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Continuum rich-get-richer processes: Mean field analysis with an application to firm size

David Rushing Dewhurst,1,2,* Christopher M. Danforth,2,† and Peter Sheridan Dodds2,‡
1The MITRE Corporation, McLean, Virginia 22102, USA

2Department of Mathematics & Statistics, Vermont Complex Systems Center, Computational Story Laboratory,
& the Vermont Advanced Computing Core, The University of Vermont, Burlington, Vermont 05401, USA

(Received 20 October 2017; revised manuscript received 26 March 2018; published 29 June 2018)

Classical rich-get-richer models have found much success in being able to broadly reproduce the statistics and
dynamics of diverse real complex systems. These rich-get-richer models are based on classical urn models and
unfold step by step in discrete time. Here, we consider a natural variation acting on a temporal continuum in
the form of a partial differential equation (PDE). We first show that the continuum version of Simon’s canonical
preferential attachment model exhibits an identical size distribution. In relaxing Simon’s assumption of a linear
growth mechanism, we consider the case of an arbitrary growth kernel and find the general solution to the resultant
PDE. We then extend the PDE to multiple spatial dimensions, again determining the general solution. We then
relax the zero-diffusion assumption and find an envelope of solutions to the general model in the presence of small
fluctuations. Finally, we apply the model to size and wealth distributions of firms. We obtain power-law scaling
for both to be concordant with simulations as well as observational data, providing a parsimonious theoretical
explanation for these phenomena.

DOI: 10.1103/PhysRevE.97.062317

I. INTRODUCTION

In 1955, Simon described a general version of a rich-
get-richer process that generates power-law size distributions
P (s) ∼ s−γ with a scaling exponent γ > 2 [1]. Simon’s pro-
cess was adapted by Price to capture the statistics of growing
networks, and was later paralleled by the Barabási-Albert
model which introduced scale-free networks [2]. Simon’s
model efficiently captures the statistical properties of a wide
variety of real-world phenomena, such as the linking dynamics
of the Web [3] and the growth of software distributions [4].
Recently, the present authors and others have shown Simon’s
model also exhibits a potentially pronounced first-mover ad-
vantage and that this feature may be consistent with the growth
of real systems [5].

In Sec. II, we first realize Simon’s model in a continuum
setting and describe its dynamics for a number of growth
kernels. Sections II A and II B describe the continuum version
of the model and formulate its analytical solution. In Sec. II C
we determine analytically how the size distribution generated
by the process is dependent on the growth kernel, and can be
proportional not only to any power-law distribution with finite
mean (γ > 2), but also specific instances of the extreme value
distribution, while in Sec. II D we analyze the model’s behavior
when extended to many dimensions. We apply the model
to the dynamics of a market economy in Sec. III, showing
that the power-law distribution of firms observed empirically
and in simulation can be derived from first principles of
microeconomic theory with a minimum of assumptions [6].

*david.dewhurst@uvm.edu
†chris.danforth@uvm.edu
‡peter.dodds@uvm.edu

II. MODEL AND ANALYSIS

We describe Simon’s discrete model by means of an
economic example. Suppose an individual creates a new firm
in some product space with themselves as the sole employee.
An individual that enters the product space at time step t must
choose between starting a new firm themselves with probability
ρ, and choosing to join an existing firm with probability 1 − ρ

from one of the existing firms, with the likelihood of choosing
any particular firm from which to purchase proportional to the
number of employees k. We will denote the number of firms of
size k at time t by Nk,t . The general discrete model thus takes
the form of the recurrence relation [1]

〈Nk,t+1 − Nk,t 〉 = (1 − ρ)

(
−k

t
Nk,t + k − 1

t
Nk−1,t

)
, (1)

where we formalize ρ as an innovation probability. The
solution to (1) scales as

Nk,t ∼ tk−γ , (2)

with γ = 1 + 1
1−ρ

. When ρ → 0, the size exponent γ → 2,
so that the distribution thus obtained borders on infinite mean.
Zipf’s law for rank-frequency distributions, written sr ∝ r−α ,
is recovered from (2) by setting the Zipf exponent α = 1

γ−1 =
1 − ρ [1]. The corresponding equation for the size of the nth
arriving group Sn,t is then given by [5]

Sn,t =
{

1
�(2−ρ)

[
1
t

]−(1−ρ)
if n = 1,

ρ1−ρ
[

n−1
t

]−(1−ρ)
if n � 2.

