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Pace and Process of Active Folding and Fluvial
Incision Across the Kantishna Hills
Anticline, Central Alaska
A. M. Bender1 , R. O. Lease1 , P. J. Haeussler1 , T. Rittenour2, L. B. Corbett3 ,
P. R. Bierman3 , and M. W. Caffee4

1U.S. Geological Survey, Anchorage, Alaska, USA, 2Department of Geology, Utah State University, Logan, Utah, USA,
3Department of Geology, University of Vermont, Burlington, Vermont, USA, 4Department of Physics and Astronomy and
Department of Earth, Purdue University, West Lafayette, Indiana, USA

Abstract Rates of northern Alaska Range thrust system deformation are poorly constrained. Shortening
at the system's west end is focused on the Kantishna Hills anticline. Where the McKinley River cuts across
the anticline, the landscape records both Late Pleistocene deformation and climatic change. New optically
stimulated luminescence and cosmogenic 10Be depth profile dates of three McKinley River terrace levels
(~22, ~18, and ~14–9 ka) match independently determined ages of local glacial maxima, consistent with
climate‐driven terrace formation. Terrace ages quantify rates of differential bedrock incision, uplift, and
shortening based on fault depth inferred from microseismicity. Differential rock uplift and incision
(≤1.4 m/kyr) drive significant channel width narrowing in response to ongoing folding at a shortening rate
of ~1.2 m/kyr. Our results constrain northern Alaska Range thrust system deformation rates, and elucidate
superimposed landscape responses to Late Pleistocene climate change and active folding with broad
geomorphic implications.

Plain Language Summary Where plate tectonics deforms Earth's surface, river landscapes
hold information about the distribution and rate of earthquake‐related deformation over thousands of
years. The processes that form these landscapes remain uncertain. Here we study the landscape where the
McKinley River cuts across the Kantishna Hills anticline to quantify previously unknown rates of
earthquake‐related tectonic deformation in intracontinental Alaska, and investigate the mechanisms by
which this landscape evolved. We date McKinley River terraces that were the river channel ~22, ~18, and
~14–9 ka; the ages match independent ages of regional glacial advances and hence indicate climatic
control on river terrace formation. Digital topography analysis shows that the terraces have been folded
and uplifted above the channel at rates up to ~1.4 m/kyr associated with shortening at ~1.2 m/kyr.
The McKinley River channel narrows and slightly steepens across the fold where uplift rates are highest,
indicating that the river adjusts to uplift primarily by reducing channel width and not by steepening
as common incision models assume. Kantishna Hills anticline shortening accounts for ~10% of the total
~13‐mm/year plate strain rate; ~6 mm/year remains unaccounted for at this latitude and is likely
distributed across structures south of the Denali Fault.

1. Introduction

Erosion and tectonic deformation compete to drive the evolution of mountainous landscapes that, in turn,
hold information about the rates and mechanisms of these processes (e.g., Whipple et al., 2013). Bedrock
river incision sets the lower elevation boundary over most of Earth's unglaciated surface (e.g., Kirby &
Whipple, 2012), and fault‐related folding represents a primary means by which tectonic deformation
elevates upper crustal rock and the overlying landscape (e.g., Hubert‐Ferrari et al., 2007). Consequently,
studies of differential bedrock incision and uplift of river channels and landforms (i.e., strath terraces;
Schanz et al., 2018) underpin much of our understanding of the rate and distribution of continental tectonic
deformation at intermediate (≤106 year) time scales (e.g., Burbank et al., 1996; Hubert‐Ferrari et al., 2007;
Lavé & Avouac, 2000). Importantly, comparison of such fluvial geomorphic records with decadal rates
and patterns of lithospheric deformation inferred from geodesy may reveal geologic strain rate deficits or
surpluses indicative of concealed earthquake hazard (e.g., Kirby et al., 2008).
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Despite the utility of fluvial archives of active tectonic deformation,
debate continues over the fundamental processes behind these
geomorphic records. For example, river profile analysis holds promise
for the estimation of rock uplift rates directly from digital topography
(e.g., Goren et al., 2014), but most extant approaches utilize a stream
power incision model that neglects the possibly significant roles of
dynamic channel width adjustment and sediment flux (Yanites, 2018,
and references therein). Moreover, while researchers commonly infer
uplift rates from the incision of dated fluvial strath terraces,
mechanisms of terrace formation may vary (e.g., climatic forcing versus
autogenic effects; Schanz et al., 2018) with key implications for
interpreting tectonic rates (e.g., Finnegan et al., 2014). Hence,
advancing our ability to interpret the signature of active tectonics
and related hazards from fluvial geomorphic records requires input
from field studies that quantify both the pace and process of
landscape response.

