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Cosmogenic 26Al/10Be surface production
ratio in Greenland
Lee B. Corbett1 , Paul R. Bierman1 , Dylan H. Rood2 , Marc W. Caffee3,4 ,
Nathaniel A. Lifton4,3 , and Thomas E. Woodruff3

1Department of Geology, University of Vermont, Burlington, Vermont, USA, 2Department of Earth Science and Engineering,
Imperial College London, London, UK, 3Department of Physics and Astronomy, Purdue University, West Lafayette, Indiana,
USA, 4Department of Earth, Atmospheric, and Planetary Sciences, Purdue University, West Lafayette, Indiana, USA

Abstract The assumed value for the cosmogenic 26Al/10Be surface production rate ratio in quartz is an
important parameter for studies investigating the burial or subaerial erosion of long-lived surfaces and
sediments. Recent models and data suggest that the production ratio is spatially variable and may be greater
than originally thought. Here we present measured 26Al/10Be ratios for 24 continuously exposed bedrock and
boulder surfaces spanning ~61–77°N in Greenland. Empirical measurements, such as ours, include nuclides
produced predominately by neutron-induced spallation with percent-level contributions by muon
interactions. The slope of a York regression line fit to our data is 7.3 ± 0.3 (1σ), suggesting that the 26Al/10Be
surface production ratio exceeds the commonly used value of 6.75, at least in the Arctic. A higher 26Al/10Be
production ratio has implications for multinuclide cosmogenic isotope studies because it results in greater
modeled burial durations and erosion rates.

1. Introduction

The measurement of multiple cosmogenic nuclides [Granger et al., 2013; Lal, 1988; Nishiizumi et al., 1993; von
Blanckenburg and Willenbring, 2014] constrains the history of rock surfaces and sediments that have experi-
enced burial [Granger, 2006] or long-lived subaerial weathering [Klein et al., 1986; Nishiizumi et al., 1986].
Pairing two nuclides with different half-lives, such as 10Be (~1.4Ma) [Chmeleff et al., 2010] and 26Al (~0.7Ma)
[Nishiizumi, 2004], can detect complex sample histories involving the exposure/burial of surfaces covered by
nonerosive glacial ice [Bierman et al., 1999; Stroeven et al., 2002], estimate the timing of sediment burial
[Balco and Rovey, 2008; Granger, 2014; Granger and Muzikar, 2001], and quantify the exposure/erosion history
of long-lived surfaces [Brook et al., 1995].Most two-nuclide cosmogenic isotope studies compare themeasured
26Al/10Be ratio in quartz-bearing sample material to a nominal 26Al/10Be ratio at production [Nishiizumi et al.,
1991]; a sample 26Al/10Be ratio below that of the production ratio indicates burial or prolonged exposure.

The value of the 26Al/10Be production ratio remains uncertain for several reasons. (1) 26Al has been measured
much less frequently than 10Be at production rate calibration sites. (2) Standards used to normalize measured
isotopic ratios, as well as the assumed half-life of 10Be, have changed over time [Nishiizumi et al., 2007], but
the assumed values of these parameters were typically not reported in most early publications estimating
the 26Al/10Be production ratio (supporting information Table S1). (3) Although both 26Al and 10Be are
produced predominately by neutron-induced spallation, muon interactions also produce these nuclides with
anapparently higher 26Al/10Beproduction ratio [Heisinger et al., 2002]. Hence, themeasured 26Al/10Beof a sam-
ple is a combinationof spallogenicnuclidesandmuogenicnuclides fromthecurrentperiodof exposure, aswell
as inherited spallogenic and muogenic nuclides from previous periods of exposure. (4) There are substantial
challengesanduncertainties inestimatingnuclideproduction ratios includingaccurate characterizationofpro-
duction cross sections at relevant neutron energies [Caffee et al., 2013]. Together, these factors have prevented
the accuratedeterminationof the 26Al/10Be surfaceproduction ratio and its variationover latitude andaltitude.

