquisition, and microbial community metabolic function (Allison et al. 2007). Ecoenzymes capture the current state of microbial community metabolism, and serve as indicators of which substrates and decomposition functions are most abundant, or which nutrients are most limited. The most studied case of ecoenzymatic stoichiometry is the generally inverse relationship between phosphatase activity and environmental P availability (Chröst and Overbeck 1987).

Greater values of either nematode index (F/B, MI) reflect less disturbance or a later stage of succession (Neher 2010). In this study, F/B was responsive to compost maturity and MI affected by feedstock, but not vice versa. MI predicted disease severity of *R. solani* on radish seedlings but not F/B. Fungivorous nematodes were expected to be abundant in relatively mature composts (Steel et al. 2010, Termorshuizen et al. 2006), but few were found in any compost samples of this study. Although Aphelenchideae were present, they were not associated with suppressing Rhizoctonia damping off on radish as reported on cauliflower (Lagerlöf et al. 2011). MI values require family identification rather than simply trophic group, perhaps increasing its sensitivity as an indicator of disease suppression. This supports the hypothesis that suppressive ability depends on a specific ecological environment (Termorshuizen et al. 2006; Hadar and Papadopoulou 2012).

Oxidative activity, or lignin degradation activity, was expected to be significant in disease suppression, representing an ecological condition favoring biological control agents over a pathogen. However, we were unable to identify significant differences among process, maturity, or feedstock. These results contrast another study suggesting the incorporation of lignin into soil reduced the viability of *R. solani* sclerotia (van Beneden et al. 2010).
CONCLUSIONS

Our study provides empirical data to support adoption of a compost extract competition assay, nematode MI, and ecoenzymes active on cellulose and chitin as indicators of disease suppression by R. solani. General measures of microbial respiration may measure compost stability but not necessarily disease suppression of a facultative saprophyte like R. solani (Scheuerell et al. 2005; Bonanomi et al. 2010). These indicators are quicker than plant bioassays and could be adopted as tools to certify commercial products.

REFERENCES


<table>
<thead>
<tr>
<th>Recipe/Primary Feedstock</th>
<th>Facility</th>
<th>Pile Type</th>
<th>Maturity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hardwood Bark&lt;sup&gt;a&lt;/sup&gt;</td>
<td>Highfields Ctr for Composting</td>
<td>Windrow</td>
<td>Very Mature</td>
</tr>
<tr>
<td>Commercial Standard&lt;sup&gt;b&lt;/sup&gt;</td>
<td>Highfields Ctr for Composting</td>
<td>ASP/Windrow</td>
<td>Fresh&lt;sup&gt;f&lt;/sup&gt;</td>
</tr>
<tr>
<td>Commercial Standard</td>
<td>Highfields Ctr for Composting</td>
<td>ASP/Windrow</td>
<td>Mature&lt;sup&gt;g&lt;/sup&gt;</td>
</tr>
<tr>
<td>Commercial Standard</td>
<td>Highfields Ctr for Composting</td>
<td>Vermicompost</td>
<td>Mature</td>
</tr>
<tr>
<td>Cow Manure - silage</td>
<td>Worm Power</td>
<td>Vermicompost&lt;sup&gt;WP&lt;/sup&gt;</td>
<td>Mature</td>
</tr>
<tr>
<td>Commercial Standard&lt;sup&gt;c&lt;/sup&gt;</td>
<td>Vermont Compost</td>
<td>Windrow</td>
<td>Fresh</td>
</tr>
<tr>
<td>Commercial Standard</td>
<td>Vermont Compost</td>
<td>Windrow</td>
<td>Mature</td>
</tr>
<tr>
<td>Commercial Standard</td>
<td>Green Mountain Compost</td>
<td>ASP/Windrow</td>
<td>Fresh</td>
</tr>
<tr>
<td>Commercial Standard</td>
<td>Green Mountain Compost</td>
<td>ASP/Windrow</td>
<td>Mature</td>
</tr>
<tr>
<td>Commercial Standard&lt;sup&gt;e&lt;/sup&gt;</td>
<td>Grow Compost</td>
<td>Windrow</td>
<td>Fresh</td>
</tr>
<tr>
<td>Commercial Standard</td>
<td>Grow Compost</td>
<td>Windrow</td>
<td>Mature</td>
</tr>
<tr>
<td>On-Farm&lt;sup&gt;h&lt;/sup&gt;</td>
<td>Riverside Organic Farm</td>
<td>Windrow</td>
<td>Mature</td>
</tr>
<tr>
<td>Cow Manure/Silage&lt;sup&gt;i&lt;/sup&gt;</td>
<td>Green Mountain Power</td>
<td>Anaerobic Digestion</td>
<td>N/A</td>
</tr>
</tbody>
</table>