Here we exploit a well‐preserved geomorphic record of Late Pleistocene
climate variability, active folding, and bedrock incision where the
McKinley River cuts across the Kantishna Hills anticline in central
Alaska. We use digital topography and field measurements to characterize
the magnitude of folding of three McKinley River strath terrace levels. We
constrain terrace ages using optically stimulated luminescence (OSL) and
cosmogenic 10Be samples of abandoned channel deposits. Analysis of
Kantishna seismic cluster hypocenter distribution beneath the fold deli-
mits the depth to a probable structural detachment. We examine
McKinley River channel geometries across the fold to ascertain how the
river channel presently responds to ongoing differential rock uplift. Our
results place the first direct quantitative bounds on Late Pleistocene rates
of deformation in the northern Alaska Range thrust system, exemplify
climatic modulation of river terrace formation, and demonstrate a case
where dynamic channel width plays a critical role in bedrock river
incision response to differential uplift.

2. Background and Field Area

Intracontinental Alaska deforms in response to the north‐northwest
directed collision and flat‐slab subduction of the Yakutat microplate
(Elliott et al., 2013). Shortening at the southern Alaska margin takes
up ~75% of the geodetically inferred ~50‐mm/year Yakutat convergence
velocity (Elliott et al., 2013). The southern Alaska lithospheric block
transmits the remaining ~25% several hundred kilometers inland to
the Denali Fault, where Late Pleistocene average rates of ~13‐m/kyr
dextral slip account for the residual plate velocity near the Totschunda
Fault junction, but decrease westward to ~5 m/kyr over ~350 km along
strike (Haeussler et al., 2017; Matmon et al., 2006; Mériaux et al., 2009;
Figure 1a).

Researchers attribute the westward decrease in slip rate to right trans-
pression across thrust faults that splay southwest off the Denali Fault

(Haeussler et al., 2017), and to partitioning of the north‐northwest component of southern Alaska block
convergence across an array of thrust faults and folds situated north of, and parallel to, the Denali Fault
(the northern Alaska Range thrust system; Bemis & Wallace, 2007; Haeussler, 2008; Mériaux et al., 2009;
Bemis et al., 2012, 2015; Haeussler, Matmon, et al., 2017). This deformation fits a kinematic model in
which the southern Alaska block (a) rotates counterclockwise at rates equivalent to Denali Fault slip,

Figure 1. Kantishna Hills anticline setting. Inset locates Figure 1a and
shows the Yakutat microplate (Y; gray shaded area) and convergence on
North America (NA; ~50 mm/year NNW; Elliott et al., 2010). (a)
Neotectonic setting. Black numbers are slip rates (m/kyr) from Haeussler
et al. (2017a) for the combined Totschunda Fault (TF) and eastern
Denali Faults (eDF), and segments of the central Denali Fault (cDF).
Queried 3‐m/kyr shortening rate from Bemis et al. (2015). Seismic zones
from Tape et al. (2015). (b) Geomorphic and seismotectonic setting. Peters
Dome thrust from Bemis et al. (2012) and other thrust and normal faults
from Burkett et al. (2016). Northern (N), middle (M), and southern (S)
Kantishna seismic cluster (Ruppert et al., 2008). (c) Swath profiles (10 km
wide) of topography, schematic faults, and earthquake hypocenters.
Hypocenters colored by 250‐m bandwidth kernel density, contours show
density changes on 10% intervals.
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(b) shortens internally across the right‐transpressive faults, (c) extrudes westward at a modest pace, and
(d) translates north‐northwest and indents central Alaska at a rate commensurate with shortening across
the northern Alaska Range thrust system (Haeussler, Matmon, et al., 2017). Absent direct constraints,
Late Pleistocene rates of southern and central Alaska deformation off the Denali Fault remain unquan-
tified, leaving unclear the far‐field distribution of strain related to the Yakutat microplate collision (e.g.,
Bemis et al., 2015; Haeussler, Matmon, et al., 2017).