Because the 26Al/10Be production ratio is a key parameter in two-isotope interpretive models, the possi-
bility that this ratio depends on geographic factors limits the accuracy of the two-isotope approach. This
is especially relevant in the Arctic, where many 26Al/10Be ratios have been measured and interpreted to
elucidate the exposure history of previously glaciated outcrops. The two-isotope approach has been used
in Greenland [Beel et al., 2016; Corbett et al., 2016c, 2013; Håkansson et al., 2009; Roberts et al., 2008, 2009],
Baffin Island [Bierman et al., 2001; Bierman et al., 1999; Briner et al., 2006, 2003; Corbett et al., 2016a; Kaplan
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et al., 2001; Margreth et al., 2016; Miller
et al., 2006], mainland Arctic Canada
[Marquette et al., 2004], and
Scandinavia [Harbor et al., 2006;
Stroeven et al., 2002] to constrain the
complex history of surfaces preserved
beneath nonerosive glacial ice.

Here we measure the 26Al/10Be produc-
tion ratio at high latitude (~61–77°N) in
24 samples collected from continuously
exposed bedrock and boulder surfaces
at four sites in Greenland (Figure 1). All
of these sites were exposed during ice
margin retreat at the end of the Last
Glacial Maximum [Bennike and Björck,
2002; Sinclair et al., 2016]. The goal of
this work is to use a field- and
laboratory-based approach to further
constrain the 26Al/10Be ratio at
high latitude.

2. Previous Constraints on the
26Al/10Be Surface
Production Ratio

Several different approaches have been
used to estimate the 26Al/10Be produc-
tion ratio, including direct measurement
in young samples, inferences from
long-exposed samples assumed to be

at a secular equilibrium between production and decay, and model calculations (supporting information
Table S1). Here, we report the original findings from these studies, without correcting for changes in nominal
standard values and the 10Be half-life; in Table S1, we scaled the inferred 26Al/10Be production ratios to
currently accepted values.

Based on empirical analysis of field samples (representing nuclides produced from both spallation and
muons), Klein et al. [1986] inferred a production ratio of ~7 in Libyan desert glass (25°N); Nishiizumi et al.
[1989] obtained an average of 6.02 ± 0.44 (1σ) from quartz extracted from glacially polished Sierra
Nevada granite (38°N); Nishiizumi et al. [1991] calculated ~6.2 from Antarctic bedrock (72°S), while Brown
et al. [1991] calculated 6.5 ± 1.3 (1σ) from Antarctic moraines (78°S); Larsen [1996] measured 5.88 ± 1.02
(average, 1σ) in Laurentide Ice Sheet terminal moraine material (41°N); Kubik et al. [1998] determined a
ratio of 6.52 ± 0.43 (weighted mean, 1σ) in Austrian landslide deposits (47°N); and Nishiizumi et al. [2005]
calculated ~6.1 from alluvial fan deposits in Chile (27°S). Modeling and experimental studies estimated
the spallation production ratio to be 6.11 [Lal, 1991], 7.1 [Reedy et al., 1994], and 6.05 [Masarik and
Reedy, 1995].

Although there is spread in the measured production ratios and no systematic spatial trend, most of the ori-
ginal findings described above were consistent with a surface 26Al/10Be production ratio of ~6.1, and Lal
[1991] adopted this ratio. It was used extensively in cosmogenic isotope studies until a change in the
assumed value of primary accelerator standards [Nishiizumi et al., 2007], as well as updates to the 10Be half-
life [Chmeleff et al., 2010], raised the canonical 26Al/10Be surface spallation production ratio to ~6.75, which
is the value that is currently used in the CRONUS Earth online calculator [Balco et al., 2008]. Recently, studies
have refined cosmogenic nuclide production rates for different latitudes and altitudes. However, most
measured only 10Be, inferring 26Al indirectly by use of the accepted spallogenic surface production ratio of
6.75 [Balco et al., 2009; Briner et al., 2012; Goehring et al., 2012; Kaplan et al., 2011; Kelly et al., 2015; Putnam

Figure 1. MapofGreenlandshowingthe locationsof thefourstudysites.
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et al., 2010; Young et al., 2013a]. As such, these recent studies do not provide additional constraint of the
26Al/10Be production ratio.

