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RESEARCH ARTICLE
10.1029/2017WR022238

A New Machine-Learning Approach for Classifying Hysteresis
in Suspended-Sediment Discharge Relationships Using
High-Frequency Monitoring Data
Scott D. Hamshaw1,2 , Mandar M. Dewoolkar1 , Andrew W. Schroth3 , Beverley C. Wemple4 ,
and Donna M. Rizzo1

1Department of Civil & Environmental Engineering, College of Engineering and Mathematical Sciences, University of
Vermont, Burlington, VT, USA, 2Now at Vermont EPSCoR, University of Vermont, Burlington, VT, USA, 3Department of
Geology, College of Arts & Sciences, University of Vermont, Burlington, VT, USA, 4Department of Geography, College of
Arts & Sciences, University of Vermont, Burlington, VT, USA

Abstract Studying the hysteretic relationships embedded in high-frequency suspended-sediment con-
centration and river discharge data over 6001 storm events provides insight into the drivers and sources of
riverine sediment during storm events. However, the literature to date remains limited to a simple visual
classification system (linear, clockwise, counter-clockwise, and figure-eight patterns) or the collapse of hys-
teresis patterns to an index. This study leverages 3 years of suspended-sediment and discharge data to
show proof-of-concept for automating the classification and assessment of event sediment dynamics using
machine learning. Across all catchment sites, 6001 storm events were captured and classified into 14 hyster-
esis patterns. Event classification was automated using a restricted Boltzmann machine (RBM), a type of arti-
ficial neural network, trained on 2-D images of the suspended-sediment discharge (hysteresis) plots.
Expansion of the hysteresis patterns to 14 classes allowed for new insight into drivers of the sediment-
discharge event dynamics including spatial scale, antecedent conditions, hydrology, and rainfall. The proba-
bilistic RBM correctly classified hysteresis patterns (to the exact class or next most similar class) 70% of the
time. With increased availability of high-frequency sensor data, this approach can be used to inform water-
shed management efforts to identify sediment sources and reduce fine sediment export.

Plain Language Summary In this study, the river stage (water level) and amount of suspended
sediment (soil particles) within a river and five of its tributaries were monitored for 3 years; more than 600
storm events were captured across all six sites. For each storm event, traces of the sediment concentration
and river stage were plotted against each other; and the emerging patterns such as clockwise, counter-
clockwise, and figure-eight (hysteresis) loops were grouped into 14 reoccurring patterns. We also developed
a machine-learning (artificial intelligence) tool to recognize the 14 patterns using only the visual sediment-
stage image, in the same way that handwritten characters are recognized by computers. This allowed classi-
fication of the individual storm events to be automated. To better understand what these patterns tell us
about the physics associated with the storm events and where on the landscape sediments may originate,
we analyzed the 14 storm categories using measured rainfall, soil moisture, sediment, and river level data.
The machine-learning tool helped capture the linkages between the visual images and the types and origin
of erosion using only data monitored at the river outlet during storm events.

1. Introduction

Quantifying the relationship between riverine sediment export and discharge provides important informa-
tion for understanding the state of hydrologic systems and ecosystem disturbances/stressors, with implica-
tions for downstream water quality. In particular, export of suspended sediment plays a critical role in
sediment pollution, water-quality degradation, and ecosystem impairment (Gao, 2008). The association of
suspended sediment and sediment-bound nutrients such as particulate phosphorus motivates better char-
acterization and understanding of watershed sediment dynamics, nutrient loading, and potential risks (e.g.,
eutrophication) to aquatic ecosystems (Walling et al., 2008).

Key Points:
� Storm-event classification is

automated using hysteresis images
from high-resolution turbidity
sensors and a restricted Boltzmann
machine
� New hysteresis patterns in

suspended-sediment discharge
relationships are identified
� Distributions of hysteresis types show

linkages in space and season, and
provide insight into stream sediment
source connectivity
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Processes associated with suspended-sediment transport during hydrological events can be referred to as
event sediment dynamics. Information on these dynamics as well as sediment sources may be inferred
from the storm-runoff response and corresponding sediment concentration response (Asselman, 1999; Gao
& Josefson, 2012; Lefrançois et al., 2007; Vercruysse et al., 2017). Given the underlying complexity and non-
linear processes controlling sediment transport, the linkage between suspended sediment and discharge
over single storm events often cannot be described by simple linear or univariate relationships (Onderka
et al., 2012). This has given rise to numerous studies on suspended-sediment concentration-discharge
(SSC-Q) relationships, frequently observed as hysteretic in nature (Duvert et al., 2010; Gao & Josefson, 2012;
Lefrançois et al., 2007; Seeger et al., 2004; Sherriff et al., 2016; Williams, 1989).

Williams (1989) appears to be the first to systematically describe single event SSC-Q hysteretic behavior
(e.g., linear, clockwise, counter-clockwise, figure-eight loops, and a few variations) using shapes and timing
of the hydrograph and corresponding sedigraph and offers examples of physical watershed processes that
cause such patterns. Subsequent studies (1) identified these types of hysteresis in the SSC-Q relationships
(Megnounif et al., 2013; Soler et al., 2008), (2) validated the physical processes that give rise to these pat-
terns (Cheraghi et al., 2016; Duvert et al., 2010; Pietro�n et al., 2015; Seeger et al., 2004), and then (3) inferred
sediment dynamics occurring in the study watersheds (Gellis, 2013; Martin et al., 2014; Sherriff et al., 2016;
Smith & Dragovich, 2009). Studies also demonstrated broad applicability of the hysteresis patterns beyond
the SSC-Q relationship; including, but not limited to, the relationship between discharge and soil moisture
(Zuecco et al., 2016), discharge to other solute concentrations (Ramos et al., 2015; Vaughan et al., 2017), and
suspended sediment and turbidity (Landers & Sturm, 2013).

SSC-Q hysteresis has also been used to identify (1) the relative contribution of in-stream sediment sources
and more distant hillslope sources to overall sediment yields (Aich et al., 2014; Buendia et al., 2016; Martin
et al., 2014; Sherriff et al., 2016; Smith & Dragovich, 2009; Yeshaneh et al., 2014), (2) whether individual
watersheds are supply limited or transport-limited (Asselman, 1999; Duvert et al., 2010; Gao & Josefson,
2012; Ramos et al., 2015), and (3) the predominant sediment source, such as bank erosion (Lefrançois et al.,
2007; Smith & Dragovich, 2009). Studies on the temporal effects on the predominant watershed hysteresis
types have inferred seasonal dynamics of sediment supply and transport (Buendia et al., 2016; Gao & Josef-
son, 2012; Lefrançois et al., 2007; Martin et al., 2014; Sherriff et al., 2016; Smith & Dragovich, 2009; Yeshaneh
et al., 2014), and although less extensively, the effect of watershed size (Aich et al., 2014; Asselman, 1999;
Smith & Dragovich, 2009), to understand how tributary sediment delivery differs from that of the down-
stream, main channel outlet.