We focus on the Kantishna Hills anticline, the primary structure at the west end of the northern Alaska
Range thrust system (Figure 1a). Basin analysis implies thrust system initiation in Oligocene‐Miocene time
(Ridgway et al., 2007), broadly concurrent with the onset of Yakutat microplate collision (Lease et al., 2016,
and references therein). Subsequently, structural and stratigraphic data indicate progressive northward
advance and lateral propagation of northern Alaska Range thrust system structures above a gently south dip-
ping basal detachment (Bemis & Wallace, 2007; Ridgway et al., 2007). Deformed river terraces and offset
postglacial surfaces of unknown age provide evidence for ongoing deformation through Quaternary time
with inferred rates of shortening approaching 3m/kyr (Bemis et al., 2015). Assuming 13mm/year of far‐field
Yakutat convergence (Elliott et al., 2013; Haeussler, Matmon, et al., 2017), such shortening is consistent with
the average 7–10‐m/kyr Denali Fault slip rates south of the thrust system (Haeussler, Saltus, et al., 2017).
Given unconstrained rates of transpression south of the Denali Fault, however, the rate of northern
Alaska Range shortening may be much lower, and remains untested by direct dating of deformed
geomorphic markers.

We conduct such a test using the seismically active Kantishna Hills anticline (Lesh & Ridgway, 2007;
Figure 1b). The anticline projects the west‐southwest strike of the thrust system into the Minchumina basin,
~40 km north of the McKinley restraining bend of the Denali Fault (Burkett et al., 2016; Haeussler, 2008).
Active structures between the Kantishna Hills anticline and the Denali Fault comprise down‐to‐the‐south
normal fault scarps associated with the McKinley bend, and discontinuous ≤1‐km‐long thrust scarps that
record up to two late Holocene earthquakes (Burkett et al., 2016). In contrast, structural continuity and pro-
minence of the Kantishna Hills anticline indicate that it is the primary structure absorbing north‐northwest
directed shortening at the west end of the thrust system.

The Kantishna Hills anticline provides a textbook geomorphic example of active folding. Several trunk
rivers that drain the north flank of the rapidly rising Denali massif (exhumation >1 km/Myr since
~6 Ma; Fitzgerald et al., 1993) flow west‐southwest around the fold, in the direction of apparent plunge,
before incising across the trend of the structure (cf., Keller & DeVecchio, 2013; Figure 1b). Where the
McKinley River cuts one of these water gaps (termed Eagle Gorge), Lesh and Ridgway (2007) observed
the channel planform change from wide, alluvial, and braided both upstream and downstream to a
single mixed bedrock‐alluvial thread entrenched across the fold into Paleozoic schist (Reed, 1961).
Lesh and Ridgway (2007) interpreted this planform change, along with Hack gradient index variations
(see Kirby & Whipple, 2012) and the presence of deeply incised McKinley River strath terraces along
Eagle Gorge to collectively represent ongoing differential uplift and incision of the Kantishna Hills
anticline. This interpretation assumes that strath terraces serve as passive markers of fold growth
relative to the McKinley River channel (e.g., Hubert‐Ferrari et al., 2007); hence, dating these features
would quantify deformation rates associated with terrace incision (e.g., Burbank et al., 1996; Lavé &
Avouac, 2000).

A persistent cluster of small earthquakes (the northern Kantishna seismic cluster; Ruppert et al., 2008)
occurs beneath the Kantishna Hills anticline, providing further evidence for active deformation (Ruppert
et al., 2008; Figures 1b and 1c). These earthquakes, typically M ≤ 3 and detected at near‐steady rates since
initial seismic network establishment in 1968, compose the northernmost subgroup of three Kantishna seis-
mic clusters between the anticline and the Denali Fault (Ruppert et al., 2008). Most (~90%) of these earth-
quakes occur within the uppermost 12 km (Ruppert et al., 2008) of the locally 30–35‐km‐thick crust (e.g.,
Miller et al., 2018). Focal mechanisms within the northern Kantishna cluster indicate primarily strike‐slip
and thrust fault earthquakes, with P axes oriented north‐northwest in agreement with the west‐southwest
trend of the overlying fold (Ruppert et al., 2008). Spatial overlap and mutually consistent stress orientations
intimate a yet‐untested linkage between active folding of the Kantishna Hills anticline and the underlying
seismicity (Bemis et al., 2012; Ruppert et al., 2008).
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3. Methods and Results
3.1. Surface Deformation From Field Mapping and Digital Topography Analysis