A spallogenic 26Al/10Be production ratio exceeding 6.75 is consistent with modeling studies that investigated
the latitude and/or altitude scaling of 10Be and 26Al independently [Argento et al., 2013; Lifton et al., 2014].
Argento et al. [2013], focusing on the high latitudes, modeled a spallogenic 26Al/10Be production ratio of
~7.0–7.1 for sea level (their Table 2) and found a small decrease in production ratio with increasing altitude
(their Figure 6). A recent nuclide-specific scaling model [Lifton et al., 2014], based on analytical approxima-
tions of physics-based atmospheric cosmic ray fluxes similar to those used by Argento et al. [2013, 2015a,
2015b], found variation in the production ratio over both latitude and altitude (their Figure 8).

Using a more complete and refined representation of the physics involved, Argento et al. [2015a] also
concluded that the 26Al/10Be production ratio varies with atmospheric depth (their Figure 6) but inferred a
spallogenic surface production ratio of 6.7 at sea level and high latitude and lower ratios with increasing alti-
tude. Because of the modeling refinements, they consider the 2015 results to supersede those from 2013. But
while Argento et al. [2015a] cite improvements in radiation transport model physics in preferring the new
results compared to those from 2013, they also note that they may be overestimating the 10Be production
rate by about 10% based on comparison with recent 10Be calibration site data [Phillips et al., 2016], making
their quoted 26Al/10Be production ratios underestimates. Given the different 26Al and 10Be excitation func-
tions and the spallogenic nucleon energy spectra for the atmospheric depths relevant for in situ cosmogenic
nuclide production, both Argento et al. [2015a] and Lifton et al. [2014] suggested that nuclide-specific scaling
for altitude and latitude is appropriate. The new CRONUScalc online calculator [Marrero et al., 2016; Phillips
et al., 2016] treats the two nuclides independently in terms of production rate models and thus
production ratios.

Accompanying the numerical models, samples from calibration sites associated with the CRONUS-Earth
project provide empirical constraint for the 26Al/10Be production ratio [Phillips et al., 2016]. Analytical results
from CRONUS-Earth calibration samples presented in Argento et al. [2013] suggest that the 26Al/10Be produc-
tion ratio (including both spallogenic and muogenic contributions) exceeds the canonical value of 6.75. Their
Figure 7 shows that low-altitude (<2000m) samples from six different calibration sites have a mean and
median 26Al/10Be ratio of 7.2 (1σ = 0.4, interquartile range= 0.4, n= 25). Using data from selected CRONUS-
Earth production rate calibration sites, Borchers et al. [2016] document surface 26Al/10Be ratios for
Promontory Point, Utah (1598–1606m above sea level (asl), 41°N: mean= 6.5, median = 6.6, 1σ = 0.7, inter-
quartile range= 0.8, n= 19), and Scotland (131–528masl, 57°N: mean= 7.3, median = 7.2, 1σ =0.6, interquar-
tile range= 0.4, n= 18), suggesting that latitude and altitude may play important roles in surface production
ratio scaling. However, the latitude and altitude of the calibration sites are internally correlated, as CRONUS-
Earth sample sites tended to follow the snowline, leading to higher-altitude calibration sites at low-latitude
and lower altitude calibration sites at high latitude.