(3)

A. From discrete to continuous

Though the discrete model accurately models the size
distribution resulting from many real-world processes, it has a
number of shortcomings when applied to economic situations.
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Models that exploit mathematical properties of the preferences
of a representative agent often perform poorly in the task
of explaining economic phenomena such as inequality and
skewed wealth distributions [7,8]. Abstraction of these consid-
erations is thus desirable in order to account for idiosyncrasies
present at the individual consumer level; the resulting model
is a mean field equation and better describes macrobehavior,
analogous to the use of deterministic equations of statistical
mechanics to describe stochastic interactions among many
particles. Moving from discrete to continuous time is sensible
as it corresponds better with our notion of reality (people do
not make decisions in synchrony at each tick of a universal
clock). From a mathematical viewpoint, the resulting equation
will be more easily analyzed as a partial differential equation
instead of a coupled differential-difference equation. Further,
where Simon’s model assumes that agents aggregate to firms
with growth kernel r(x) = x, we drop this assumption and
write the growth kernel as some function r(x) to allow for
generalization of choice [9]. Finally, we allow the innovation
rate ρ to vary in time as ρ(t), which may more realistically
capture the process of technological innovation inherent in the
present economic system. (We note that Simon considered a
time-varying innovation probability in Ref. [1].)

While other authors have considered models that provided
important contributions to the understanding of rich-get-richer
processes and are prima facie similar to ours [9,10], our model
differs substantially from those previously created. Previous
continuum models have focused solely on networks, while
ours is intentionally more general, allowing us to construct
parsimonious models of economic phenomena, for example. In
addition, these previous models did not treat the most general
problem of arbitrary growth kernel r(x) and innovation rate
ρ(t) in the manner considered here. In addition, the continuum
formulation extended to an arbitrary (finite) number of
dimensions is entirely different, as far as we are aware; this
formalism can be used in modeling interacting preferential
attachment processes in the fields of biology, economics, or
sociology.

B. General asymptotic model

Applying the above adjustments to Simon’s discrete model,
Eq. (1) becomes a boundary value problem for the function
determining the intertemporal distribution of firms of size x,
written f (x,t),

∂f

∂t
= −1 − ρ(t)

t

∂

∂x
[r(x)f ], (4)

with the semi-infinite boundary condition limx→∞ f (x,t) = 0.
(We treat only the case of asymptotic solutions; the question
of differing initial distributions of firms is not considered.)
We first consider ρ∞ as a long-run constant innovation rate
satisfying limt→∞ ρ(t)

ρ∞
= 1 and solve Eq. (4) by separation of

variables. Setting f (x,t) = X(x)T (t), we solve the equations

dT

dt
� λ

1 − ρ∞

1 − ρ(t)

t
T (t), (5)

dX

dx
= −

[
λ

(1 − ρ∞)r(x)
+ r ′(x)

r(x)

]
X(x), (6)

where λ is a constant of separation. The general solution to (4)
is thus

f (x,t) = c

r(x)
exp

[
λ

1 − ρ∞
g(x,t)

]
, (7)

where g(x,t) = ∫ t 1−ρ(t ′)
t ′ dt ′ − ∫ x dx ′

r(x ′) .
Dropping the assumption that ρ(t) → ρ∞, we solve (4) in

all generality using the method of characteristics. We write the
Lagrange-Charpit equations that describe its solution on the
characteristic curves as

dt = t dx

[1 − ρ(t)]r(x)
= − t df

[1 − ρ(t)]r ′(x)f (x,t)
, (8)

and solve the resulting equations

dx

dt
= 1 − ρ(t)

t
r(x), (9)

df

dx
= − r ′(x)

r(x)
f (x,t). (10)