We characterized surface deformation across the Kantishna Hills anticline using field‐based validation of
remote, reconnaissance‐level digital mapping and topography analysis. We used 5‐m/pixel aerial interfero-
metric synthetic aperture radar‐based digital topography (IfSAR DEM; https://lta.cr.usgs.gov/IFSAR_
Alaska) to characterize surface folding at the regional scale (i.e., ~30 by 20 km; Figure 2a) and to map geo-
morphology, including three levels of McKinley River strath terraces, at the 1:10,000 scale. In the field, we
excavated, measured, and described the three strath terrace levels (which we term Qt1–3) and associated
alluvial cover deposits at multiple locations across the Kantishna Hills anticline along Eagle Gorge
(Figures 2a–2d). We refined the remote mapping based on field observations, and used the IfSAR DEM to
quantify terrace deformation along profiles across the fold. We constructed terrace profiles by extracting
pixel elevations from the IfSAR DEM within mapped terrace treads where slope ≤ 5°, and averaging the
resulting elevation “cloud” on 250‐m profile distance bins (Figure 3a). Subtracting both the IfSAR‐derived
modern channel level and field‐measured channel deposit thickness (Qt1 ~12 m, Qt2 ~9 m, Qt3 ~6 m) from
the tread elevations yields profiles of strath height that quantify differential bedrock incision across the fold
along the McKinley River (Figure 3b).

Kilometer‐wide swath profiles of IfSAR‐derived elevation reveal a single southwest trending anticlinal fold
that projects along the strike of the contiguous mapped bedrock Kantishna Hills anticline (Reed, 1961;
Figures 2a and 2b). This broad surface fold retains a constant ~15‐km half‐wavelength and decreases mono-
tonically in amplitude along‐trend from a maximum of ~200 m near Eagle Gorge to the regional base level
set by the Minchumina basin east of Birch Creek, ~20 km to the southwest. The surface fold warps glacial
landforms with inferred ages exceeding 191 ka (i.e., >MIS 6; Burkett et al., 2016), and closely matches the
map distribution of earthquakes within the northern Kantishna cluster. The degree of erosional dissection
of the fold appears to decrease in the direction of plunge, and several trunk rivers draining the northern
Alaska Range flow southwest along the south flank of the Kantishna Hills anticline before cutting across
it. These observations are collectively consistent with expectations of landscape response to active, southwest
propagating fold growth (e.g., Keller & DeVecchio, 2013).

Figure 2. Geomorphic expression of the Kantishna Hills anticline. (a) IfSAR‐derived hillshade, elevation, and trunk river network. Black numbers and T symbols
indicate 1‐km‐wide swath profiles of topography depicted in Figure 1b. (b) Swath profiles (1 km wide) of topography across the Kantishna Hills fold crest, with
trunk rivers schematically depicted. (c) Surficial geologic map of Eagle Gorge. Black dots A and A′ indicate start and end of Figure 3 profiles. (d) Aerial photo of
Eagle Gorge looking north‐northwest from the Gorge entrance (E) toward the mouth (M) also shown on Figure 2c.
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Figure 3. Profiles across the Kantishna Hills anticline, projected onto profile A‐A', indicated on Figure 2c. (a) Terrace
tread pixel elevations where slope ≤ 5° (gray dots) averaged on 250‐m distance bins (colored dots), McKinley River
channel, age sample sites, and swath profile 8 (located on Figure 2a). (b) Strath heights. (c) Rates; inset plots terrace age
against shortening to compute the time‐averaged shortening rate, profile plots bedrock incision rate, which we equate
with the rock uplift rate, across the fold. (d) Bankfull channel width measured in the field (dark gray dots) and remotely
(light gray dots). Black line is 5‐km moving average of remote width measurements. (e) IfSAR‐derived channel
slope on 250‐m reachmidpoints (gray dots) and smoothed on a 2‐kmmoving average (black line). (f) Unit stream power on
250‐m reach midpoints (gray dots) and smoothed on a 2‐km moving average (black line).
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Where the McKinley River crosses the anticline through Eagle Gorge, terrace tread elevations and strath
heights vary systematically with adjacent surface folding, despite some scatter and downstream discontinu-
ity (Figures 3a and 3b). Strath heights near the canyon entrance and outlet approach river level, but achieve
local maxima within the fold crest (Qt1 ~37 m, Qt2 ~25 m, Qt3 ~8 m). McKinley River treads and straths tilt
(a) to the north within the north flank of the fold (Qt1 ~1°, Qt3 ~0.2°), (b) to the north across the fold crest
(Qt1–3 ~0.1°), and (c) to the southeast within the south flank of the fold (Qt2 ~0.4°, Qt3 ~0.2°). Agreement
between strath heights and the elevation of the surface fold into which the terraces are cut indicates that
folding, following terrace abandonment, regulates the observed tread and strath geometry. Dates of terrace
abandonment thus constrain rates of active folding.

