
University of Vermont University of Vermont 

UVM ScholarWorks UVM ScholarWorks 

College of Engineering and Mathematical 
Sciences Faculty Publications 

College of Engineering and Mathematical 
Sciences 

6-28-2014 

Computational studies of multiple-particle nonlinear dynamics in Computational studies of multiple-particle nonlinear dynamics in 

a spatio-temporally periodic potential a spatio-temporally periodic potential 

Owen D. Myers 
University of Vermont 

Junru Wu 
University of Vermont 

Jeffrey S. Marshall 
University of Vermont 

Christopher M. Danforth 
University of Vermont 

Follow this and additional works at: https://scholarworks.uvm.edu/cemsfac 

 Part of the Human Ecology Commons, and the Medicine and Health Commons 

Recommended Citation Recommended Citation 
Myers OD, Wu J, Marshall JS, Danforth CM. Computational studies of multiple-particle nonlinear 
dynamics in a spatio-temporally periodic potential. Journal of Applied Physics. 2014 Jun 
28;115(24):244908. 

This Article is brought to you for free and open access by the College of Engineering and Mathematical Sciences at 
UVM ScholarWorks. It has been accepted for inclusion in College of Engineering and Mathematical Sciences 
Faculty Publications by an authorized administrator of UVM ScholarWorks. For more information, please contact 
scholarworks@uvm.edu. 

https://scholarworks.uvm.edu/
https://scholarworks.uvm.edu/cemsfac
https://scholarworks.uvm.edu/cemsfac
https://scholarworks.uvm.edu/cems
https://scholarworks.uvm.edu/cems
https://scholarworks.uvm.edu/cemsfac?utm_source=scholarworks.uvm.edu%2Fcemsfac%2F35&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1335?utm_source=scholarworks.uvm.edu%2Fcemsfac%2F35&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/422?utm_source=scholarworks.uvm.edu%2Fcemsfac%2F35&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@uvm.edu


J. Appl. Phys. 115, 244908 (2014); https://doi.org/10.1063/1.4885895 115, 244908

© 2014 AIP Publishing LLC.

Computational studies of multiple-particle
nonlinear dynamics in a spatio-temporally
periodic potential
Cite as: J. Appl. Phys. 115, 244908 (2014); https://doi.org/10.1063/1.4885895
Submitted: 30 April 2014 . Accepted: 18 June 2014 . Published Online: 30 June 2014

Owen D. Myers, Junru Wu, Jeffrey S. Marshall, and Christopher M. Danforth

ARTICLES YOU MAY BE INTERESTED IN

Nonlinear dynamics of particles excited by an electric curtain
Journal of Applied Physics 114, 154907 (2013); https://doi.org/10.1063/1.4826267

 Long-range interacting pendula: A simple model for understanding complex dynamics of
charged particles in an electronic curtain device
Journal of Applied Physics 121, 154501 (2017); https://doi.org/10.1063/1.4980095

https://images.scitation.org/redirect.spark?MID=176720&plid=1087013&setID=379065&channelID=0&CID=358625&banID=519992917&PID=0&textadID=0&tc=1&type=tclick&mt=1&hc=4b0cee398e0882d8e6fbc34bd2c841e21a6383ff&location=
https://doi.org/10.1063/1.4885895
https://doi.org/10.1063/1.4885895
https://aip.scitation.org/author/Myers%2C+Owen+D
https://aip.scitation.org/author/Wu%2C+Junru
https://aip.scitation.org/author/Marshall%2C+Jeffrey+S
https://aip.scitation.org/author/Danforth%2C+Christopher+M
https://doi.org/10.1063/1.4885895
https://aip.scitation.org/action/showCitFormats?type=show&doi=10.1063/1.4885895
http://crossmark.crossref.org/dialog/?doi=10.1063%2F1.4885895&domain=aip.scitation.org&date_stamp=2014-06-30
https://aip.scitation.org/doi/10.1063/1.4826267
https://doi.org/10.1063/1.4826267
https://aip.scitation.org/doi/10.1063/1.4980095
https://aip.scitation.org/doi/10.1063/1.4980095
https://doi.org/10.1063/1.4980095


Computational studies of multiple-particle nonlinear dynamics
in a spatio-temporally periodic potential