The solution to the first is given implicitly by
∫

dx
r(x) + A =∫ 1−ρ(t)

t
dt , while the solution to the second is f (x,t) = B

r(x) .
Letting B = F (A) gives the firm density

f (x,t) = 1

r(x)
F

(∫
1 − ρ(t)

t
dt −

∫
dx

r(x)

)
. (11)

We see that Eq. (7) has the same form as Eq. (11), with F (·) =
exp(·).

C. Asymptotics for example growth kernels

We wish to characterize the long-run behavior of Eq. (7).
Recovering the original Simon model is possible by setting
r(x) = x and letting the innovation rate remain constant at
ρ∞. Equation (7) then becomes

f (x,t) ∝ 1

x
exp

[
ln t − λ

1 − ρ∞

∫ x dx ′

x ′

]

= tx
−(1+ λ

1−ρ∞ )
, (12)

with λ → 1 in the long-run time limit. Figure 1 shows solutions
of Eq. (4) with the Simon growth kernel r(x) = x and a
constant innovation rates ρ ∈ {0.01,0.1,0.5}. Note that these
solutions are pure power laws and thus are linear in log-log
space. The exponent γ = 1 + 1

1−ρ∞
is the expression found

by Simon in Ref. [1]. Any discretization of this continuum
process will have a size-rank distribution S(r) ∝ r−α with
Zipf exponent α = 1

γ−1 = 1 − ρ∞; the dynamics of the Simon
process are thus completely recovered in this case.

For an affine growth kernel r(x) = a0 + a1x, the solution
is similar,

f (x,t) ∝ 1

a0 + a1x
exp

[
ln t − λ

1 − ρ∞

∫ x dx ′

a0 + a1x ′

]

= t(a0 + a1x)−1− λ
a1(1−ρ∞)

∼ tx
−(1+ 1

a1(1−ρ∞) )
, (13)

again in the long-run time limit. A general linear growth factor
can thus be chosen to result in a power-law distribution with
any γ > 1; as a1 grows large, 1

a1(1−ρ∞) → 0.

062317-2
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FIG. 1. Solutions to Eq. (4) with growth kernel r(x) = x and
innovation rate ρ(t) = ρ∞.

Considering a monomial power growth factor r(x) = xη

(η �= 1), we obtain

f (x,t) ∝ 1

xη
exp

[
ln t − 1

1 − ρ

∫ x dx ′

x
′η

]

= tx−η exp

[
− x−(η−1)

(1 − ρ)[−(η − 1)]

]
. (14)

Equation (14) is proportional to a Fréchet distribution for η > 1
or Weibull distribution for 0 < η < 1. Krapivsky et al. found
a similar result for nk , the number of nodes of degree k, in
growing random networks [11].

Figure 2 shows solutions of Eq. (4) with r(x) = xη for
η > 1.

FIG. 2. Solutions to Eq. (4) with growth kernel r(x) = xη for
η > 1 and innovation rate ρ(t) = ρ∞.

D. Preferential attachment in many dimensions

We now extend the model, Eq. (4), to multiple dimensions.
The general model reads

∂f

∂t
= −1 − ρ(t)

t
Ldiv(r(x1, . . . ,xN ),f )

+Lfluc(D(x1, . . . ,xN )f ), (15)

where r(x1, . . . ,xN ) is a general growth kernel, Ldiv is a
linear differential operator containing a divergence term, the
generator of the rich-get-richer process, andLfluc is an operator
containing information on the random fluctuations of f . We
describe several models and solve one of them analytically.