<sup>a</sup>: custom prepared with yellow birch as a carbon source mixed in a 5:5:3 ratio of manure/silage: hardwood bark: softwood shavings resulting in a C:N ratio of 34:1
<sup>b</sup>: 20% food residuals, 10-15% 2.4 cm woody materials (e.g., hardwood bark and mixed wood chips), 10% hay, up to 5% shredded paper, up to 2% dry sawdust or shavings, and 50-60% mixed livestock manures (e.g., horse, cow, heifer, calf) mixed with various bedding materials (e.g., straw and hay)
<sup>c</sup>: variety of materials, including food waste, manure, especially chicken manure, and wood materials, no biodegradable plastic products
<sup>d</sup>: a municipal compost facility taking in food and yard waste and some manure, as well as biodegradable plastic products
<sup>e</sup>: mixture of wood materials, food scraps, hay, manure, and yard waste, no biodegradable plastic products
<sup>f</sup>: fresh, but post-thermophilic
<sup>g</sup>: ready to sell
<sup>h</sup>: poultry manure and softwood cedar shavings
<sup>i</sup>: manure/silage fed to digester; remaining solids are separated and dehydrated and analyzed
<table>
<thead>
<tr>
<th>Assay</th>
<th>Function</th>
<th>Units</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chloroform Fumigation Extraction</td>
<td>microbial biomass carbon (C\textsubscript{mic})</td>
<td>µg C/g dry weight compost</td>
<td>Allison 2008</td>
</tr>
<tr>
<td>Sodium Hydroxide Titration</td>
<td>microbial activity via CO\textsubscript{2} respiration</td>
<td>mg CO\textsubscript{2}/hr/g dry weight compost</td>
<td>Oviedo-Ocaña et al. 2015</td>
</tr>
<tr>
<td>Solvita™</td>
<td>stability measured by respiration and N mineralization rate</td>
<td>8-point color scale</td>
<td>Solvita 2009; Brinton et al. 1995</td>
</tr>
<tr>
<td>CHN Analysis</td>
<td>limiting nutrient</td>
<td>ratio</td>
<td>Goyal et al. 2005</td>
</tr>
<tr>
<td>pH and electrical conductivity (EC)</td>
<td>salt concentration</td>
<td>EC measured in mS/cm</td>
<td>Smith and Doran 1996</td>
</tr>
<tr>
<td>Ecoenzyme Analysis</td>
<td>decomposition activity; nutrient availability</td>
<td>nmol/h/g dry weight compost or µmol/h/g dry weight compost; ecoenzymatic C:N:P acquisition</td>
<td>Saiya-Cork et al. 2002</td>
</tr>
<tr>
<td>Plate competition assay</td>
<td>competition against pathogen</td>
<td>millimeters (mm) mycelium/day</td>
<td>Alfano et al. 2011</td>
</tr>
<tr>
<td>Nematode Community</td>
<td>nematode ecological successional index</td>
<td>MI F/B</td>
<td>Steel et al. 2010; Neher 2010</td>
</tr>
</tbody>
</table>
### TABLE 3. Analysis of covariance. Effects of facility as random effect, process, maturity, and feedstock on disease severity, compost extract plate assay, ecoenzymes, and nematode indices, with microbial biomass carbon ($C_{mic}$), respiration (Rs), pH, electrical conductivity, C:N ratio, and plate competition assay (Rhiz) as covariables. Degrees of freedom for Numerator (N) and Denominator (D), F-values ($F$) and levels of significance ($P$) are illustrated.

<table>
<thead>
<tr>
<th>Dependent variable</th>
<th>Independent variables</th>
<th>Covariables</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Process</td>
<td>Maturity</td>
</tr>
<tr>
<td>Disease Severity</td>
<td>$F$</td>
<td>$P$</td>
</tr>
<tr>
<td>Plate competition assay</td>
<td>2.1</td>
<td>0.1217</td>
</tr>
<tr>
<td>BG</td>
<td>2.79</td>
<td>0.0606</td>
</tr>
<tr>
<td>NAG</td>
<td>453.6</td>
<td>&lt;0.0001</td>
</tr>
<tr>
<td>OX</td>
<td>1.12</td>
<td>0.3613</td>
</tr>
<tr>
<td>LAP</td>
<td>42.54</td>
<td>&lt;0.0001</td>
</tr>
<tr>
<td>PP</td>
<td>18.98</td>
<td>&lt;0.0001</td>
</tr>
<tr>
<td>ESI</td>
<td>0.64</td>
<td>0.5370</td>
</tr>
<tr>
<td>F/B</td>
<td>1.67</td>
<td>0.2130</td>
</tr>
</tbody>
</table>

---

*a*: PP: phosphatase, BG: β-glucosidase (cellulose), LAP: L-leucine aminopeptidase, NAG: β-1,4-N-acetylglucosaminidase (chitinase), OX: actual oxidative activity = peroxidase + phenol oxidase, ESI: ecological succession of nematode index, F/B: fungivorous nematodes / (fungivorous + bacterivorous nematodes)

*b*: n.s.: $P > 0.05$, *: $P \leq 0.05$, **: $P \leq 0.01$, ***, $P \leq 0.001$, -- not included

---

**Notes:**
- $F$-values reflect the significance of each variable.
- Degrees of freedom for Numerator (N) and Denominator (D) are provided for each F-value.
- Levels of significance (P) indicate the p-values for each variable.
- Significant differences are indicated by asterisks: * $P \leq 0.05$, ** $P \leq 0.01$, *** $P \leq 0.001$.
- Not included variables are denoted by “--”.