Owen D. Myers,1,2 Junru Wu,2,3,1,a) Jeffrey S. Marshall,4,1 and Christopher M. Danforth5,6,1

1University of Vermont, Burlington, Vermont 05405, USA
2Materials Science Program, University of Vermont, Burlington, Vermont 05405, USA
3Department of Physics, University of Vermont, Burlington, Vermont 05405, USA
4School of Engineering, University of Vermont, Burlington, Vermont 05405, USA
5Department of Mathematics and Statistics, University of Vermont, Burlington, Vermont 05405, USA
6Vermont Complex Systems Center, University of Vermont, Burlington, Vermont 05405, USA

(Received 30 April 2014; accepted 18 June 2014; published online 30 June 2014)

The spatio-temporally periodic (STP) potential is interesting in Physics due to the intimate

coupling between its time and spatial components. In this paper, we begin with a brief discussion

of the dynamical behaviors of a single particle in a STP potential and then examine the dynamics

of multiple particles interacting in a STP potential via the electric Coulomb potential. For the

multiple particles’ case, we focus on the occurrence of bifurcations when the amplitude of the STP

potential varies. It is found that the particle concentration of the system plays an important role; the

type of bifurcations that occur and the number of attractors present in the Poincar�e sections depend

on whether the number of particles in the simulation is even or odd. In addition to the nonlinear

dynamical approach, we also discuss dependence of the squared fractional deviation of particles’

kinetic energy of the multiple particle system on the amplitude of the STP potential which can be

used to elucidate certain transitions of states; this approach is simple and useful particularly for

experimental studies of complicated interacting systems. VC 2014 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4885895]

I. INTRODUCTION

Studies of nonlinear periodically driven systems are im-

portant to understanding the fundamental physics of many

useful and interesting phenomena in applications of lasers,1

driven ratchets,2 hydrophilic particles on the surface of water

waves,3–5 Josephson junctions,6 etc. If bodies moving in

periodically driven systems are allowed to interact, they can

display a wealth of interesting physical phenomena associ-

ated with complex systems.7–9 Studies of the interaction

among oscillators, bodies, nodes, etc., in periodic systems,

and of how bodies in such systems collectively react to envi-

ronmental forcing, can be valuable in a variety of fields from

neuroscience10 to driven Josephson junction arrays.11

Interest in spatio-temporally periodic (STP) potentials

began in 1951, when Kapitza published two papers12,13 on a

planar pendulum with an oscillating suspension point, which

is often referred to as the parametrically driven pendulum, or

simply Kapitza’s pendulum. The most interesting feature

of this simple system is that under certain conditions, the

pendulum stands stably in the inverted position. The change

in stability of the inverted position through the oscillation of

the suspension point is an example of what is known as

dynamic stabilization, in which an inherently unstable sys-

tem can be stabilized by periodic forcing.

The motion of a single particle immersed in a STP

potential may be solved analytically using a simple approxi-

mation. For instance, for small x we may approximate f ð~xÞ
with a harmonic oscillator potential resulting in equations of

motion that can then be solved using Floquet theory.14

Linearization of the equation of motion in the limit of zero

dissipation for one-dimensional motion allows the equation

of motion to be expressed as the Hill equation, x
:: þ gðtÞx

¼ 0. If gðtÞ ¼ cosðxtÞ, this equation reduces to the Mathieu

equation.15 Both the Hill and Mathieu equations have been

studied extensively due to the interesting properties that

they display and due to the many applications that can be

associated with these equations, including the quantum

pendulum,16 ion traps,17 and oscillations of a floating mass

in a liquid.18 When the oscillations of g(t) are fast compared

to the natural frequency of oscillations when g(t) is set to

its maximum value, the method of averaging can be

used.19,20

The interesting physical behavior of Kapita’s stable

inverted pendulum has enticed several researchers to study

the nonlinear case both experimentally21–23 and numeri-

cally.22,24–29 For systems composed of particles in a STP

potential, only a small number of publications have exam-

ined the nonlinear multiple particle dynamics accounting for

the multi-particle interactions. Some examples of papers

treating this subject include a study of the motion of hydro-

phobic/hydrophilic particles on the surface of Faraday

waves,4,5 multiple charged particles in an STP potential gen-

erated by an electric curtain,30–32 and multiple particles in a

periodically forced straining flow.33 These previous studies

have considered very large numbers of particles and they

have focused on the overall particle motion. In the current

paper, we instead examine the dynamics of a relatively small

number of particles in a STP potential using a dynamical

systems point of view. Specifically, we seek to relate thea)Electronic mail: Junruwu@gmail.com
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nonlinear systems dynamics with multiple particles to the

bifurcations and stability of single particles.