The most straightforward generalization of Eq. (4) holds
constant the assumption of zero fluctuations and has a
generator given by the divergence of the vector field E =∑N

i=1[rk(xk)f ]ek , with ek the standard orthonormal basis for
the particular vector space under study. In the case of Cartesian
coordinates, the generator becomes

Ldiv =
N∑

i=1

∂

∂xk

[rk(xk)f ].

This case has an analytical solution given below in Sec. II D 1
that directly parallels the results given in Sec. II B. When
rk = rk(x1, . . . ,xN ), the resulting equation is not separable and
resists analytical solution.

A reasonable generalization relaxes the zero-diffusion as-
sumption to study the process under the influence of small
perturbations. Assuming small random fluctuations gives a
time-dependent Fokker-Planck equation for f which we now
describe. Letting D = ∑

i,j Dij (x1, . . . ,xN ) be the covariance
matrix, we have (in Cartesian coordinates)

∂f

∂t
= −1 − ρ(t)

t
∇ · E + H [Df ], (16)

where H = ∑
i,j

∂2

∂xj ∂xi
is the diffusion operator. This equation

is also, in general, not possible to solve analytically. However,
an envelope of solutions is available in any small time interval,
as shown in Sec. II D 2.

1. Separable growth kernels rk

Maintaining the assumption of a steady-state constant
innovation rate ρ∞, the equation governing the distribution of
firms as a function of time and N spatial variables x1, . . . ,xN

is

∂f

∂t
= −1 − ρ(t)

t

N∑
k=1

∂

∂xk

(rkf ), (17)

where rk = rk(xk). This equation is again separable with the
solution given by

f (x1, . . . ,xN ,t) = T (t)
N∏

k=1

Xk(xk).

062317-3
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Substituting the above into Eq. (17) gives

∂
[
T (t)

∏N
1 Xk

]
∂t

= − (1 − ρ∞)[1 − ρ(t)]

(1 − ρ∞)t

×
N∑

k=1

∂

∂xk

⎛
⎝rkT (t)

N∏
j=1

Xj

⎞
⎠, (18)

which, after rearranging and differentiating, becomes

1 − ρ∞
1 − ρ(t)

t

T (t)

dT

dt

N∏
k=1

Xk

= −(1 − ρ∞)
N∑

k=1

⎛
⎝rk

dXk

dxk

∏
j �=k

Xj + drk

dxk

N∏
j=1

Xj

⎞
⎠.

(19)

Dividing through by the term
∏N

k=1 Xk , we find

dT

dt

(1 − ρ∞)t

[1 − ρ(t)]T (t)

= −(1 − ρ∞)
N∑

k=1

(
rk

dXk

dxk

X−1
k + drk

dxk

)
, (20)

which can be separated into an uncoupled system of N + 1 or-
dinary differential equations (ODEs) with structures identical
to those solved in Eqs. (5),

dT

dt
= λ

1 − ρ∞

1 − ρ(t)

t
T (t), (21)

dXk

dxk

= −
(

λk

(1 − ρ∞)rk

+ r ′
k

rk

)
Xk, for k = 1, . . . ,N,

(22)

where λ = ∑N
k=1 λk are the coefficients of separation. The

general solution of Eq. (17) is thus

f (x1, . . . ,xN ,t)

∝ c

r
exp

[
1

1 − ρ∞

(∫ t 1 − ρ(t ′)
t ′

dt ′ −
N∑

k=1

∫ xk dx ′
k

rk(x ′
k)

)]
,

(23)

with c = ct

∏
k ck and r = ∏

k rk(xk).

