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LETTER

Reply to Garcia et al.: Common mistakes in
measuring frequency-dependent
word characteristics
The concerns expressed by Garcia et al. (1)
are misplaced due to a range of misconcept-
ions about word usage frequency, word rank,
and expert-constructed word lists such as
LIWC (Linguist Inquiry and Word Count)
(2). We provide a complete response in our
paper’s online appendices (3). Garcia et al.
(1) suggest that the set of function words
in the LIWC dataset (2) show a wide spec-
trum of average happiness with positive
skew (figure 1A in ref. 1) when, according
to their interpretation, these words should
exhibit a Dirac δ function located at neu-
tral (havg = 5 on a 1–9 scale). However,
many words tagged as function words in
the LIWC dataset readily elicit an emo-
tional response in raters as exemplified
by “greatest” (havg = 7.26), “best” (havg =
7.26), “negative” (havg = 2.42), and “worst”
(havg = 2.10). In our study (3), basic func-
tion words that are expected to be neutral,
such as “the” (havg = 4.98) and “to” (havg =
4.98), were appropriately scored as such.
Moreover, no meaningful statement about
biases can be made for sets of words cho-
sen without frequency of use properly
incorporated.
Garcia et al. (1) compare our work on

English with a similar sized survey by
Warriner et al. (4). Warriner et al. generated
a merged list of 13,915 English words, the
bulk of which are a list of lemmas taken from
movie subtitles, a mismatch with the corpora
we used in creating our English word list
labMT (language assessment by Mechancical
Turk). In figure 1B of ref. 1, Garcia et al. make
a flawed comparison between the two word
lists because the words behind each histogram
are not the same. For shared words, the minor
difference in median havg of 0.07—much less
than the observed positivity bias—cannot be be-
cause of our use of cartoon faces (emoticons).

The earlier Affective Norms for English
Words (ANEW) study upon which we
modeled our work (5) also uses cartoons
and yet found a lower median for words
shared with Warriner et al. (5.29 versus
5.44) (4). All three datasets agree well in
more general statistical comparisons (4).
In attempting to say anything about a given

quality of words as it relates to use frequency
within a specific corpora, a complete census of
words by frequency must be on hand, other-
wise uncontrolled sampling issues arise. In
Fig. 1A, we plot average happiness as a
function of frequency of use for the word
list Garcia et al. (1) created from Google
Books. The scatter plot is clearly unsuitable
for linear regression. We show an estimate of
cumulative coverage at the bottom, which
crashes soon after reaching 5,000 words.
Sampling issues aside, Garcia et al. (1) state

that regression against frequency f is a better
choice than using rank r because information
is lost in moving from f to r. However, the
general adherence of natural language to Zipf’s
law, f ∼ r−1, provides an immediate counter-
argument, even acknowledging the possibility of
a scaling break (6). Fig. 1B shows how use rank
is well suited for regression, and is the basis for
the “jellyfish” plots we presented in our work
(3). In Fig. 1C, we present how havg behaves as a
function of 1/f, illustrating both the error in
choosing log10 f and that our results will be
essentially unchanged if we regress against 1/f.
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A B C

Fig. 1. (A) Scatterplot of havg as a function of word usage frequency for the English Google Books word list generated by Garcia et al. (1). Uncontrolled subsampling of lower
frequency words yields a poor candidate for linear regression. The lower curve provides a coarse estimate of cumulative lexicon coverage as a function of usage frequency f using
Zipf’s law fr ∼ f1r

−1 inverted as r ∼ f1/fr. The rapid drop off begins at around rank 5,000, the involved lexicon size for Google Books in labMT (2). (B) Scatterplot of havg as a function
of rank r for the 5,000 words for Google Books contributing to labMT, the basis of our “jellyfish” plots (2). (C) The same data as in B but now plotted against the inverse of usage
frequency. The approximate adherence to Zipf’s law f ∼ r−1 means there is no substantive loss of information if regression is performed on the correct transformation of frequency.
Linear regression fits for the first two scatterplots are havg ’ 0.089 log10 f + 4.85 and havg ’ −3.04 × 10−5 r + 5.62 (as reported in ref. 3). Note difference in signs, and the far
weaker trend for the statistically appropriate regression against rank in B. Pearson correlation coefficients: +0.105, −0.042, and −0.043 with P values 6.15 × 10−26, 3.03 × 10−3,
and 2.57 × 10−3. Spearman correlation coefficients: +0.201, −0.013, and −0.013 with P values 6.37 × 10−92, 0.350, and 0.350 (B and C must match). The Spearman analysis
indicates that an assumption of a nonmonotonic relationship between havg and rank r is well supported.
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