3. Study Design and Assumptions

To assess the 26Al/10Be production ratio at high latitude, we present isotopic ratio data from four sites in
Greenland spanning ~61–77°N and 50–724masl (Table 1 and Figure 1). Modeled production rates, scaled
for latitude and altitude with both the CRONUS Earth online calculator [Balco et al., 2008] and the
CRONUScalc online calculator [Marrero et al., 2016], are shown in supporting information Table S2 for each
sample site. According to the CRONUS Earth online calculator [Balco et al., 2008], muon production represents
3.5 ± 0.5% of total 10Be production and 4.3 ± 0.6% of total 26Al production (average, 1 SD). According to the
CRONUScalc online calculator [Marrero et al., 2016], muon production represents 1.4 ± 0.2% of total 10Be pro-
duction and 1.9 ± 0.2% of total 26Al production (average, 1 SD). Since the CRONUS Earth online calculator
[Balco et al., 2008] assumes a global 26Al/10Be spallation production ratio of 6.75, the summed
spallogenic/muogenic 26Al/10Be production ratios for our samples are 6.79–6.82 (Table S2). Conversely,
location-scaled production rates from the CRONUScalc online calculator [Marrero et al., 2016] yield summed
spallogenic/muogenic 26Al/10Be production ratios of 7.26–7.30 (Tables 1 and S2).

The two southern study sites (Narsarsuaq, ~61°N [Nelson et al., 2014] and Ilulissat, ~69°N [Corbett et al., 2011])
were investigated previously using only 10Be. The depth of glacial erosion has not been definitively
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determined, but the existence of streamlined and striated bedrock, as well as many 10Be exposure ages coin-
cident with local radiocarbon chronologies (especially in Ilulissat), argues that the depth of erosion was at
least several meters, removing all spallogenic nuclides from prior periods of exposure [Corbett et al., 2011;
Cronauer et al., 2016; Kelley et al., 2013; Nelson et al., 2014; Young et al., 2013b; Young et al., 2011]. For these
two sites, the Al sample fraction was archived after initial sample preparation; we recovered and analyzed
that archived material (19 samples in total) for this study.

The two northern study sites (Upernavik, ~73°N [Corbett et al., 2013] and Thule, ~77°N [Corbett et al., 2015,
2016c]) were previously investigated with paired 26Al and 10Be, and we make use of a subset of those data.
Upernavik is characterized by deeply eroded fjords separated by highlands preserved beneath nonerosive
glacial ice; here, we include only samples from low elevations in the fjords [Corbett et al., 2013]. Thule experi-
enced heterogeneous subglacial erosion, and its boulders contain varying amounts of nuclides inherited
from previous periods of exposure; here, we utilize only the boulders that have 10Be exposure ages coinci-
dent with radiocarbon estimates of deglaciation timing [Corbett et al., 2015].

Although we are unable to determine the depth of erosion during the last glaciation, we infer that it was at
least several meters because inherited nuclide concentrations from previous periods of exposure are
demonstrably low in the sample surfaces included here. If any of the samples do contain spallogenic
nuclides from previous periods of exposure, the shorter half-life of 26Al would drive the 26Al/10Be ratio
downward during times of burial. Therefore, the 26Al/10Be production ratios we infer would
represent underestimates.

We do not think it is likely that muogenic production has made an appreciable impact on our inferred
26Al/10Be production ratio. Penetrating more deeply into Earth’s surface, muons [Heisinger et al., 2002] pro-
duce 10Be and 26Al at rates that are only a few percent of spallation production rates (Table S2). The
26Al/10Be muon production ratio is not well constrained, but a value of ~8.35 is used in the CRONUS Earth
online calculator [Balco et al., 2008] and ~9.75 in the CRONUScalc online calculator [Marrero et al., 2016] for
the locations of our sample sites (Table S2). Although the muogenic 26Al/10Be production ratio is higher than
that of spallation, nuclides produced by muons during the present interglacial period represent such a small
fraction of total isotope production that their impact on the surface production ratio is minimal.

Inherited nuclides frommuogenic production are also unlikely to be important. Muogenic nuclides from pre-
vious periods of exposure may exist in sample surfaces independent of subglacial erosion history because
muons penetrate deeply; thus, even efficient glacial erosion is incapable of stripping away all muon-
produced nuclides [Briner et al., 2016]. However, nuclides inherited from previous interglacial periods when
our sample sites were ice free would have experienced burial following initial exposure, lowering the
26Al/10Be ratio by radioactive decay.