Classification of hysteretic SSC-Q patterns is important when making inferences about sediment dynamics.
To date, researchers have utilized either a qualitative visual classification or hysteresis indices (HI) (Lloyd
et al., 2016a) to quantitatively measure differences in the rising and falling limbs of the SSC-Q relationship.
Various metrics have been proposed to automate and objectively classify hysteretic behavior (Aich et al.,
2014; Landers & Sturm, 2013; Langlois et al., 2005; Lawler et al., 2006; Lloyd et al., 2016a; Smith & Dragovich,
2009; Zuecco et al., 2016). Some indices facilitate compression of information on the shape and pattern of
the SSC-Q relationship into a single metric that helps infer event sediment dynamics without the need for
classification. However, HI values are not unique (i.e., individual storm events with different hysteresis pat-
terns can have the same index value) and therefore, often require additional metrics such as loop area or
direction to preserve information lost during data compression (Lloyd et al., 2016a; Zuecco et al., 2016).

Machine-learning methods can help identify patterns in hydrological data. For example, feed-forward back-
propagation algorithms have long been used in rainfall-runoff modeling and streamflow prediction (Abra-
hart et al., 2012; Maier et al., 2010). More recently, a new variety of pattern recognition networks called
deep belief neural networks (DBNNs) excel at classification applications such as handwritten character rec-
ognition (O’Connor et al., 2013), sparking extensive research into deep learning. One building block of the
DBNN is the restricted Boltzmann machine (RBM), which acts as a feature extractor for pattern recognition
and classification (Tieleman, 2008). The suite of RBM algorithms, now readily available in a variety of com-
puter languages that run on a desktop PC, make them attractive in balancing state-of-the art performance
with ease of implementation (Testolin et al., 2013).

This study leverages 3 years of high-resolution riverine suspended-sediment time series from multiple sites
to show proof-of-concept of (1) expanding the existing visual classification system of storm-event
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suspended-sediment hysteresis patterns, and (2) automating the classification of event hysteresis using a novel
machine-learning technology designed for high-frequency environmental monitoring data. We then illustrate
the utility of the technology for understanding the environmental drivers of suspended-sediment dynamics
during storms and suspended-sediment provenance. The discussion includes implications and opportunities
for watershed management communities, future applications, and modifications of this approach.

2. Methods

2.1. Study Area
The Mad River watershed, located in the Green Mountains of Vermont within the Lake Champlain Basin (Fig-
ure 1), was selected as a study site based on available long-term stream gauge records and ongoing geo-
morphic and sediment dynamics studies (Stryker et al., 2017; Wemple et al., 2017). Elevation ranges from
132 m to 1,245 m above sea level, with forests (83% of watershed area) dominating all but the valley floors,
which are occupied by agriculture (8%) and village centers and other developed lands (8%) (Table 1). Soils
range from fine sandy loams derived from glacial till deposits in the uplands to silty loams derived from gla-
cial lacustrine deposits in the lowlands. Erosional watershed processes include bank erosion, agricultural
runoff, unpaved road erosion, urban storm water, and hillslope erosion. The Mad River main stem has been
subjected to channel management activities (e.g., straightening, dredging, and armoring) as recent as the
mid-20th century contributing to present-day decreased access to flood plains and increased erosion haz-
ards (Fitzgerald & Godfrey, 2008). Mean annual precipitation in the watershed ranges from 1,100 mm along
the valley floor to �1,500 mm along the upper watershed slopes (PRISM Climate Group, 2015).

2.2. Data Collection
We selected six study sites for monitoring, one along the main stem and one on each of five tributaries (Fig-
ure 1). The Mad River is a fifth-order stream and the monitored tributaries are all fourth-order except for

Figure 1. The Mad River watershed and monitoring site locations.
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High Bridge Brook, which is a third-order stream. In situ digital turbidity sensors (Forest Technology Systems
model DTS-12) and automated samplers (Teledyne Isco 6712) with stage sensors collected river level and
water-quality data for analyzing event sediment dynamics. Both turbidity and discharge data were collected
at 15 min intervals. Suspended-sediment concentration (SSC) samples were collected over storm events for
laboratory analysis. Samples were processed using the standard gravimetric method (EPA Method 160.2) for
measuring total suspended solids; but we discuss using the term SSC for generalizability. To estimate a con-
tinuous (15 min interval) SSC time series, relationships between turbidity and SSC were developed for each
monitoring station using a rating curve (supporting information Figure S2). At all sites, turbidity was highly
correlated with SSC (supporting information Table S1). Tipping bucket rain gauges (Onset HOBO) collected
precipitation data at seven locations within the watershed (Figure 1). A meteorological station, located in
the central portion of the watershed, provided soil moisture measured as volumetric water content of the
soil at multiple depths.

Stage-discharge relations were obtained from the existing USGS (Mad River—Station ID 04288000) rating
curve or developed from discharge measured on three of the tributaries (Mill, Folsom, and Shepard Brook).
At the High Bridge Brook and Freeman Brook monitoring sites, discharge was estimated by measuring stage
and using an approximated stage-discharge rating curve based on the Mad River gauge discharge, scaled
on watershed area. Study sites were instrumented in the spring after ice breakup and maintained until the
start of ice formation in December from 2013 to 2015. Freeman Brook and High Bridge Brook had unstable
channels making stage-discharge relationships impractical to develop; thus, they were monitored only dur-
ing the 2013 data collection period.

The identification of onset and end of individual storm events was semiautomated. The onset was set as
the first positive rate of change between consecutive 15 min Q measurements; while termination was based
on manual identification of an end point using the graphical sloped line approximation (Nathan & McMa-
hon, 1990). When multiple, proximate, discharge peaks could be attributed to rainfall periods separated by
12 h, they were divided into separate events. Rainfall for each event was assumed to be equivalent to the
nearest rain gauge for each of the five subwatersheds and calculated using a Thiessen polygon weighted
average of all rain gauges for the main stem.