II. METHODS

The current computational study examines a one-

dimensional (1D) system with multiple particles interacting

through a repulsive electrostatic 1/r potential in an external

STP potential field. The STP potential is

U ¼ �A cos x cos t; (1)

which produces equations of motion analogous to the para-

metrically driven pendulum in the horizontal plane. The

coefficient A is the potential amplitude, and the distance

coordinate x and time coordinate t are non-dimensionalized

using the wavenumber k and the STP driving frequency x,

respectively.

The driving force (FU¼�rU) has the form of a stand-

ing wave with oscillation amplitude A. The dimensionless

wavelength k and the oscillation period T are both equal to

2p. The system is assumed to be periodic over nk, where n is

an integer, so we can define the concentration r as N/n where

N is the number of particles in the simulation. For simplicity,

all particles are assumed to carry the same charge and mass,

where the non-dimensionalization is performed such that the

dimensionless mass is equal to unity. Damping is propor-

tional to particle velocity with a dimensionless damping

coefficient b. In the current paper, we focus on the effect of

the parameter A, and therefore maintain constant values of

the other dimensionless parameters—the damping parameter

and the dimensionless particle charge. These latter two

parameters are set equal to b¼ 0.6 and q¼ 1 throughout the

paper. These values for b and q are chosen because they are

realistic for systems similar to those discussed in Refs.

30–32, after being dimensionalized.

The force on a particle located at xi imposed by a parti-

cle located at xj, denoted by Fij, is calculated with periodic

boundary conditions. To address the forces imposed by long

range interactions, we consider an infinite sequence of image

systems using Ewald summation method,34 giving

Fij ¼
q2rij

krijk3
þ q2

X1
�¼0

1

2p� � rijð Þ2
� 1

2p� þ rijð Þ2
; (2)

where rij¼ xi� xj. The sum in (2) is convergent and may

be written as a polygamma function wm(z) with series

expansion

w mð Þ zð Þ ¼ �1ð Þmþ1
m!
X1
�¼0

1

zþ �ð Þmþ1
: (3)

Using (3), we can express Fij as

Fij ¼
q2rij

krijk3
� q2

nk

� �2

� ðw 1ð Þ 1þ rij=k
� �

� w 1ð Þ 1� rij=k
� �

Þ: (4)

The equation of motion for the ith particle is given by

x
::

i ¼ �b _xi þ FU þ
XN

j6¼i

Fij; (5)

where the second term on the RHS is due to the imposed

STP potential field and the third term on the RHS is the parti-

cle interactions. An example of the system containing seven

particles may be found in Fig. 1.

A. The phase space

For N particles in an autonomous system, the degrees of

freedom (or dimension) of the phase space is 2dN, where d is

the dimension of the physical system. In STP problems, there

is an explicit time dependence in the potential and therefore

the system is non-autonomous. Non-autonomous systems

may be transformed into autonomous form by introducing an

extra degree of freedom, which in a first-order system is

given by x3¼ t. Though this seems to be a trivial representa-

tion of time, this autonomous formulation is necessary when

distinguishing types of bifurcations. This augmented system

thus has 2dNþ 1 degrees of freedom, which constitutes the

“full phase space.”

B. Poincar�e sections

The standard choice for making Poincar�e sections in

driven systems is a time map taken at the system driving

period. Time maps are stroboscopic views of a trajectory

expressed as x(t¼ 2pn) when n is a positive integer. A

Poincar�e section includes any point where a continuous trajec-

tory transversely intersects a subspace of the full phase

space.35 Time maps, as defined above, will produce Poincar�e
sections with dimension one less than the dimension of the

full phase space. In a time map, the path of a particle is always

transverse to the x� _x plane, and therefore a point of intersec-

tion of the trajectory with this plane is a convenient sub-space

that satisfies the criterion necessary to be a Poincar�e section.