2. The case of nonzero diffusion

Let 	t be some small time interval and pick t0 < t1
so that t1 − t0 < 	t defines some time window of interest.
Define τ (t) = (1−ρ∞)t

1−ρ(t) . Fixing τ0 = τ (t0) and τ1 = τ (t1) and
substituting τj , j = 1,2 for τ in Eq. (16) define solutions
f0(x1, . . . ,xn,t) and f1(x1, . . . ,xn,t) whose generators are
time independent and whose spatial averages form an enve-
lope for the spatial average of the solution of Eq. (16) as
f1(t) � f (t) � f0(t) for t ∈ [t0,t1]. We will solve for the upper
envelope solution f0 explicitly; to solve for f1 one proceeds
identically. Again assuming a product solution of the form
f0(x1, . . . ,xn,t) = T0(t)

∏n
k=1 Xk(xk) and supposing that the

diffusion matrix is D = σ 2

2 I = DI, substitution in Eq. (16)

gives

∂
[
T0(t)

∏n
i=1 Xi

]
∂t

= −τ0(1 − ρ∞)

×
N∑

k=1

∂

∂xk

⎛
⎝rkT0(t)

N∏
j=1

Xj

⎞
⎠

+D

n∑
k=1

∂2

∂x2
k

⎛
⎝T0(t)

n∏
j=1

Xj

⎞
⎠. (24)

Following a similar derivation to Eqs. (18)–(21), one arrives at
the system of ODEs,

dT0

dt
= λ

τ0
T0(t), (25)

τ0D
d2Xk

dx2
k

+ rk

dXk

dxk

+
[

λk

1 − ρ∞
+ r ′

k

]
Xk = 0, (26)

where again
∑n

k=1 λk = λ. The time solution is now given
by T0(t) = exp ( λ

τ0
t) (recall that this is defined only over t ∈

[t0,t1]), while the spatial solutions are much more intricate than
those given in Eq. (23). Where rk(xk) = 1 the solution is given
in terms of sines and cosines and it is seen that Eq. (16) simply
becomes the heat equation; there is no preferential attachment
process here. The case of classical preferential attachment is
given by rk(xk) = xk , whereupon the spatial equations take the
form

d2X

dx2
− c1x

dX

dx
+ c2X = 0, (27)

where we have set X = Xk for clarity and defined the con-
stants c1 = − 1

τ0D
and c1 = 1

τ0D
( λ

1−ρ∞
− 1). This equation is

of Hermite type and its solution can be expressed analyti-
cally in terms of the confluent hypergeometric function. This
does not provide elucidation of the resultant distribution,
however; we derive the solution of Eq. (27) in frequency
space presently. Defining the Fourier transform by F (ω) =
F [f ](ω) = ∫ ∞

−∞ f (x)eiωxdx, transforming Eq. (27) results in
the frequency-space differential equation

∂F

∂ω
= 1

c1ω
(ω2 − c1 − c2)F (ω). (28)

The asymptotic solution to Eq. (28) in frequency space is thus
(replacing F by Fk)

Fk(ω) � ω
−(2− λk

1−ρ∞ )
e
− ω2

2τ0D . (29)

We note the decomposition of Fk(ω) as a product (in frequency
space) of a pure diffusion part and a preferential attachment
(power-law) frequency decay; the corresponding time-valued
function is a convolution of a diffusion process and the
preferential attachment process.

Setting L† = − 1−ρ(t)
t

Ldiv + σ 2

2 Lfluc, we can write Eq. (16)
as d

dt
f = L†f when the diffusion is uncorrelated (the diffusion

matrix is a multiple of the identity). Another way of charac-
terizing solutions to this equation is to solve for a stochastic
process that generates the equivalent backward solutions; we
search for solutions of − d

dt
f = Lf . The corresponding partial

062317-4
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differential equation (PDE) is given by

−∂f

∂t
= 1 − ρ(t)

t
r(x)

∂f

∂x
+ σ 2

2

∂2f

∂x2
, (30)

defined for t ∈ [t0,T ] with the final condition f (x,T ) = φ(x).
(In dimensions higher than one the extension is clear.) By the
Feynman-Kac formula, the solution to this equation is given by

f (x,t) = 〈φ(XT )|Xt = x〉, (31)

where the stochastic process Xt is defined by

dXt = 1 − ρ(t)

t
r(Xt )dt + σ dWt . (32)

Thus analysis of the associated Itô stochastic differential equa-
tion (SDE) yields yet another method by which the behavior
of the continuum rich-get-richer process can be analyzed.