3.2. McKinley River Terrace Chronology

Five OSL samples and a cosmogenic 10Be depth profile allow us to date relictMcKinley River deposits on three
terrace levels across the Kantishna Hills anticline (Tables S1–S6 and Figures S1–S7). To constrain terrace
abandonment timing, we collected OSL samples of silt and fine sand near the stratigraphic top of fluvial
deposits on the highest (Qt1, n= 1) and lowest (Qt3, n= 4) strath terraces (Figures 2c and S2–S5) using opaque
metal pipes (Nelson et al., 2015). We analyzed quartz grains from these samples at the Utah State University
Luminescence Laboratory following standard single‐aliquot regenerative‐dose procedures (Murray &Wintle,
2000, 2003; Wintle & Murray, 2006). See supporting information for further details on OSL dating methods,
result, and age determination (Aitken & Alldred, 1972; Gibson, 2009; Guérin et al., 2011; Galbraith &
Roberts, 2012; Prescott & Hutton, 1994). Lacking sand lenses for OSL dating of the middle terrace level
(Qt2), we sampled the 250–1,000‐μm sand fraction of terrace gravel from five ~10‐cm‐thick stratigraphic hor-
izons at 30‐cm vertical intervals tomeasure in situ 10Be concentrations (Figures 2c and S6). We prepared these
samples at the University of Vermont (Corbett et al., 2016), measured 10Be/9Be ratios at the Purdue Rare
Isotope Measurement Laboratory, and used the MATLAB‐based calculator of Hidy et al. (2010) to model an
abandonment age from the 10Be concentration‐depth profile (Figures S6 and S7; (Nishiizumi et al., 2007).

The McKinley River strath terrace samples yield stratigraphically and geomorphically consistent ages
(Figures 2c, 3a, and S1–S7 and Tables S1–S6). Sandy sediment near the top of terrace stratigraphy at three
locations on Qt3 all yield OSL ages of 9 ka with 1–2‐ka uncertainties (1σ, as with all uncertainties quoted
in this paper), and cap a deeper sand‐over‐gravel horizon with an OSL age of 14 ± 2 ka at one site. The
10Be depth‐concentration profile in the upper third of the ~9‐m‐thick gravel on Qt2 provides an age of
18 ± 3 ka. A single sand horizon near the top of the ~12‐m‐thick gravel of Qt1 yields an OSL age of
22 ± 3 ka. Within uncertainty, all terrace ages except the youngest (which we replicate at three locations)
broadly agree with cosmogenic (Dortch et al., 2010) and calibrated radiocarbon ages (Briner et al., 2017)
of upstream moraines that mark glacial maxima at 20.8–22.3, 16.7–17.6, and 14.0–15.1 ka. This agreement
suggests climatic modulation of terrace formation (e.g., Pan et al., 2003) and supports our assumption of ter-
race isochrony along the ~15‐km length of Eagle Gorge.