C. Kinetic energy fluctuations

It is well known that as a system approaches a bifurca-

tion point, it may take longer for transients of the relevant

FIG. 1. Example of the system with N¼ 7 and A¼ 2.758, depicted as par-

ticles on the surface of a standing wave. (Multimedia view) [URL: http://

dx.doi.org/10.1063/1.4885895.1]
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quantity to die out or for the system to recover from an exter-

nal perturbation.36 This behavior is known as the critical

slowing down phenomena. Most real systems are subject to

some natural perturbations, and these perturbations can

become particularly apparent near the bifurcation points.

Measuring the increase of the variance in a physical quantity

can therefore be used as a method to predict the presence of

a bifurcation point.36 The model system considered in the

current paper has no external perturbations, aside from com-

puter round-off error. In the limit t!1, the damped system

would be expected to settle into an attractor, but the finite

time of real simulations ensures the presence of small fluctu-

ations in “residual” transients. In other words, multiple parti-

cle systems have a “large” number of degrees of freedom,

therefore some small trace of the initial transient behavior

(residual transients) will most likely be detectable. The

amount of residual transients may be found in the kinetic

energy fluctuations. It is known that the kinetic energy fluc-

tuations may contain some information about the “effective

number of degrees of freedom.”37 The more degrees of free-

dom, the more residual transients will be present. This corre-

spondence between the effective degrees of freedom and the

kinetic energy fluctuations is what makes the kinetic energy

fluctuations an interesting quantity to examine.

The square of the deviation of the particle kinetic energy

is given by ðDKEÞ2 � hKE2i � hKEi2,

DKEð Þ2 ¼ 1

4

XN

i;j

ðhv2
i v

2
j i � hv2

i ihv2
j iÞ; (6)

and vi, vj denote the ith and jth particle velocities, respec-

tively. The average is calculated as hKEi2 ¼ 1
4

PN
i;jhv2

i ihv2
j i.

The normalized squared deviation of the kinetic energy is

given by

dKE �
DKE

hKEi2
:

III. RESULTS

A. Single particle overview

The dynamics of a single particle immersed in the one-

dimensional STP potential U, given by (1), are similar to the

dynamics of the parametric pendulum. In this paper, we only

discuss dynamics for the first bifurcation sequence leading to

the chaotic regime, even though there are many consecutive

regimes of stable limit cycles bifurcating into chaotic trajec-

tories. In Fig. 2, the first bifurcation sequence is shown for

an ensemble of initial conditions. Table I lists the type of

bifurcations, the critical values of A at which each bifurca-

tion occurs, and the period of the limit cycle following each

bifurcation. The table is truncated after the 6th bifurcation

due to numerical resolution limitations for distinguishing

bifurcation onset in a small volume of the phase space. For

0<A<Ac1, a particle will move toward and equilibrate at

the antinodes of the potential U(x, t) (i.e., the maxima of

cos x). As A is increased, the fixed points in the Poincar�e sec-

tion bifurcate in a supercritical flip bifurcation leading to a

period-2 limit cycle for Ac2<A<Ac3. This transition is not a

Hopf bifurcation because the explicit time dependence in the

equations of motion must be considered as a degree of free-

dom to the phase space. Consequently, what might appear as

a fixed point in the x� _x phase space in a bifurcation dia-

gram is actually a period-1 trajectory in the full phase space.

We prove this using Floquet theory, by numerically calculat-

ing the stability multipliers. Both of the two non-trivial sta-

bility multipliers have no imaginary component close to the

bifurcation point. At the bifurcation, one stability multiplier

becomes smaller than �1 while the other remains close to

zero, indicating a period-doubling supercritical flip bifurca-

tion. This stability multiplier passing through �1 is shown in

Fig. 3(a), where it is denoted with a Roman numeral I. The

values of A for which the first six bifurcations occur, shown

in Table I, indicate a period-doubling cascade route to chaos.

The computed values yield a Feigenbaum constant of 4.00

with an upper error bound of 6.00 and a lower bound of 2.89.