4. Methods

All samples were prepared at the University of Vermont using standard procedures [Corbett et al., 2016b].
Additions of 27Al carrier (1000μgmL�1 SPEX Al standard) were optimized to reach a total of ~1500–
2500μg Al in each sample based on quantification of native Al in purified quartz. We quantified total 27Al
in the samples immediately following digestion with inductively coupled plasma optical emission spectrome-
try (ICP-OES) analysis of replicate aliquots using two emission lines (308.215 and 309.271 nm) and an internal
standard (Ga).

We recovered archived Al sample fractions from Narsarsuaq (n= 9) and Ilulissat (n=10) in 2016 (Table 1);
these samples, which were stored as Al hydroxide gels since 2011 (Ilulissat) and 2014 (Narsarsuaq), had dried
fully despite being in capped centrifuge tubes. We reconstituted the pellets in heated 10% nitric acid and
reprecipitated Al hydroxide at pH 8. To remove Mg, which forms an isobar that interferes with 26Al analysis
on the Purdue Rare Isotope Measurement (PRIME) Laboratory Accelerator Mass Spectrometer (AMS), we used
a modified cation chromatography method. Our standard Be elution (five column volumes of 1.2 N HCl
[Corbett et al., 2016b]) was followed by a Mg elution (an additional eight column volumes of 1.2 N HCl) before
elution of Al (four column volumes of 4N HCl). ICP-OES analysis of small aliquots from the samples after
processing indicated that sample recovery was 75 ± 11% (average, 1σ, n=19) of the original total Al in
the samples.
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Isotope ratios (supporting information Table S3) reported in the original publications [Corbett et al., 2016c;
Corbett et al., 2015, 2013, 2011; Nelson et al., 2014] were measured by AMS at Lawrence Livermore National
Laboratory (10Be/9Be from Narsarsuaq, Ilulissat, and Upernavik, as well as 26Al/27Al from Upernavik) and
Scottish Universities Environmental Research Centre (10Be/9Be and 26Al/27Al from Thule). Isotope ratios for
the new 26Al/27Al data reported here were measured at PRIME Laboratory. For the new 26Al/27Al analyses
from Narsarsuaq and Ilulissat (supporting information Table S3), ICP-quantified total Al ranged from 1433
to 3115μg. Sample ratios were normalized to standard KNSTD with an assumed ratio of 1.818 × 10�12

[Nishiizumi, 2004]. Measured ratios for the new 26Al analyses (n=19) ranged from 6.2 to 41.2 × 10�14, and ana-
lytic uncertainties were 4.8 ± 1.4% (average, 1σ).

Measured 26Al/27Al ratios for process blanks (n= 6; supporting information Table S4 and Figure S1) at PRIME
Laboratory were scattered, with four blanks yielding low, indistinguishable ratios averaging 7.7 × 10�16 and
the remaining two blanks almost an order of magnitude higher with ratios of 6.1 × 10�15 (from the Ilulissat
study) and 7.5 × 10�15 (from the Narsarsuaq study). We chose to discard the high 26Al blank from the
Narsarsuaq study since it was discarded in the original publication of the 10Be data, where it was the only ele-
vated blank of nine that were measured [Nelson et al., 2014].

To account for multiple possible blank corrections for the new 26Al PRIME Laboratory measurements, we per-
formed a sensitivity analysis utilizing four different backgrounds (supporting information Table S5): mean or
median blank value with the high Ilulissat blank included or excluded. All four possibilities use one standard
deviation around the mean to propagate blank uncertainty into the sample uncertainties in quadrature. The
sensitivity analysis demonstrates that the difference between blank corrections is small; calculated 26Al/10Be
ratios vary by only 0.06 ± 0.04 across all four scenarios, resulting in a 0.8 ± 0.5% difference (n= 19, average,
1σ). For the new 26Al analyses presented in this manuscript, we chose to use the median blank value (without
discarding the high Ilulissat blank) and one standard deviation around the mean, which yields a 26Al/27Al
background of 6.9 ± 24.6 × 10�16. We subtracted the blank ratio from all samples and propagated uncertain-
ties in quadrature; this blank represents a 0.2–1.1% (average 0.4 ± 0.2%, 1σ) correction of the sample ratios.
The 26Al concentrations and 26Al/10Be ratios for the four possible blank corrections are shown in the support-
ing information (Table S5).