3.3. Rates of Bedrock Incision, Rock Uplift, and Shortening

We equate differential bedrock incision along theMcKinley River with rock uplift across the Kantishna Hills
anticline, and compute these rates as the quotient of strath height and terrace age. This simple estimation of
rock uplift relies on several assumptions, supported by key field and DEM observations, which we detail in
the supporting information. Rates of rock uplift and incision computed on each terrace level (a) overlap
along the profile within uncertainty, indicating rate steadiness over time, and (b) vary systematically with
the surface fold elevations adjacent to Eagle Gorge, suggesting that folding controls the pattern of terrace
incision (Figure 3c). Vertical rates near the canyon entrance and outlet approach zero for each level and
are highest at the fold crest (Qt1, 1.8 ± 0.3 m/kyr; Qt2, 1.4 ± 0.3 m/kyr; Qt3, 0.9 ± 0.7 m/kyr), averaging
~1.4 m/kyr within a 2‐km moving window.

Assuming that folding governs the observed strath height profiles, numerical integration of these profiles
yields the area of rock uplifted beneath each strath (Figures 3b and S8 and Table S7), which in turn enables
computation of shortening, provided that there are constraints on the depth of related faulting (e.g., Hubert‐
Ferrari et al., 2007; Lavé & Avouac, 2000). We infer the presence of, and delimit the depth to, a subhorizontal
detachment fault beneath the terraces based on 7,710 small (ML< 3) earthquake hypocenters recorded in the
Kantishna seismic cluster between 1988 and 2018 (Ruppert et al., 2008; earthquake.alaska.edu). We compute
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maximum hypocenter density at 10‐km depth along an 80 × 10‐km swath profile centered over Eagle Gorge
(Figure 1b), so we infer the depth to detachment at 10 km and assign a nominal uncertainty of 2 km based on
the density contours (Figures 1c and S8; cf. Carena et al., 2002). See supporting information for additional
details on earthquake hypocenter data and density calculation. The slope of a line fit through the origin
(i.e., the modern strath) to computed shortening and terrace age yields the time‐averaged rate of shortening
recorded by the folded terraces (Figure 3c). Uplifted rock area beneath each strath (Qt1 ~0.26 km2, Qt2
~0.25 km2, Qt3 ~0.07 km2; uncertainties on the order of 1–4%) implies time‐averaged shortening at a rate
of 1.2 ± 0.5 m/kyr since 22 ± 3 ka.

3.4. Unit Stream Power Adjustment to Active Folding

We quantify the contemporary McKinley River channel response to growth of the Kantishna Hills anticline
by computing unit stream power at 250‐m distance intervals across the fold through Eagle Gorge. Unit
stream power represents the energy that a volume of water dissipates into a river channel's bed and banks
per unit channel width at a rate governed by channel slope, and is proportional to incision rate (e.g.,
Whipple et al., 2013). This relationship implies that adjustments to both channel slope and width modulate
fluvial capacity to incise across spatial gradients in rock uplift, contrasting with slope‐dependent incision
models (cf., Kirby & Whipple, 2012) but consistent with field observations from a range of tectonic settings
(e.g., Allen et al., 2013; Amos & Burbank, 2007; Duvall et al., 2004; Yanites et al., 2010). We compute unit
stream power at 250‐m intervals (Text S2) based on IfSAR‐derived channel slope, field and remotely mea-
sured channel width (Fisher et al., 2013), and discharge (Curran et al., 2016).

Field and remote measurements of bankfull channel width closely agree through Eagle Gorge (Figures 3d,
S9a, and S9b). Remotely measured channel width at the Gorge entrance and outlet locally approach 140 m,
while minimum values of 13 m (remote) and 19 m (field) occur where the McKinley River crosses the fold
crest. Moving average (5 river km) remotely measured channel width decreases from ~77 m (entrance) to
~24 m in the fold crest. These estimates suggest an average threefold (but up to approximately tenfold) chan-
nel width reduction across the anticline crest. Where the width is narrowest, exposed angular blocks and flu-
ted straths in the mixed alluvial‐bedrock channel imply erosion by both plucking and abrasion (Figure S9c;
Whipple et al., 2013) in the absence of erodibility‐enhancing rock type changes (e.g., Duvall et al., 2004).
IfSAR‐derived channel slope remains low through Eagle Gorge (Figure 3e) but increases to ~1% across the
fold crest, coincident with the location of the narrowest channel widths. Combined with 20% exceedance
probability discharge (Curran et al., 2016), estimates of channel slope and bankfull width predict an average
fivefold increase in McKinley River unit stream power, from ~25 W/m2 near the Gorge entrance and outlet
to ~130 W/m2 across the anticline crest (Figure 3e).