A comprehensive range of hydrological conditions characterized the monitoring period. May–June 2013
was the wettest consecutive 2 month period on record and culminated in a large flooding event on 3 July
2013; whereas, late summer 2015 featured very low flows and drought conditions. For both the Mad River
and all monitored tributaries, bankfull flow events occurred during the monitoring period. Comparing flows
during our 3 year monitoring to a flow duration curve generated from the Mad River USGS stream record
shows the monitoring period adequately encompassed a variety of flow conditions (Figure 2a). Across all
monitoring sites, 145 storm events were captured resulting in a total of 600 unique events (Figure 2b). The
highest number of events (35) were recorded in July and the fewest (7) in December. It should be noted
that stations were not always online in May or December of a given year because of sensor deployment lim-
itations (supporting information Figure S1). The number of events monitored at each site (Figure 2c) varied

Table 1
Key Characteristics of Study Watersheds

Shepard
Brook

High Bridge
Brook

Mill
Brook

Folsom
Brook

Freeman
Brook

Mad
River

Area (km2) 44.6 8.6 49.8 18.2 17.0 344.0
Minimum elevation (m) 195 225 216 229 266 140
Maximum elevation (m) 1,117 796 1,114 886 860 1,245
Elevation range (m) 923 571 898 657 594 1,105
Stream order Fourth Third Fourth Fourth Fourth Fifth
Drainage density (km/km2) 2.38 2.45 2.16 1.77 1.95 0.97
% Forested land 92.2 66.7 89.2 77.6 76.2 85.5
% Developed land 1.0 16.6 1.5 12.7 8.3 4.7
% Agricultural land 5.6 15.5 7.0 8.8 14.6 8.0
% Other land 1.1 2.1 0.8 0.7 1.7 1.1
Road density (km/km2) 0.83 2.30 1.19 1.07 1.80 1.32
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depending on whether sensors were online (supporting information Figure S1) and because rainfall events
do not occur uniformly across all subwatersheds.

2.3. SSC-Q Plot Image Processing
For each storm event, SSC-Q plots were generated from the time series. Because the visual hysteresis pat-
terns may be affected by noise in the SSC or Q data, the event time series for SSC and Q were processed
using a Savitsky-Golay smoothing filter (Savitzky & Golay, 1964) prior to generating the hysteresis plots (Fig-
ure 3). A third-order, 21 step filter for the Mad River site and a third-order, 13 step filter for the tributary sites
was selected to reduce noise, yet still preserve the peaks and shape; filter selection was based on visual
inspection of event time series. Because smoothing was performed solely to simplify visual classification, it
was applied after calculating the storm metrics. The SSC-Q hysteretic loop was shaded to preserve time (i.e.,
loop direction) (Figure 3b). Images used an 8 bit grayscale color palette, where white indicates the onset of
the storm, and dark gray the end of the event, plotted on a black background (Figure 3e). To reduce compu-
tational time during classification, the SSC-Q plots were converted to 28 by 28 pixel resolution (Figure 3f);
both SSC and Q were normalized on a per event basis. SSC-Q plot images were used to train and test an
automated classifier using a supervised machine-learning approach.

2.4. Restricted Boltzmann Machine
The restricted Boltzmann machine (RBM) (Smolensky, 1986) is a type of artificial neural network used for
unsupervised learning that has experienced an increase in popularity for its extended use as a classification
model (Larochelle et al., 2012) and more recent use in deep learning applications (Hinton et al., 2012). The

Figure 2. (a) Flow duration curve for the Mad River monitoring site showing days when suspended sediment monitoring
occurred and number of storm events captured by (b) site and (c) month across all sites combined.
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RBM is a stochastic, generative model consisting of two layers (Figure 4a): a layer of visible nodes (input
data) and a layer of hidden nodes (feature detectors).

In a basic RBM configuration, an energy function determines the probability of all configurations of the visi-
ble and hidden nodes and is defined as:

E v;hð Þ5 2
X

i

X
j

wij vihj2
X

i

vib
vð Þ

i 2
X

j

hj b
hð Þ

j ;

where vi , hj are the binary states of visible unit i and hidden unit j, respectively, b vð Þ and b hð Þ are their biases, and wij

are the weights connecting these unit layers. The joint probability encoded by the RBM can then be expressed as:

Figure 3. Example of smoothing and image processing applied to discharge and suspended-sediment data from 18 Octo-
ber 2014 storm event at the Mad River. (a and b) The raw 15 min data; (c and d) data after both time series are smoothed.
Image of SSC-Q plot used as input to classification tool at (e) high and (f) reduced resolution of 28 3 28 pixels. Shading
represents time starting at white and later time in gray.
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p v;hð Þ5 e2E v;hð ÞP
v;h e2E v;hð Þ :

Given the equations above, the states of the hidden and visible units may be stochastically updated using:

p vi51jhð Þ5 r b vð Þ
i 1

X
j

wijhj

 !

p hj51jv
� �

5 r b hð Þ
j 1

X
i

wijvi

 !
;

where r xð Þ is the sigmoid function 1= 11e2xð Þ; othersize the units are set to zero. The basic configuration of
the RBM uses binary stochastic units for both the visible and hidden layers; however, the visible layer units
can alternatively use continuous real values (i.e., normalized grayscale pixel values) with no changes to the
weight update rules.

The goal of training a RBM is to adjust the parameters (weights) of the network such that the probability dis-
tribution evolved by the RBM becomes similar to the training data (i.e., maximizing the log-likelihood of
generating the observed data). To perform a stochastic gradient ascent on the log probability of the data,
the following simple learning rule is used:

Dwij5� hvi hjidata2hvi hjimodel

� �
;

where � is the learning rate, h:idata indicates an average over samples with visible units clamped to match
actual input data, and h:imodel indicates the average over samples when the network is allowed to sample
freely from the model’s distribution. As a result, there are two phases in the RBM learning algorithm: (1) the
positive phase where a training pattern is clamped to the visible units and hidden unit activations are
adjusted and (2) the negative phase where the algorithm computes or models the reconstruction of the
training data given the hidden unit states. Computation of the positive phase is fairly straightforward; but
the negative phase requires inference methods using Markov Chain Monte Carlo sampling methods. In
order to avoid the requirement of performing Gibbs sampling over long periods, Hinton et al. (2006) dem-
onstrated a much faster method for training an RBM with contrastive divergence. Different sampling meth-
ods have been proposed for the contrastive divergence approach, with block Gibbs sampling over a fixed
number of iterations (e.g., Tieleman, 2008) being one of the most common.

To improve the learning speed and convergence, the data are typically split into mini-batches; and the gra-
dient in each learning step is averaged over the patterns of the mini-batch. Readers are referred to Fischer
and Igel (2014) and Hinton (2012) for in-depth discussion of RBM training methods.