5. Results

Our measurements of stable 27Al, an important aspect of quantifying 26Al, are robust. For the blanks included
in the 10 batches of samples described here, the expected (as determined through the addition of 27Al carrier)

Figure 2. Calculated 26Al/10Be ratios for each of the 23 bedrock and boulder samples (excluding one outlier). Error bars
show ±1σ, with errors from the two individual isotopes propagated in quadrature. Samples are sorted by site along the
x axis.
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and the measured (as determined
through ICP-OES analysis) Al contents
differ by only 2.0 ± 2.4% (absolute
value, n= 13, 1σ). This indicates that
ICP-OES quantification of total Al in
samples is accurate, with little or no
loss of Al through precipitation of
fluoride compounds [Bierman and
Caffee, 2002]. The long-term calcu-
lated 26Al concentration of the quality
control material CRONUS-N in the
University of Vermont Laboratory is
1.03 ± 0.06× 106 atomsg�1 (average,
n=20, 1σ), which is indistinguishable
from the value of 1.05± 0.11×
106 atomsg�1 (n=10, 1σ) obtained
by Jull et al. [2015].

Across the data set as a whole, blank-
corrected sample 10Be concentra-
tions range from 3.5 to

9.1 × 104 atoms g�1 and 26Al concentrations range from 2.6 to 6.4 × 105 atoms g�1 (n= 24, Table 1).
Calculated 26Al/10Be ratios are 6.07–8.42, with uncertainties of 5.8 ± 2.0% (n= 24, average, 1σ; Table 1).
However, the lowest calculated 26Al/10Be ratio (GLX25A, 6.07 ± 0.25) is >2σ below the data set mean and is
a statistical outlier using Peirce’s criterion; we therefore infer that this sample likely records a complex history
and omit it from our further calculations.

After omission of sample GLX25A, the calculated 26Al/10Be ratios range from 6.79 to 8.42 (n= 23, Table 1
and Figure 2). The arithmetic mean 26Al/10Be ratio for the entire data set is 7.4 ± 0.5 (n= 23, 1σ). The
median, similar to the mean, is 7.3, and the interquartile range is 0.6. The direct uncertainty-weighted
mean is 7.3 ± 0.1 (1σ). A York regression, which accounts for uncertainties in both 10Be and 26Al, gives
a slope (i.e., 26Al/10Be ratio) of 7.3 ± 0.3 (1σ) and a y intercept that is statistically indistinguishable from
zero at 1σ (Figure 3). There is no statistically significant spatial variability of 26Al/10Be ratio within the
limited latitude/altitude range of the study area, consistent with theoretical predictions [Argento et al.,
2013; Argento et al., 2015b; Lifton et al., 2014]; sample 26Al/10Be ratios are not significantly correlated
with latitude (R2 = 0.03, p=0.39) or altitude (R2 = 0.03, p=0.41), nor are they separable by site (p= 0.80
using a one-way analysis of variance).

6. Discussion

Analysis of paired 26Al/10Be data from continuously exposed samples in Greenland indicates that the high-
latitude, low-altitude 26Al/10Be surface production ratio in quartz, incorporating both spallation and muon
interactions, is 7.3 ± 0.3 (slope of a York regression, 1σ, Figure 3). Assuming a muon contribution of 1.5%, a
muogenic 26Al/10Be production ratio of 9.75 [Marrero et al., 2016], and a summed spallogenic/muogenic
26Al/10Be production ratio of 7.3, we calculate a spallation-only 26Al/10Be production ratio of 7.25. This value
is about 8% higher than the currently accepted spallation value of 6.75 ± 0.5 (based on Nishiizumi et al. [1986],
normalized to standard values presented in Nishiizumi et al. [2007]).