4. Discussion and Implications

Our results constrain the regional distribution and kinematics of surface folding across the Kantishna Hills
anticline, demonstrate the climatic origin of the McKinley River terraces, quantify deformation and incision
rates through Eagle Gorge, and elucidate the ongoing channel response to active folding. At the regional
scale, we observe an ~20‐km‐long surface fold that plunges ~200 m to the southwest, diverts three trunk
rivers in the direction of plunge, and becomes increasingly dissected by erosion along strike opposite the
direction of plunge (Figures 2a and 2b). Together, these observations strongly suggest that active folding
of the Kantishna Hills anticline propagates to the southwest, consistent with geomorphic expectations of
lateral fold growth (e.g., Keller & DeVecchio, 2013) and with the inference of Lesh and Ridgeway (2007).
Whereas Lesh and Ridgeway (2007) suggested that Eagle Gorge approximately delimits the lateral extent
of Kantishna Hills folding, our observations extend the distribution of surface deformation ~20 km to the
southwest and are consistent with the areal extent of the seismic cluster.

The systematic downstream variation of McKinley River terrace tread elevations and strath heights, in con-
cert with the adjacent surface fold, place kinematic constraints on the style of folding at Eagle Gorge. Where
preserved, strath heights show near‐symmetric increases in tilt between successively higher terraces within
the north (forelimb) and south (backlimb) flanks of the fold (Figure 3b), indicative of growth by progressive
limb rotation and broadly consistent with end‐member models of either simple detachment or fault bend
folding (e.g., Hubert‐Ferrari et al., 2007; Lavé & Avouac, 2000). Such folds generally develop above strati-
graphic contrasts in mechanical competence, where strong strata overlie a relatively weak horizon at depth
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(i.e., the detachment). The Birch Creek schist coring the Kantishna Hills anticline contains horizons of vary-
ing competency (e.g., Reed, 1961) that may promote detachment in the presence of distributed plate bound-
ary strain. For example, Bemis andWallace (2007) show that a basal detachment fault developed in the Birch
Creek schist, dipping ~2° south at depths of 7–9 km, best explains surface structural and stratigraphic data
on a transect across the northern Alaska Range thrust system ~125 km east of the Kantishna Hills. We infer
the presence of a similar detachment beneath the Kantishna Hills anticline, based on folded terrace geome-
tries and underlying microseismicity focused at ~10‐km depth.

We report new ages of the McKinley River terrace deposits (~22, ~18, and ~14–9 ka) that closely match the
timing of local glacial maxima (e.g., Briner et al., 2017). This temporal agreement implies that climatic
conditions favorable to glacial advances also perturbed the McKinley River discharge to sediment load ratio,
forcing aggradation of the 6–12‐m‐thick channel deposits that now cap the terraces superimposed on the grow-
ing fold (cf., Pan et al., 2003). The duration of incisional hiatuses implicit in the thick terrace deposits appear
negligible relative to the ~22‐kyr measurement interval, given the apparent temporal steadiness of bedrock
incision rates across the fold (Figure 3c; Finnegan et al., 2014; Gallen et al., 2015). In contrast with climatically
modulated intervals of terrace‐forming aggradation that briefly impede bedrock incision, several lines of evi-
dence suggest that sediment flux may regulate long‐term bedrock incision of the Kantishna Hills anticline.