Figure 4. (a) Network architecture of restricted Boltzmann machine (RBM) and (b) RBM classifier neural network.
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While RBMs are useful in themselves for feature extraction or image generation after initial training; in
many applications, they are extended to a classifier model. When extended to a classifier network algo-
rithm, the trained hidden features are used as input to an additional classifier layer (Figure 4b). In this
approach, the trained RBM is then connected to a subsequent classifier layer; and the entire network is
‘‘fine-tuned’’ by the backpropagation learning method (e.g., Sarikaya et al., 2014). RBMs can be used for clas-
sification by other methods including training a separate RBM for each class (Hinton, 2012) or by incorporat-
ing a ‘‘class label’’ node in the visual input layer (Larochelle et al., 2012). We selected the former approach as
it has been demonstrated to be both practical and is similar to the approach implemented in DBNN applica-
tions (Testolin et al., 2013).

2.5. Automated SSC Hysteresis Classification of Storm Events
Given the 6001 SSC-Q images, a set of distinct, yet repeating, hysteresis pattern types were first selected by
a single domain expert. This manual clustering of the SSC-Q images was initially guided by a nonparametric
clustering method (Hamshaw et al., 2016). We subsequently recruited five domain experts and repeated the
manual classification on a random subset of 100 hysteresis patterns to help evaluate precision across the
small subset of human experts and have a baseline measure of classification accuracy for human experts.
SSC-Q plots were then manually labeled with the best-matching type of hysteresis pattern. To automate the
storm-event classification, the RBM classifier (Figure 4b) was trained on a portion of the data and tested on
the remaining data. Three examples of each hysteretic type were selected for the training data to ensure
each type was represented; the training data were then supplemented with a random selection of events
until one-half of the events (294) were included for training. The remaining 306 events were withheld for
testing. Events that could not be categorized into one of the hysteresis pattern types were labeled ‘‘com-
plex’’ and excluded from the training data because prediction of the complex (i.e., no pattern) type was not
desired.

The RBM classifier performance was compared to the manually assigned hysteresis type of each storm
event. Because some hysteresis patterns may be a transition between two types, we also evaluated the net-
work classification accuracy by defining ‘‘correct’’ classification as an exact match with the domain expert or
with the most similar state in the transition. This provided a second measure of the RBM classifier perfor-
mance where ‘‘near misses’’ are assessed as valid classifications. For each hysteresis type the two similar pat-
terns (transition states) were defined by domain experts (supporting information Figure S4). The number of
hidden nodes, mini-batches, and amount of training data all influence the prediction results; therefore, we
varied the number of each as part of evaluating the RBM performance. The results were averaged over 25
model runs, which comprised five network simulations each using five different realizations of training data.

2.6. Analysis of Event Variables
We analyzed a suite of additional hydrological and meteorological variables (Figure 8) on a per event basis
in conjunction with the raw sedigraph and hydrograph data to determine whether particular conditions are
more conducive to producing a given hysteresis type. To determine if differences in the typical storm event
were more likely associated with a particular hysteresis type, we compared the variable mean between
each hysteresis type and all other types, repeating for each variable. Means were compared using between
group t tests on normally distributed variables, and Wilcoxon rank tests when normality could not be
assumed. In addition, a HI was calculated following procedures in Lloyd et al. (2016a).

Two additional event variables were calculated for each event at the Mad River site. The coefficient of varia-
tion (CV) of the total event rainfall from all rain gauges within the watershed was computed to assess the
spatial variability of rainfall. Second, the total stormflows from all events were fit to a lognormal distribution,
repeated for each site. This distribution was then used to estimate the quantile of stormflow for each event
providing a measure of the size of hydrological response associated with each storm event.

3. Results

3.1. Hysteresis in SSC-Q Event Relationships
Events fell into 14 SSC-Q hysteresis types that could be grouped into five main categories (Classes I–V) cor-
responding to those originally proposed by Williams (1989); however, Classes II, III, and V are now further
subdivided into newly proposed types based on patterns observed repeatedly at the study sites (Figure 5).
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Class I, consists of Types 1A, 1B, and 1C and represents variations on the SSC-Q relationships that do not
exhibit any hysteretic behavior. Class II behavior (clockwise loops) consists of types 2A, 2B, 2C, 2D, and 2E
with differences in the timing of the peak SSC and peak Q influencing the shape of the hysteresis. Type 2A
is indicative of the peak SSC occurring just prior to the peak Q; therefore, resulting in a SSC-Q plot with
minor amount of hysteresis. In contrast, when the SSC peak occurs well before peak Q (i.e., Type 2D), it
results in an ‘‘L’’ shaped loop. Type 2E is a variation where the peak SSC occurs well before peak Q but has a
secondary peak SSC occurring near the peak Q. The Class III SSC-Q relationships (counter-clockwise loops)
were similarly subdivided into Types 3A, 3B, and 3C reflecting separation differences in the timing between
the SSC and Q peaks. An SSC-Q plot with a linear relationship followed by clockwise loop is indicative of
Class IV behavior. We note that although Type 4 hysteresis patterns could reasonably be considered a sub-
set of Class II (clockwise) hysteresis types, we labeled them as Class IV in this work to be consistent with the
five classes originally proposed by Williams (1989). The figure-eight shaped SSC-Q loops are represented as
Class V with subcategories Type 5A and Type 5B discriminating between the loop direction.

The majority (90.0%) of the monitored SSC-Q event relationships displayed hysteretic behavior. Across all
study sites, the most commonly observed hysteresis types (63.8%, or 388 of 600 events) were Class II

Figure 5. Classes of hysteresis in SSC-Q plots from events observed in the Mad River watershed. Solid line indicates hydro-
graph and dashed line indicates sedigraph. (Note. scales are not consistent between storms.)
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(clockwise) patterns, indicative of a peak SSC occurring prior to the peak discharge. Class III (counter-clock-
wise) types occurred less frequently (8.5%). We were unable to identify a clear hysteresis type in 5.1% of the
events and labeled those ‘‘complex’’ type hysteresis.