The accepted value of 4.669 for period-doubling bifurca-

tions38 is within the error bounds. The Feigenbaum constant

F is evaluated with

F ¼ lim
n!1

Acn�1 � Acn�2

Acn � Acn�1

; (7)

FIG. 2. Bifurcation diagram formed by taking a two-dimensional histogram

(300� 300 bins) of the final Poincar�e section of 1830 trajectories with dif-

ferent initial conditions for 300 different values of A. The gray scale repre-

sents the base 10 logarithm of the number of particles in a bin. The Roman

numerals are listed here for comparison with dKE shown in Fig. 3.

TABLE I. Bifurcations.

Acn Bifurcation A 6 5� 10�5 New period

Ac1 Supercritical flip 0.75365 2

Ac2 Cyclic fold 0.91875 2

Ac3 Supercritical flip 0.94985 4

Ac4 Supercritical flip 0.95650 8

Ac5 Supercritical flip 0.95790 16

Ac6 Supercritical flip 0.95825 32

244908-3 Myers et al. J. Appl. Phys. 115, 244908 (2014)



where Acn is the nth critical value of A for which a period-

doubling bifurcation occurs. The two lines coming out of the

chaotic region in Fig. 2 are each attractors representing sta-

ble propagating trajectories, one with a positive velocity and

one with a negative velocity. These propagating trajectories

travel across k once per period of the driving potential field.

B. Kinetic energy fluctuations of one particle

Before going to the multi-particle case, it is informative

to compare the bifurcation diagram (Fig. 2) to the calculation

of dKE for a single particle, which is shown in Fig. 3. We

also show a Floquet stability analysis of the fixed point at

x¼ p through Ac1 for comparison. Floquet stability analysis

is a powerful tool in analyzing bifurcations, but it is not eas-

ily applied to multiple particle systems. It has been applied

to coupled Kapitza pendulums by Ref. 39. For a description

of single particle stability analyses, we refer the reader to

Refs. 26 and 40, which are both studies of similar systems

and use the Floquet technique to study bifurcations. In

Fig. 3(a), the real and imaginary components of the stability

multiplier that causes the bifurcation (one of the two com-

plex Floquet stability multipliers k1 and k2) are plotted as A
is increased through Ac1. In Fig. 3(b), dKE is plotted as A is

increased through the full range shown in the bifurcation dia-

gram in Fig. 2.

In Figs. 2 and 3, the key regions associated with differ-

ent system behaviors have been identified using Roman

numerals. For small values of A, Fig. 3(b) shows a wide

range of scattered points. However, the particle exhibits very

little motion within this range of small A values. As A is

increased, there exists a peak in the fluctuations near Ac1,

which is a consequence of the critical slowing down phe-

nomenon (region I). As A is increased past Ac1, the fluctua-

tion amplitude is relatively constant until A approaches Ac2,

where a kink is observed (region II). When A is in the chaotic

and near-chaotic regimes (regions III, IV, V), the fluctuations

increase in amplitude and are irregular, as shown in the inset

in the figure. The two regions where the fluctuation ampli-

tude decreases markedly in this inset correspond to the two

periodic windows seen in Fig. 2. At the end of the chaotic

regime, there is a discontinuous jump in the fluctuations to a

comparatively small and relatively constant value (region

VI). This last section shows the transition to propagating

trajectories, and we will see that this feature is present in all

cases where this transition occurs. Under closer inspection,

region VI overlaps with region V because, just as in the

bifurcation diagram, the propagating trajectories exist simul-

taneously with the chaotic regime for a small range of A.

C. Integer concentrations

The bifurcation diagrams for multiple interacting par-

ticles, with N¼ 2, 3, 4, 5, 6, and 7, are shown in Fig. 4. The

increased degrees of freedom that occur for N> 1 make it

difficult to investigate an ensemble of initial conditions that

exhaustively fill the phase space. We use random positions

distributed with even probability across x (with _xð0Þ ¼ 0) as

initial conditions for each run to explore a set of possible ini-

tial conditions. The bifurcation plots are made by taking the

last Poincar�e section after 150 driving cycles of a simulation,

projecting it onto the position axis, and then plotting the

positions against the value of A used in that simulation. For

very small A, the final Poincar�e sections are scattered

because, for these values, transients die out very slowly. For

larger A, there are clearly defined points in the Poincar�e
sections that denote limit cycles in the full phase space. For

the rest of the paper, the stable limit cycles in the Poincar�e
sections are referred to more generally as attractors. At first

glance, Fig. 4 appears to indicate a larger number of particles

for odd values of N than it does for even values of N. As A is

further increased, a bifurcation occurs for all the cases

shown, although it is difficult to see in Fig. 4(e). For other

FIG. 3. Single particle: (a) One of the two Floquet stability multipliers for

the x¼p fixed point as a function of the potential oscillation amplitude as it

is increased through the first bifurcation point. (b) Kinetic energy fluctua-

tions. Roman numerals for comparison with the bifurcation diagram in

Fig. 2.