III. APPLICATION TO MARKET STRUCTURE

A. Firm size

We demonstrate the applicability of our results with a
microeconomic analysis of firm revenues. Consider a small
time period 	t in which consumers enter a market to purchase
an item priced at p. During this time period, we assume each
consumer purchases only one item. With probability ρ (likely
quite small) a consumer will choose to start their own firm; with
probability 1 − ρ they will choose to buy the product from an
existing firm. Consumers chose a firm from which to buy in
proportion to the advertising level of the firm, which is itself
proportional to the firm’s revenue R. Revenue is given by the
equation R(q) = p(q) · q, where q is the quantity of the prod-
uct sold. Firms are price takers, with the market price set atp, so
that revenue is R(q) = pq + c for c some constant. Applying
the above model, the mean field equation for this process is

∂f (x,t)

∂t
= −1 − ρ

t

∂

∂x
[(px + c)f (x,t)], (33)

where the substitution q = x comes from the restriction that
each consumer purchases only one product during the small
time interval of study. The solution to this equation is given by

f (x,t) ∝ t(px + c)−1− 1
p(1−ρ) . (34)

Rewriting this explicitly as f (R,t) ∝ tR
−1− 1

p(1−ρ) emphasizes
the result of a power-law distribution of firms in revenue.
This result corresponds with simulation [14,15] and empirical
data [13,16]. We note that other attempts to quantify this
phenomenon have been either empirical, computational, or
statistical in nature; this appears to be a mechanistic model to
naturally generate these dynamics.

Figure 3 displays the frequency distributions of U.S. firms
with respect to the number of workers from the years 1977
to 2013. That a power law fits these data is well known
[13]. As U.S. firms exhibit constant returns to scale [17],
this implies a power-law frequency distribution of firms with
respect to revenue. We note that the average coefficient β1 of
the log-log fit 〈log10 f (x)〉 = β0 + β1 log10 x is approximately
equal to 1, implying that 1

p(1−ρ) ≈ 0 in Eq. (34). The inset of
Fig. 3 displays 〈f (x,t)〉x over the entire date range. These data
exhibit linear scaling, as predicted by Eq. (34), with the line

FIG. 3. Power-law size distribution of firms. Distribution of firm
sizes by employment from 1977 to 2013, obtained from the U.S.
Census Bureau on 28 August 2016 [12]. Note that U.S. firms exhibit
constant returns to scale, so this implies a power-law distribution
(with identical exponent) in firm income. This result was famously
publicized by Axtell in Ref. [13]. The wide binning in the figure is due
to the lack of granularity in publicly available U.S. Census data on
firms with more than 104 employees. The inset displays 〈f (x,t)〉x over
the entire date range. These data exhibit linear scaling, as predicted
by Eq. (34).

of best fit given by 〈f (x,t)〉x = −1.98 × 107 + 1.04 × 104t

(R2 = 0.9204, p = 8.042 × 10−21). The unpredicted down-
ward trend in 〈f (x,t)〉x in the late 2000’s is likely due to
unstable conditions in the American economy during this time.

B. Wealth distribution

From Eq. (34), we show that the cumulative wealth dis-
tribution of firms exhibits power-law scaling. Defining the
wealth kernel to be w(x,t) = π (x,t)f (x,t), where π (x,t) are
the profits resulting from a sale of x items at time t , and
imposing a maximum customer base of xmax, we have that
total system wealth at time t is given by

W (t) =
∫ t

tmin

∫ xmax

0
w(x ′,t ′)dx ′ dt ′. (35)

The functional form of π (x,t) is dependent on the functional
form of firms’ cost function C(x,t). Suppose that firms face
identical weakly quadratic costsC(x,t) = x0 + C ′(x0)(x −
x0) + 1