The frequency of hysteresis types varied among sites (Figure 6a and supporting information Table S2). The
Mad River (main stem) site featured the most varied hysteresis types including more frequent occurrence of
counter-clockwise and figure-eight patterns compared to the tributaries. The tributaries predominantly fea-
tured Class II (clockwise) patterns (73%); however, the distribution of Class II subcategories varied among
sites. The most common type observed at Freeman, Folsom, and Mill Brook was Type 2B; whereas Types 2C
and 2D were the most common pattern at High Bridge Brook and Shepard Brook, respectively. There was
variability in median HI by hysteresis type (Figure 7). Types 1A, 1B, and 1C had median values of HI near
zero as well as the figure-eight patterns (Types 5A and 5B). As expected, Class II (clockwise) types had posi-
tive median HI and Class II (counter-clockwise) had negative. However, with the exception of two types (2C
and 3B) median values of HI between types were not statistically different from other types (Figure 7).

3.2. Automated Classification of Hysteresis
An RBM configuration with 25 hidden nodes and a mini-batch size of 14 provided sufficiently good predic-
tion. Tests using smaller numbers of hidden nodes and mini-batch size degraded performance; while more

hidden nodes resulted in negligible improvement and overfitting. This
was consistent with the RBM training guidelines of Hinton (2012),
which recommend a mini-batch size equal to the number of classes.

The accuracy (total percentage of exact classification match with the
domain expert) was 77% for the training data and 53% for the testing
data. Alternatively, the classification accuracy using the exact match or
one of the transition states is 85% for the training data and 70% for the
testing data (supporting information Figures S3 and S4). For some indi-
vidual event classifications, discriminating the hysteresis direction was
difficult (e.g., Type 3B classified as clockwise instead of counter-clockwise
as seen in supporting information Figure S5f). Generally, only 8% of
events had misclassified direction (i.e., Type 2A versus Type 3A as seen in
supporting information Figure S4). The manual classification test by
domain experts resulted in an average of 67% of events classified into
the correct class, or 79% into the correct or similar class.

3.3. Storm-Event Characteristics of Hysteresis Types
Using only a single watershed scale (the fourth-order tributaries)
allowed the analysis between typical event characteristics and

Figure 6. (a) Distribution of hysteresis types by site. (b) Distribution of hysteresis types by month for only fourth-order
tributaries (Shepard, Mill, Folsom, and Freeman Brook) combined.

Figure 7. Box plots of Hysteresis Index plotted by hysteresis type. Shaded box
plots indicate statistical difference from other types.
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hysteresis types to be performed at a consistent spatial scale (Figure 8). Patterns exhibiting no hysteresis
(Types 1A and 1B) or minor hysteresis (Type 2A) occurred relatively infrequently (36 out of 414 events)
across the four sites. These events were characterized as having low, 14 day antecedent rainfall, low deep
soil moisture, and a lower and shorter event rainfall duration. In addition, despite having little separation
between the peaks of the sedigraph and hydrograph, the time between the sedigraph peak and rainfall
pulse was longer on average than other events.

Type 2B hysteresis (moderate clockwise loop) was the most commonly observed (96 events). Compared to
all events, larger storms on average were classified as Type 2B, featuring greater 3 and 14 day antecedent
rainfall, higher prestorm base flows, greater rainfall total, and maximum rainfall rate. Hydrological metrics
also trended higher with large flood intensity, stormflow, sediment load, and peak sediment concentration.
Similarities in Types 2C and 2B events were observed in terms of larger flow metrics and antecedent rainfall.
However, Type 2C (pronounced clockwise loops) events differed in that they have higher antecedent soil
moisture conditions, shorter time span between the rain and sedigraph peaks, and less intense and shorter
rainfall than Type 2B. Type 2C events would therefore be characterized by very wet antecedent conditions
in which a nonintense rainfall results in a rapid sediment response.

The Type 2D events had very different characteristics than Types 2B or 2C events. Compared to Types 2B
and 2C events, Type 2D events were characterized by drier antecedent conditions with on average lower
base flow, less 3 and 14 day antecedent rainfall, and lower soil moisture. In addition, Type 2D events tended
to feature lower and shorter rainfall and correspondingly less stormflow and less sediment yield. These
events were also characterized as having the shortest time span between the rainfall peak and sedigraph
peak. Type 2E clockwise events are characterized by both a rapid sediment response and a delayed, second
sediment pulse closer to the hydrograph peak. It therefore may be considered a combination of Type 2D
and Type 2A or 2B patterns. Perhaps owing to its ‘‘mixing’’ of two event types, Type 2E events are not

Figure 8. Comparison of hysteresis types for all fourth-order tributaries (Shepard, Mill, Freeman, and Folsom brook)
against the mean of all storm-event variables (variable names are shown in center of top plot and described in lower por-
tion of the figure). Significant differences above or below the mean storm event were tested using a t test for normally
distributed variables and the Wilcoxon test for nonnormally distributed variables. We provide an example interpretation
of this figure as follows: storm events exhibiting Type 5A hysteresis (in red) have, on average, slightly lower (lower portion
of top plot) 14 day antecedent rainfall (A14P), flood intensity (FI), and total sediment load (SSLNORM); these patterns also
have moderately lower 3 day antecedent rainfall (A3P), shallow soil moisture levels (SMSHALLOW), prestorm base flow
(BFNORM), and total rainfall (P); and much lower event stormflow (QNORM) and stormflow event quantile (log[QNORM]) com-
pared to all other events.
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distinguished statistically from the overall data for the majority of variables. Of note, Type 2E events feature
little separation in the timing of the rainfall peak and sedigraph peak, which is consistent with the very early
sediment pulse, and the tendency for low sediment concentrations and low flow normalized sediment flux.

Although Classes III, IV, and V patterns occurred less frequently (83 out of 414 events) in the four tributar-
ies, some patterns emerged between the event metrics and hysteresis types classes. The Types 3A and 3B
counter-clockwise patterns were observed in events that featured on average less antecedent rainfall and
lower rainfall amount and duration. The flows were also characterized as being smaller in magnitude with
longer durations and time to peak discharge. Interestingly, they also tended to have higher flow normal-
ized sediment fluxes, which is likely a result of the sediment peak occurring during a portion of the hydro-
graph with higher flows compared to Type 2D. Type 4 hysteresis, which features a more linear SSC-Q
relationship followed by a clockwise loop, occurred most frequently during events with a few unique
characteristics. These events tended to have low rainfall rates that were long in duration with correspond-
ing low flood intensity and longer times to peak discharge. These storms also occurred most frequently in
late spring and late autumn when more typical climate patterns comprise slower moving, less intense
frontal storms in spring and autumn, as opposed to shorter, more intense convective storms typical of
the summer. Events displaying Type 5A hysteresis were on average small events that occurred with dry
antecedent conditions.