244908-4 Myers et al. J. Appl. Phys. 115, 244908 (2014)



values of A, the diagrams in Fig. 4 appear as scattered points,

implying either chaotic motion, high-period trajectories, or

motion on a torus (after a Neimark bifurcation). Past this

scattered regime, the system collapses into a new stable

regime that is qualitatively similar to the propagating trajec-

tories that occur after the chaotic regime in the single particle

case.

The discrepancy between the number of possible attrac-

tors for odd and even values of N can be explained by con-

sidering the relationship between the number of particles and

the number of antinodes in one period of the potential. For

the trajectory (x1(t),…, x2dN(t)), the number of attractors that

are observed for values of A before the first bifurcation is

equal to the number of particles when N is even and twice

the number of particles when N is odd. In other words, there

is one possible final state configuration of the whole system

when N is even and two possible final state configurations of

the system when N is odd. To see why this occurs, we exam-

ine in detail the cases of three and four particles per period.

Figs. 5(a)–5(d) show cartoons of the final particle configura-

tions for cases N¼ 4 and N¼ 3, respectively. In these

cartoons, the particle position in the periodic domain is

drawn as an angle, so that motion of the particle in the x
domain corresponds in the figure to rotation about a circle.

The intersection points of the circle with a horizontal bisec-

tion line occur at the antinodes of the potential U. In this fig-

ure, at least one particle can always be found at the antinode

of U. From the single particle case, we know the antinodes

can act as attractors, where individual particles remain

motionless in the x� _x phase plane. In the case of four par-

ticles, shown in Fig. 5(a), two particles may occupy the

antinodes of U and the other two particles oscillate about the

FIG. 4. Multiple particle bifurcation diagrams made by: (1) initializing particles at random initial positions with _xð0Þ ¼ 0, (2) projecting the Poincar�e section

onto the position axis after 150 cycles and plotting against the value of A, and (3) repeating the process for 400 values of A in the range of interest. The number

of particles used in each bifurcation diagram is (a) N¼ 2, (b) N¼ 3, (c) N¼ 4, (d) N¼ 5, (e) N¼ 6, (f) N¼ 7. Note that the range of A values explored differs

in each figure.

FIG. 5. The position along the periodic domain is indicated by an angle

around a circle. The black dots represent average particle positions before

the first bifurcation. The line bisecting the circle passes through the two

antinodes of the potential field. Part (a) shows the N¼ 4 stable configuration

which is an asymptotically stable fixed point in the Poincar�e sections of the

full phase space. Part (b) is an N¼ 4 unstable configuration which is the

unstable fixed point in the Poincar�e sections of the full phase space. Parts (c)

and (d) show two different possible stable configurations for N¼ 3, both of

which are stable fixed points in the Poincar�e sections of the full phase space.

244908-5 Myers et al. J. Appl. Phys. 115, 244908 (2014)



nodes of U. One might imagine that a rotation of this config-

uration by p/4 (shown in Fig. 5(b)) might be a fixed point in

the Poincar�e section of the full phase space, and indeed it is,

but it is not a stable configuration and, unless perfectly con-

figured, it will collapse into the configuration shown in

Fig. 5(a). For three particles, one particle sits at antinode and

the two remaining particles compete over the other antinode,

as shown in Figs. 5(c) and 5(d). Which antinode a particle is

attracted to depends on the initial conditions. In both the four

and three particle cases, the particles at the antinodes are

stationary.

Drawing lines between the adjacent average particle

positions in the circular topology creates a regular convex

polygon inscribing the circle. From our description of the

particle behavior above, at least one vertex of the polygon

must be at an antinode. For a regular polygon inscribing the

circle with an even number of vertices, each antinode may

touch a vertex and it is symmetric under all rotations obeying

this rule. For a polygon with an odd number of vertices, how-

ever, only one vertex can occupy an antinode so that rota-

tions by p/N flip the symmetry about a line vertically

bisecting the circle. There are always two unique possible

stable configurations when N is odd, but only one when N is

even. This picture changes for even values of N when N> 6.