We weigh key field observations against model‐derived insights on sediment flux‐dependent bedrock inci-
sion (e.g., Whipple & Tucker, 2002; Yanites, 2018). First, the highest bedrock incision rates (~1.4 m/kyr since
~22 ka) occur across the fold crest, where channel narrowing (approximately threefold) and steepening
(<twofold) enhance transport and erosive capacity by producing an approximately fivefold increase in unit
stream power (Figures 3a–3e). Second, the McKinley River drains the rapidly exhuming Denali massif
(>1 km/Myr since ~6 Ma; Fitzgerald et al., 1993), implying a high background rate of catchment sediment
production and ample tool supply (e.g., Whipple & Tucker, 2002). The rapid sediment production yields
broad alluvial channel reaches upstream and downstream of Eagle Gorge (Figures 2c and 2d). Within the
gorge across the fold, however, the alluvial cover is thin and discontinuous; extensive bedrock exposure
along the channel banks provides conditions favorable for bedrock incision (Figure S1c; e.g., Whipple &
Tucker, 2002; Yanites, 2018). Taken together, the observed adjustments to channel width, slope, transport
capacity, and sediment cover across the fold closely match patterns of channel response to changes in rock
uplift predicted by models that allow these factors to co‐evolve (Yanites, 2018). We suggest that McKinley
River incision, governed by tectonically modulated sediment flux, keeps pace with rock uplift across the
Kantishna Hills anticline primarily by narrowing its channel width, rather than by channel steepening as
Lesh and Ridgeway (2007) suggested. If true, this represents a case in which channel width narrowing sus-
tains the fluvial response to differential uplift over time, unlike the more commonly recognized transient
width response (e.g., Amos & Burbank, 2007) that ultimately yields to channel steepening that is ubiqui-
tously encoded in conventional incision models (e.g., Kirby & Whipple, 2012). Our results contribute to a
growing body of field (e.g., Allen et al., 2013; Lavé & Avouac, 2000; Yanites et al., 2010) and model‐based
(e.g., Yanites, 2018) evidence that emphasize the significance of channel width adjustment to differential
rock uplift on Late Quaternary time scales.

Ages of the climatic terraces superimposed on the growing Kantishna Hills anticline quantify shortening at a
rate of 1.2 ± 0.5 m/kyr since 22 ± 3 ka across the fold. This rate, which depends in part on depth‐to‐
detachment but not on fault geometry, provides the first direct rate constraint on total Late Pleistocene short-
ening across the Northern Alaska Range thrust system, and falls within the range of rates inferred across the
system ~125 km to the east (1–3m/kyr; Bemis et al., 2015). The KantishnaHills anticline localizes deformation
at the west end of the northern Alaska Range thrust system; hence, if shortening across the northern Alaska
Range thrust system accommodates northwest translation of southern Alaska lithosphere via indentation at
an equivalent rate (e.g., Bemis et al., 2015; Haeussler, Matmon, et al., 2017), our estimated rate of shortening
across the Kantishna Hills constrains the speed of southern Alaska translation to ~1.2 m/kyr since ~22 ka.

5. Conclusions

New ages of strath terraces that flank the McKinley River across the Kantishna Hills anticline place quanti-
tative bounds on rates of shortening (~1.2 m/kyr) and differential rock uplift and incision (≤1.4 m/kyr) since
~22 ka. Close agreement between the new terrace ages and dates of regional glacial maxima (e.g., Briner
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et al., 2017) imply a climatic origin for the McKinley River terraces. Across the anticline crest, where rock
uplift rates approach local maxima, an approximately threefold reduction in McKinley River channel width
implies an average fivefold increase in unit stream power with minimal concomitant increases in slope. This
spatiotemporally sustained channel width adjustment to fold‐driven rock uplift likely reflects the
dependence of bedrock incision on sediment flux governed by climatic (i.e., glacial advance or retreat)
and tectonic (i.e., exhumation rates >1 km/Myr; Fitzgerald et al., 1993) conditions in the catchment
upstream that impede or enhance downcutting, and challenges the ubiquitous applicability of
slope‐dependent incision models. Our results provide the first direct constraint on rates of Late
Pleistocene deformation in the Northern Alaska Range thrust system. Shortening across the Kantishna
Hills anticline, the primary structure at the west end of the thrust system, occurs at a rate consistent with
geomorphically inferred but chronologically unconstrained shortening rates across a much broader part of
the system ~125 km to the east (1–3 m/kyr; Bemis et al., 2015), implying a minimum speed limit for the
north‐northwest translation of the southern Alaska block of 1.2 ± 0.5 m/kyr. This rate represents ~10% of
the residual Yakutat velocity that propagated onto the Denali Fault system in interior Alaska. Up to
~6 m/kyr of horizontal geodetic velocity remains unaccounted for but is likely distributed across
right‐transpressive faults south of the Denali Fault.
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