---

**References:**
- Table 3 contains the results of an analysis of covariance (ANCOVA) to assess the effects of different variables on disease severity, compost extract plate assay, ecoenzymes, and nematode indices.
- The table includes the F-values for each independent variable, the degrees of freedom (N, D), and the levels of significance (P).
- Significant variables are highlighted with asterisks, indicating their statistical significance.
- Additional covariables such as pH, electrical conductivity, C:N ratio, and plate competition assay are also included in the analysis.

---

**Understanding the Data:**
- The table provides a comprehensive overview of the statistical analysis performed on various environmental and biological variables.
- By examining the F-values and their corresponding P-values, researchers can determine which variables have a significant impact on disease severity and other indices.
- This analysis is crucial for understanding the environmental factors that influence disease outcomes and can inform future research and management strategies.
**TABLE 4.** Multiple stepwise regression (R²=0.6861) to identify best predictors of disease severity of *Rhizoctonia solani* on radish seedlings.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Parameter Estimate</th>
<th>Partial R-square</th>
<th>F-value</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>0.47874</td>
<td></td>
<td>33.62</td>
<td>&lt;0.0001</td>
</tr>
<tr>
<td>Ecological successional index (ESI)</td>
<td>-0.31887</td>
<td>0.1741</td>
<td>24.97</td>
<td>&lt;0.0001</td>
</tr>
<tr>
<td>Plate competition assay</td>
<td>0.37964</td>
<td>0.0358</td>
<td>14.78</td>
<td>0.0007</td>
</tr>
<tr>
<td>Phosphatase (PP) activity</td>
<td>0.00918</td>
<td>0.0493</td>
<td>14.68</td>
<td>0.0007</td>
</tr>
<tr>
<td>β-glucosidase (BG) activity</td>
<td>0.06435</td>
<td>0.0439</td>
<td>7.95</td>
<td>0.0089</td>
</tr>
<tr>
<td>β-1,4-N-acetylglucosaminidase (NAG) activity</td>
<td>-0.13379</td>
<td>0.0808</td>
<td>21.3</td>
<td>&lt;0.0001</td>
</tr>
</tbody>
</table>
FIGURE 1. Disease severity affected by compost A) process ($F = 8.82, P = 0.0003$, ASP: aerated static pile, W=windrow, V=vermicompost, AD=Anaerobic Digestate; B) maturity ($F = 4.59, P = 0.041$, M=Mature; I=Immature); and C) feedstock ($F = 0.59, 0.674$, F=Food Waste, P=Poultry Manure, M=Dairy Manure, FP=Food Waste and Poultry Manure, H=Hardwood Bark). Both controls and treatment comparisons were inoculated with virulent *Rhizoctonia solani*. Illustrated are means ± 1 standard error of percent change from non-compost control.
FIGURE 2. Plate competition assay measuring hyphal growth of *Rhizoctonia solani* on compost water extract agar affected by compost A) process ($F = 2.1, P = 0.1217$, ASP: aerated static pile, W=windrow, V=vermicompost, AD=Anaerobic Digestate; B) maturity ($F = 0.02, P = 0.8993$, M=Mature; I=Immature); and C) feedstock ($F = 4.19, P = 0.0085$, F=Food Waste, P=Poultry Manure, FP=Food Waste and Poultry Manure, M=Dairy Manure, H=Hardwood Bark). Illustrated are means ± 1 standard error of the change from non-compost control. Both controls and treatment comparisons were inoculated with virulent *Rhizoctonia solani*.
FIGURE 3. Ecoenzyme activity by A) process (ASP: aerated static pile, W=windrow, V=vermicompost); B) maturity (M=Mature; I=Immature); C) feedstock (F=Food Waste, P=Poultry Manure, FP=Food Waste and Poultry Manure, M=Dairy Manure, H=Hardwood Bark). Fill patterns represent ecoenzyme activities where white= Phosphatase; slash = L- leucine aminopeptidase; and black: ß-1,4) -N-acetylglucosaminidase (chitinase). Illustrated are means ± 1 standard error of percent change from non-compost control. Both controls and treatment comparisons were inoculated with virulent *Rhizoctonia solani*. Post-hoc mean comparisons are represented by contrasting letters (*P* < 0.05) to the left of the fill pattern key within the first panel.
FIGURE 4. Nematode indices affected by compost A) process (ASP: aerated static pile, W=windrow, V=vermicompost); B) maturity (M=Mature; I=Immature); C) feedstock (F=Food Waste, P=Poultry Manure, FP=Food Waste and Poultry Manure, M=Dairy Manure, H=Hardwood Bark). Fill patterns represent community indices where open =maturity index (left y-axis), slash = fungivorous to bacterivorous (right y-axis) nematode abundance. Illustrated are means ± 1 standard error. Post-hoc mean comparisons are represented by contrasting letters (P < 0.05) to the right of the fill pattern key within the first panel.