4. Discussion

4.1. Expanded Classification of Hysteresis Types and Comparison to HI
Expansion of the hysteresis classes helped identify differences among our sites that would not be possi-
ble using an analysis based solely on the five original classes proposed by Williams (1989). For example,
three tributaries (Shepard, Folsom, and Freeman Brook) were essentially dominated by the same percent-
age (65–67%) clockwise (Class II) hysteresis patterns across the three sites. However, classification using
this one category obscures the fact that in Shepard Brook the most common Type 2D hysteresis differs
from that observed in Folsom and Freeman Brook where Type 2B is the most frequent. In addition, at the
High Bridge Brook tributary site a different type of clockwise pattern was most frequent (Type 2C). Thus,
our expanded classification helps further distinguish in-storm sediment export regimes that could pro-
vide more insight into dominant drivers of suspended-sediment export during storm events across differ-
ent catchments.

While other studies have suggested the need for an additional new class, we believe this study is the first
to systematically expand the types of hysteresis observed in the SSC-Q relationship. Asselman (1999) dif-
ferentiated between two types of clockwise loops (typical and pronounced), which would be most similar
to our Types 2B and 2C, respectively. Similarly, a weak clockwise loop was identified by Gao and Josefson
(2012), which corresponds to Type 2A in our classification. Previous studies have also identified a double
clockwise loop (Megnounif et al., 2013; Smith & Dragovich, 2009). As noted by Zuecco et al. (2016) hydro-
graphs that feature multiple peaks can create complex patterns such as the double clockwise loop; but
generally, they can be avoided by separating the peaks into individual events. The limitation posed by
the singular clockwise loop classification was also identified by Duvert et al. (2010), where flash flood type
events produced hysteresis patterns that could not be easily classified. Our expanded classifications com-
prise patterns commonly observed in our study; they also comprise types considered or proposed in the
above studies.

Hysteresis indices have been adopted widely as a way to expand the analysis of hysteresis loop in terms of
direction and prominence. The nonuniqueness of HI across types as identified by Lloyd et al. (2016a) was
evident in our data set. For example, Types 2A and 2D have similar HI values (Figures 9b and 9d) as do
Types 3A and 3C. However, both pairs of classes differ significantly in the distance between peak SSC and
Q. Various enhancements to hysteresis indices have been proposed to overcome the issue of nonunique-
ness. Lloyd et al. (2016a) proposed also computing a loop area; and Zuecco et al. (2016) proposed using the
minimum and maximum differences between the rising and falling limbs of the hysteresis plot. However, all
the hysteresis indices, by design, lose information about the shape of the loop during the compression to
an index value. Using the entire SSC-Q hysteretic image as proposed here avoids such loss of potentially
valuable information, as illustrated by the following discussion.

Water Resources Research 10.1029/2017WR022238

HAMSHAW ET AL. 4051



4.2. Automated Classification of SSC-Q Hysteresis Patterns
Given the limitations of only having 6001 storm events to date and the simple RBM model design, we
believe the performance of the automated classification to be satisfactory. We did observe a lower accuracy
in testing than training (77% and 53%, respectively). In part, this likely is attributed to having a small, unbal-
anced data set and relatively large number (14) of classes where small variation in patterns within the test-
ing data are not well represented in the training data. Efforts to augment the training data set with either
synthetic data or perturbed observation data may improve the model performance. In comparison to the
manual classification by domain experts, the RBM classifier network was �14% less accurate. However, we
attribute a portion of this to the network’s ability to reliably recognize the correct hysteresis shape, but
sometimes misclassify the direction indicating the learning algorithm places biases the image shape over
its shading (hysteresis direction). Approximately 8% of the events had misclassified direction. Therefore, if
this bias alone were remedied, the current classification accuracy (53%) would increase to 61%, which is
more comparable to the manual classifications by domain experts (67%).

The classification accuracy is also linked to the relatively high number of hysteresis classes (14) selected for
our analysis. If we had aggregated events into the traditional five classes of Williams (1989) (Figure 5), the

Figure 9. Examples of two storm events from Shepard Brook exhibiting different hysteretic behavior. (a) 4 August 2015
event features a peak SSC aligned closely with peak Q and (c) 22 September 2013 event features a peak SSC aligned
closely with peak rainfall. (b and d) Resulting SSC-Q plots for the two events illustrating two different hysteresis types
with similar HI measures clockwise loop direction.
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classification accuracy would have increased from 53% to 75%. Similarly, when using the alternative classifi-
cation metric (i.e., exact match or one of the transition states), the model accuracy was increased to 70%.
This implies we may have too many classes. However, the purpose of this research was to provide a frame-
work for automating the pattern recognition and identify the physical drivers of hysteresis patterns; thus,
retaining the additional class types was desired. We note that selecting the number of classes could be dif-
ferent depending on the application (e.g., hysteresis associated with hydrological variables or solutes).
Finally, we highlight that SSC-Q hysteresis data are ‘‘noisy’’; and even the classification accuracy of our
domain experts’ results in nearly 25% not being easily recognized/classified into one class, which is similar
to previous studies (Sherriff et al., 2016; Yeshaneh et al., 2014). Therefore, the automated classification per-
formance in this study can be considered acceptable; and more advanced machine-learning architectures
(i.e., deep learning neural networks) are worthy of exploring, particularly when combined with additional
training data from other monitoring sites or collected using much larger sensor networks.

4.3. Drivers of Hysteresis Type
We were able to interpret different drivers of hysteresis type (Figure 8). Antecedent watershed conditions
related to soil moisture levels at the start of events, and prior rainfall amounts had a clear impact on event
SSC-Q hysteresis type classification. Previously, wet antecedent conditions in the watershed have been con-
nected to clockwise patterns (Buendia et al., 2016), and in general, our findings were consistent. However,
our results indicate a more nuanced analysis is warranted because different types of clockwise patterns
were observed to have different event drivers including antecedent conditions and storm-event characteris-
tics. For example, two similar magnitude storm events in Shepard Brook result in very different hysteresis
patterns resulting from the lag between sedigraph and hydrograph peaks (Figures 9a and 9b). These hyster-
esis patterns have similar directions and HI values (Figures 9c and 9d), and therefore would be classified the
same using these metrics in contrast to our expanded classification.