It seems unlikely that analytic uncertainties alone explain the differences in the measured production ratios;
rather, we suggest that latitude dependence or other site-specific factors control the production ratio. A pro-
duction ratio exceeding 6.75 is consistent with other studies that investigated the scaling of 10Be and 26Al
independently, especially the values presented in Argento et al. [2013] and Lifton et al. [2014]. The production
ratio we calculate here exceeds the value of ~6.7 that Argento et al. [2015b] inferred for sea level and high
latitude, which is more consistent with the canonical value. However, the findings of Argento et al. [2015b]
may be biased by a 10Be production rate that is ~10% too high; correcting the 10Be production rate

Figure 3. York regression of 26Al concentrations versus 10Be concentrations
(n = 23, excluding one outlier). Gray ellipses show samples’ 1σ error for each
of the two isotopes. Heavy dark line shows the uncertainty-weighted trend-
line through the data set; thin dark lines show the 1σ uncertainty envelope
around the trendline.
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downward, their inferred 26Al/10Be production ratio is ~7.4, which aligns closely with the value we deter-
mined in Greenland. The production ratio we measure here agrees with site-specific production ratios
(Tables 1 and S2) calculated using the CRONUScalc online calculator [Marrero et al., 2016] and “SA” scaling
[Lifton et al., 2014].

Available published data are not sufficient to fully evaluate the scaling of the 26Al/10Be production ratio over
space due to two key limitations. First, in the past, 26Al measurements typically had greater statistical uncer-
tainties than 10Be measurements, yielding low-precision 26Al/10Be ratios. Second, no systematic studies with
high-precision measurements have been conducted in which the production ratios were measured in a suite
of samples where only one geographic parameter (latitude, for example) varied. Such studies are needed to
clarify the 26Al/10Be production ratio at different latitudes and altitudes.

The 26Al/10Be surface production ratio in quartz has important implications for the histories inferred using
cosmogenic nuclide analysis in bedrock and boulder surfaces. A higher than currently accepted 26Al/10Be
production ratio would result in more samples that record a history of burial and longer modeled burial dura-
tions. As demonstrated by a sensitivity analysis in Corbett et al. [2016c], an assumed 26Al/10Be production ratio
of 7.35 results in the conclusion that 61% of boulders in the data set experienced burial, whereas an assumed
production ratio of 6.75 suggests that only 21% of boulders have been buried (where burial is defined by a
sample point falling >1σ below the constant production or steady erosion curve). Further, for every 0.1
increase in assumed production ratio, modeled burial durations for a representative sample in Corbett et al.
[2016c] increased by 53 kyr. Thus, the change we suggest here (from 6.75 to 7.3) would increase the burial
age for that sample by nearly 300 kyr.

7. Conclusions

Analysis of continuously exposed quartz-bearing bedrock and boulder surfaces spanning ~61–77°N in
Greenland yields a surface 26Al/10Be production ratio of 7.3 ± 0.3 (slope of a York regression, 1σ, spallogenic
and muogenic production). The surfaces we analyzed here were eroded during the last glaciation, appear to
have simple exposure histories (excluding one outlier), and have been exposed since ice retreated across the
landscape at the beginning of the Holocene. The 26Al/10Be ratio we determine is ~8% greater than that used
for most studies, suggesting that the canonical production ratio is not appropriate for at least certain areas of
the world, likely because production rates of these two cosmogenic nuclides do not scale similarly over space.
Since most two-isotope cosmogenic studies rely on the 26Al/10Be surface production ratio as a central
assumption, this new constraint on the ratio has important implications for inferred exposure, burial, and
erosion histories, especially in the Arctic. Our results suggest that additional production ratio calibrations
are necessary globally.
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