2C ′′(x0)(x − x0)2 + O((x − x0)3) ∼ cx + εx2, where
we assume 0 < ε  1. (We choose ε in this range so as to
enforce the first-order condition that dπ

dx
= 0 has a solution in

R+.) Then, denoting the total wealth of firms with x or more
customers at time t by W�(x,t) and letting pnet = p − c, the
above equation becomes

W�(x,t) ∼
∫ t

tmin

∫ xmax

x

(pnetx
′ − εx ′2)t ′x ′−1− 1

p(1−ρ) dx ′ dt ′

∼ pnet

∫ t

tmin

t ′dt ′
∫ xmax

x

x
′− 1

p(1−ρ) dx ′

∝ pnett
2(x1− 1

p(1−ρ)
max − x

1− 1
p(1−ρ)

)
. (36)
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FIG. 4. The fraction of wealth belonging to firms with customer
bases greater than or equal to x for ρ = 0.5, 0.1, and 0.01. We set the
price level p = 2.5 for ease of visualization.

Thus the wealth fraction belonging to firms with a customer
base greater than or equal to x at time t , denoted Wfrac(x) =
W�(x,t)/W (t), displays power-law scaling as a direct result
of the preferential attachment process,

Wfrac(x) � 1 − c0x
1− 1

p(1−ρ) , (37)

where c0 ≈ (x
1− 1

p(1−ρ)
max )

−1

.
Equation (37) is shown in Fig. 4 for several values of ρ.

IV. CONCLUDING REMARKS AND
FURTHER EXTENSIONS

In sum, we have shown how Simon’s model, and preferential
attachment models more generally, may be extended to the
continuum for ease of use as mean field approximations to
stochastic processes. We have developed Simon’s model in
a continuum, expanded upon it by introducing an arbitrary
growth kernel r(x) and a time-variant innovation rate ρ(t), and
solved the model, discussing the cases in which the general
solution satisfies the boundary conditions of the PDE. We are
able to find explicit solutions with various growth kernels r(x).
Noting that preferential attachment processes may operate in

more than one dimension, we allowed the model to have an
arbitrary number of dimensions and solved it there. Finally,
we applied the model to the case of consumer accumulation to
firms, to demonstrate a theoretical derivation of the power-law
distribution of firms by revenue that is observed empirically.

Further extensions to this model could consider the case in
which, as treated above, market entrants create their own firms
with probability ρ. It might be that market entrants create not
a single firm, but multiple firms, or that, in times of economic
crisis, firms are removed from the marketplace with probability
q. The model could then be described by

∂f

∂t
= −1 − ρ

t

∂

∂x
[r(x)f ] + q · g[f (x,t),x,t]. (38)

Other models could also incorporate past information about
the state of the market or a threshold condition via an equation
of the form

∂f

∂t
= −1 − ρ

t

∂

∂x
[r(x)f ]

+
∫ x2

x1

∫ t2

t1

h(f (x − x ′,t − t ′),x ′,t ′)dt ′dx ′. (39)

As a concluding example of the possible further generaliza-
tions, let us consider the problem presented in Eq. (4) in a
nonasymptotic setting; consumers form their own firm at a
rate ρ(t) with an initial firm intensity given by I(x − x0). The
model is thus governed by

∂f

∂t
= −1 − ρ(t)

t

∂

∂x
[r(x)f ] + ρ(t)I(x − x0). (40)

Again using the method of characteristics, we solve the
equations

dx

dt
= 1 − ρ(t)

t
r(x), (41)

df

dx
= − r ′(x)

r(x)
f (x,t) + tρ(t)

1 − ρ(t)
I(x − x0). (42)

Solving and again setting the constants of integration A and B

to B = F (A), the general solution is given by

f (x,t) = 1

r(x)

[
F

(∫
1 − ρ(t)

t
dt −

∫
dx

r(x)

)

+ tρ(t)

1 − ρ(t)

∫
I(x − x0) dx

]
. (43)
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