Moderate clockwise hysteresis (i.e., Type 2B) events were on average larger storm events that occurred after
significant rainfall and with higher prestorm base flows. Because these events featured higher than average
sediment load and peak concentrations, this suggests that large rainfall events occurring on relatively wet
antecedent watershed conditions cause widespread connection and mobilization of sediment sources; but
with limited supply. This is in line with previous studies that found clockwise patterns were indicative of
sediment supply in areas nearby the channel (Buendia et al., 2016), and ample sediment supply from chan-
nel and gully erosion (Smith & Dragovich, 2009). Bank erosion and gully erosion are suspected to be sedi-
ment sources in all four tributary watersheds. Conversely, smaller rainfall events occurring with wet
antecedent conditions in the watershed were likely to exhibit stronger hysteresis (Type 2C) than observed
with larger events. Therefore, sediment sources are still quickly mobilized, but are more limited in supply,
suggesting less lateral connectivity with sediment sources. Thus, in these systems, small storms with high
antecedent landscape moisture can quickly mobilize sediment from available nearby sources, yet have lim-
ited supply given the rapid decline in sediment concentration around the hydrograph peak.

Events with dry antecedent conditions likely have limited availability or connection to sediment sources,
thereby limiting loading. Interestingly, a varied set of hysteresis patterns (primarily Types 2D, 3A, 3B, and
5A) were associated with various measures of dry antecedent conditions. Type 2D events occurred most fre-
quently; and the very short time from rainfall to peak SSC (Figure 9c) suggests the sediment supply is lim-
ited to nearby, highly connected sediment sources. Thus, once rainfall ceases, the sediment supply
decreases very rapidly; and typically, dry antecedent conditions suggest that Type 2D and similar patterns
would not have significant overland flow or connection to remote sediment sources. This conclusion is con-
sistent with Asselman’s (1999) observation that pronounced clockwise hysteresis was attributable to erosion
and sediment supply just upstream of the measurement location.

Counter-clockwise (Class III) patterns are typically attributed to sediment sources being more distant from
the channel (Gellis, 2013) and may be attributed to storm events where erosion is primarily occurring in the
far upstream or upslope portions of the watershed. These events feature long time delay between rainfall
and sediment response. That these events had similar characteristics (dry antecedent conditions and
smaller storms) to Type 2D events where sediment is proximal highlights the spatial complexity likely in the
sediment response. In the larger Mad River watershed, rainfall events, particularly those during summer
months, are often spatially isolated. Therefore, events occurring under similar conditions but with very
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different sediment pulse timing, may be the result of spatially isolated areas within the watershed mobiliz-
ing sediment. Figure-eight Type 5A events also were associated with dry antecedent conditions. This is simi-
lar to findings of Seeger et al. (2004) but in contrast to findings reported by Buendia et al. (2016), who
observed figure-eight patterns associated with large events and wet antecedent conditions. Figure-eight
patterns have also been attributed to a combination of stream bank and streambed sources with a delayed
sediment contribution from distinct upstream sources (Eder et al., 2010; Megnounif et al., 2013; Seeger
et al., 2004); and therefore, may be considered the result of fairly complex processes with drivers that may
be more watershed specific. We also note, that our analysis indicates dry antecedent conditions promote
more spatially and temporally heterogeneous hysteresis types.

Seasonal changes in hysteresis types suggest shifting drivers and sources of sediment to streams. We
observed Types 2C and 2B events more frequently during the late spring (May/June) and late autumn
(November/December) months (Figure 6b). In the Northeastern U.S., stream banks, fields, and hillslopes
have less ground cover and are more susceptible to erosion during these months. Other studies observed a
similar seasonal trend with clockwise patterns more prevalent in spring or late autumn/winter conditions
(Asselman, 1999; Martin et al., 2014; Sherriff et al., 2016). Type 2D events occurred most frequently during
summer and early autumn months (July to October). Presentation of hysteresis types was consistent with
typical climate patterns observed in the Northeastern U.S. (i.e., more frequent rainfall and wetter antecedent
conditions in June/July and drier conditions in August/September followed by increased rainfall and soil
moisture again in October/November). During late autumn conditions, Type 4 events were more prevalent.
This type of hysteresis has not been studied as extensively as the more common clockwise, counter-
clockwise, and Figure-eight classes; but Williams (1989) alluded to a threshold effect at higher discharges.
This may suggest sediment sources for Type 4 events are primarily in-channel or bank sources activated by
some discharge threshold. Since this event is more common during late autumn and lacks the early sedi-
ment pulse present in Type 2D and 2E events, it also suggests possible occurrence of seasonal depletion of
proximal sediment sources.

4.4. Effect of Watershed Scale
The timing of sediment delivery from sources within the watershed to the outlet affects the type of hystere-
sis observed; and therefore, watershed scale needs to be considered. We observed a scale effect in our
study that manifest in a significantly different distribution of hysteresis patterns observed at the Mad River
outlet (watershed scale) compared to the tributary scale. When comparing the distributions of hysteresis
types at Mill, Shepard, and Folsom Brook to the distribution at the Mad River outlet, we observed a notable
shift from predominantly clockwise (Class II) hysteretic types to a more uniform distribution (Figure 6a).
Asselman (1999) noted a similar shift from clockwise loops in upstream tributaries to counter-clockwise
loops in downstream locations. Analysis also suggests that the river flood wave can propagate downstream
faster than the sediment pulse and that tributaries of this size often produce clockwise SSC-Q loops, both
consistent with previous work (Buendia et al., 2016; Martin et al., 2014; Smith & Dragovich, 2009; Williams,
1989).

The effect of upstream sediment source delivery on downstream hysteresis type was also observed in our
rain gauge data. The Mad River subwatersheds are on the spatial scale of 10–50 km2; as a result, they are
more uniformly impacted by rainfall events than the entire Mad River watershed, which frequently experi-
ences rainfall limited to portions of the watershed. Events with large separation between sedigraph and
hydrograph peaks (Types 2D, 3B, 3C) tend to have both smaller total stormflow and higher variability
among rain gauge totals (Figure 10). This suggests that at the Mad River scale, hysteresis types with the sed-
iment pulse well before or after the hydrograph peak are indicative of rainfall localized in only a portion of
the watershed. These findings are consistent with those of Smith and Dragovich (2009) who observed small
events were dominated by flow and sediment delivery from a localized portion of the upstream watershed.
Gao and Josefson (2012) noted that hysteresis analysis is most often performed for watersheds smaller than
100 km2; and that application to larger watersheds is largely affected by sediment delivery from upstream
tributaries and, therefore, more difficult to isolate the specific source. Our results support this conclusion;
however, our simultaneous monitoring of upstream and downstream locations as well as rainfall variability
within watersheds allowed more robust analysis at the larger watershed scale.
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4.5. Implications for Watershed Management
Hysteresis analysis has been used to infer sediment dynamics worldwide with the goal of reducing soil loss
and sediment export (Lefrançois et al., 2007; Ramos et al., 2015; Sherriff et al., 2016). Our study offers an
expanded classification scheme of hysteresis patterns that leverages high-frequency sediment data to bet-
ter understand sediment dynamics within a watershed. With SSC-Q hysteresis being monitored in water-
sheds around the world, we believe the pattern types observed in our study are likely transferable to other
locations. However, we do not presume this classification as an exhaustive set of patterns.