For N> 6, the stable configuration no longer occurs for a

pair of particles located at each antinode, but rather for pairs

oscillating on either side of the antinodes much like what is

shown in Fig. 5(b) but with an extra particle on the top and

bottom of the circle.

In Fig. 6, the value of A at which the first bifurcation

occurs is plotted as a function of N, with separate lines for N
even (red squares) and N odd (blue triangles). A striking

characteristic of Fig. 6 is that between N¼ 6 and N¼ 8, there

is a cross-over point at which the even N line jumps upward

and crosses through the odd N line. This sudden jump in the

even N line between N¼ 6 and N¼ 8 occurs due to a change

in type of first bifurcation. The first bifurcation when N¼ 6

as well as the first bifurcations for all lower even values of N
are Neimark bifurcations (a.k.a bifurcation to a torus) in

which N stability multipliers cross the unit circle with non-

zero imaginary components. Half of those stability multi-

pliers (N/2) that cross the unit circle have positive imaginary

components and the other half have the complementary

negative imaginary components. For N¼ 8 and all higher

even values of N, the first bifurcation becomes a cyclic fold

bifurcation, although the bifurcations for odd values of N
remain supercritical flip bifurcations.

We can qualitatively understand the transition which

occurs when N is changed from six to eight in Fig. 6 by

observing how the bifurcation diagrams, and therefore the

stable attractors, depend on the particle number. In Fig. 4(e),

after the first bifurcation, the particle motions are quenched

by the presence of other attractors. For the sake of discus-

sion, we distinguish the two competing sets of attractors

based on whether they are found at the far left or far right

edges of the diagrams, respectively. Comparing the cases of

N¼ 2, N¼ 4, and N¼ 6 in Fig. 4, we see similar rightmost

attractors that appear abruptly at different values of A in

each case. As N (even) increases, the rightmost attractors

increasingly impinge on the leftmost attractors. This

impingement is responsible for the crossing of the lines in

Fig. 6. When N increases from six to eight, the rightmost

attractors extinguish the left most attractors and become the

first available attractors for N� 8 (even). These new first

attractors, previously the rightmost, represent a fundamen-

tally different type of limit cycle in the full phase space than

what was previously first available. Therefore, when this

attractor first bifurcates, it falls outside of the original pro-

gression, causing the jump in Ac1 as N is changed from six to

eight shown in Fig. 6.

For all of the cases shown in Fig. 4, the system eventu-

ally collapses back into clearly defined attractors which have

the form of “propagating” trajectories, as was also observed

for the single particle case. These attractors display non-zero

net particle motion of one particle when N is odd, but no net

motion when N is even. The particles travel in either the 6x
direction before a collision-like event. After the “collision,”

they travel in the opposite direction having exchanged some

kinetic energy with the particle with which the collision

occurred. When N is odd the transport of one particle occurs

either in the 6x direction depending on the initial conditions.

There is no possible counter-propagating particle pair for

one of the particles with N odd.

In Fig. 7, the squared fractional deviation of the kinetic

energy dKE is plotted for all of the bifurcation diagrams

shown in Fig. 4. These plots all exhibit a discontinuity at the

point corresponding to transition to a state with the propagat-

ing trajectories. The discontinuity is not as clear in Fig. 7(e)

because (as can be observed in the corresponding bifurcation

diagram Fig. 4(e)) the propagating trajectory begins before

the first bifurcation. In Fig. 7(e), the curve starting below

and crossing at A � 1.75 indicates the values of dKE for the

propagating trajectory.