Hysteresis analysis relies solely on the timing and shape of the sedigraph and hydrograph, relatively low-
cost monitoring equipment such as stage and turbidity sensors may be used without necessarily creating
rating curves for discharge and SSC. Aich et al. (2014) demonstrated a rapid assessment survey, in which
only a small number of storms are monitored, that can provide insight into sediment transport processes
within a watershed. However, as this study demonstrates, longer term monitoring may uncover important
seasonal trends. Monitoring for shifts in hysteresis patterns also offers potential to assess changes in sedi-
ment production and delivery in response to watershed management activities.

We noted differences among the subwatersheds in terms of the most frequently observed hysteresis types,
which help provide insights into sediment sources. In Shepard Brook, for example, Type 2D (as seen in Fig-
ures 9c and 9d) and 2E hysteresis were observed more frequently; and Type 4 were less frequent than in
other subwatersheds. This suggests, that these storm events were characterized by the availability of
nearby, rainfall-activated sediment sources and the absence of distant, upslope sediment sources. Sediment
export control efforts could, therefore, investigate sediment sources near the outlet such as gravel road
ditches or bare agricultural soils. In Mill Brook and Freeman Brook, Type 4 hysteresis was observed fre-
quently, which is indicative of sediment sources activated only above some discharge threshold. Thus, in
those subwatersheds, as part of sediment control efforts, watershed managers could investigate areas with
soils subject to erosion under higher discharges (e.g., stream banks and slope failures along the river corri-
dor). These inferences match with potential sediment sources identified during field observations; namely,
our observation of bare-earth crop land and nonvegetated drainage ditches short distances upstream of
the monitoring site in Shepard Brook and the presence of stream bank erosion and active slope erosion
short distances upstream of the monitoring sites on Freeman Brook and Mill Brook.

5. Challenges and Opportunities for Expansion

The tools for automating visual pattern recognition from hydrological data presented here represent a
novel application of artificial neural networks and an advancement beyond existing time series forecasting
(Abrahart et al., 2012; Maier et al., 2010) and clustering applications (Chea et al., 2016; Pearce et al., 2013).

Figure 10. (a) Comparison of coefficient of variation in total event rainfall recorded by rainfall gauges between storms
categorized as little to moderate hysteresis (Types 1A, 1B, 1C, 2A, 3A) and those with large separation of rainfall and sedi-
ment pulse (Types 2D, 3B, 3C). (b) Lognormal distribution quantile for stormflow of Mad River events by hysteresis type.

Water Resources Research 10.1029/2017WR022238

HAMSHAW ET AL. 4055



Our proof-of-concept using an RBM is readily scalable to deep learning algorithms that offer the potential
for analyzing even larger data sets. The RBM-based classification of SSC-Q relationships also highlights
opportunities for expansion of the methodology beyond analysis of event sediment dynamics. In this study,
we combined high-frequency monitoring and detailed pattern recognition to identify differences in SSC-Q
event relationships that would be obscured if using only the overall hysteretic behavior (e.g., clockwise ver-
sus counter-clockwise) of events. Concentration-discharge relationships using other constituents have
found hysteresis patterns not observed in SSC-Q relationships (Lloyd et al., 2016b; Zuecco et al., 2016).
Therefore, potential for broader application of this approach to the analysis of event dynamics of other sol-
utes or constituents exists provided high-frequency monitoring data are available.

In this study, the preprocessing routines and the RBM classifier network are developed in MATLAB (version 9.2)
using the RBM algorithm presented in Hinton and Salakhutdinov (2006) and Testolin et al. (2013) as a starting
point. While both require programing, and therefore, present challenges over a simpler method (e.g., hysteresis
index (HI) of Lloyd et al., 2016a, 2016b), we believe the availability of machine-learning algorithms are more
accessible than ever; pretrained algorithms are available off the shelf or as a starting point (Cireşan et al., 2012).
The RBM used as proof-of-concept here is now available in a variety of common programing languages (e.g., R,
MATLAB, and Python). We trained and tested the RBM network in less than one hour on a standard desktop PC
with a basic graphics card. In addition, once trained, ANNs may be used directly (e.g., embedded directly on
sensor chips) without requiring additional network training. Finally, because this approach is analogous to
machine-learning applications used for handwritten character recognition, a number of tutorials are now avail-
able based on the similar MNIST benchmark data set (e.g., Eclipse Deeplearning4j Development Team, 2017;
Pedregosa et al., 2011). However, the challenges of automating the separation of storm events must be tackled
and currently requires a priori programing, regardless of type of event hysteresis analysis.

A challenge encountered in our study was the identification of distinct hysteresis types used in the classifi-
cation scheme. A possible solution lies with the nature of the RBM classifier model. Because the RBM is a
probabilistic network, the probability of correctly classifying each input pattern is computed (i.e., the mar-
ginal distribution across classes of hysteresis) along with the suggested classification (supporting informa-
tion Figure S5). If a group of patterns are routinely unable to be classified with a significant level of
confidence, it may suggest that additional hysteresis types exist and that the RBM should be retrained on a
larger set of hysteresis types. Complex hysteresis patterns that arise from multiple peak hydrographs (sup-
porting information Figure S6a) present an additional challenge for visual classification and highlights the
need for careful consideration of event separation techniques. To minimize the effect of multipeak hydro-
graphs, we followed an approach similar to Sherriff et al. (2016) and accordingly, whenever possible, split
back-to-back hydrograph rises into individual rainfall events.

As more sediment data become available, particularly from other watershed locations, classification perfor-
mance should improve through training RBM models on greater numbers of events. We observed differ-
ences in the distribution of hysteresis types between relatively similar watersheds. Therefore, having a
greater number of events from a variety of watersheds with different land use, climate, geology, topogra-
phy, and drainage area offer an opportunity for building a greater understanding of drivers of sediment
loading during storms across both time and space. Building this knowledge and meaning behind an
expanded set of hysteresis types in SSC-Q relationships offers a practical tool for applications focused on
sediment connectivity and sources in watersheds. Furthermore, as tools for interpreting big data evolve,
environmental researchers should continue their application in interpreting large, high-frequency data sets
to better understand the complex environmental processes and their drivers.
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