FIG. 6. A plot of the value of A at which the system first bifurcates (Ac1) as

a function of the number of particles in simulation (N). Even particle num-

bers are shown with red squares and odd particle numbers are shown with

blue triangles. A cross-over between the N odd and N even curves occurs

between N¼ 6 and N¼ 7, which corresponds to the first bifurcation for the

even value of N changing from a Neimark bifurcation to a cyclic fold bifur-

cation. The N odd bifurcations are all supercritical flip bifurcations for the

values of N shown here. The upper (lower) error bound is the value of A
which we are certain is after (before) the bifurcation. The error bounds are

seen to be quite small in the figure.
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D. Scaling

When the periodicity of the system is increased (n> 1),

two distinctly different possibilities exist. One possibility is

an integer concentration, over a larger periodic system (e.g.,

n¼ 2 and N¼ 4: r¼ 2). The second possibility is a fractional

concentration (e.g., n¼ 2 and N¼ 3: r¼ 1.5). When consid-

ering long-range particle interactions, it is reasonable to

assume that increasing the system size might change the

dynamics even if the concentration is held fixed. The first

possibility above results in system dynamics very similar to

those discussed in the current paper, whereas the second pos-

sibility would result in a completely different symmetry of

the system having very different dynamics. The effect of

period number n on the system dynamics was examined in

the current study by running simulations of equal concentra-

tion over larger system sizes (i.e., large values of n). The

system dynamics in these larger systems is observed to be

qualitatively the same as for the smaller system sizes

reported in the paper, although the exact values of A for

which bifurcations occur is observed to change slightly. We

find that for concentrations larger than two, the effect of scal-

ing the system size while maintaining the concentration is

negligible even when comparing critical A values.

IV. CONCLUSION

We investigate the dynamics of multiple particles with

long-range interactions in a STP system by examining

Poincar�e sections and fluctuations of the kinetic energy (dKE)

for different numbers of particles. Our results are fundamen-

tally interesting because of their importance in understanding

complexity in time-dependent systems. The possible dynam-

ics that exist in a wide range of different system configura-

tions make the problem challenging, but even in the small

area of the parameter space discussed in this paper we have

found a variety of interesting dynamics. For instance, it is

shown that the particle number N influences the stability and

the number of possible final states in a system having integer

concentrations. The possible limit cycles of the system are

shown to be sensitive to whether N is even or odd, and the

influence of the particle number on the type of bifurcation is

discussed. The squared fractional deviation kinetic energy is

examined as a function of the potential amplitude (dKE(A)),

and it is found to exhibit interesting features at and near tran-

sition points. In particular, discontinuities in
dðdKEÞ

dA and dKE

mark transitions between oscillatory and propagating modes,

respectively. The measure dKE may be useful for future

experimental investigations of these systems.

Our work has demonstrated interesting and complex

behaviors of multiple particles with the Coulomb interaction

in a STP potential. In particular, the dynamics of the system

is sensitive to particle concentration and the dynamics can be

described by the squared fractional deviation of the particle

kinetic energies. The latter is particularly valuable for study-

ing bifurcations in real systems. For example, in the afore-

mentioned studies of the motions of hydrophobic/

hydrophilic particles on the surface of Faraday waves, the

particles will interact due to capillary forces caused by their

distortion of the local surface of the water, rather than

through the Coulomb interaction, which leads to particle

clustering.3 It may be convenient to study this type of behav-

ior using the squared fractional deviation of the systems

kinetic energy because this measure will decrease in the

event of clustering as it measures the effective number of

degrees of freedom.37

Studies of multiple charged particles in a standing-wave

electric curtain and in acoustic waves are also important

areas of research for applications of dust-particle mitigation,

FIG. 7. Kinetic energy fluctuations for various particle counts.
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e.g., from a solar panel.31 Charged particles interacting in

standing-wave electric curtains and standing-wave acoustic

fields exhibit complicated dynamics that may be illuminated

by studying the squared fractional deviation of the particle

kinetic energy. For example, in Ref. 41, it was observed that

for charged particles in a standing-wave acoustic field, rela-

tive motion of smaller particles is faster than that of larger

particles, so that the large particles act as collectors within

some agglomeration volume. Any small particles present in

the agglomeration volume are likely to aggregate to a larger

particle, and this aggregation is desirable for applications

such as cleaning particles from surfaces. A sweep of the

acoustic driving parameters to find the configuration for

which maximal aggregations occurs could clearly be found

and described in terms of the minimal squared fractional

deviation of the particle kinetic energies, again due to its

measure of the effective number of degrees of freedom. In

general, we hope our work may stimulate further research of

STP systems with interacting particles and shed some light

on their complicated and exciting dynamics.
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