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Happiness and the Patterns of Life: A
Study of Geolocated Tweets

Morgan R. Frank, Lewis Mitchell, Peter Sheridan Dodds & Christopher M. Danforth

Computational Story Lab, Department of Mathematics and Statistics, Vermont Complex Systems Center, Vermont Advanced
Computing Core, University of Vermont, Burlington, Vermont, United States of America.

The patterns of life exhibited by large populations have been described and modeled both as a basic science
exercise and for a range of applied goals such as reducing automotive congestion, improving disaster
response, and even predicting the location of individuals. However, these studies have had limited access to
conversation content, rendering changes in expression as a function of movement invisible. In addition, they
typically use the communication between a mobile phone and its nearest antenna tower to infer position,
limiting the spatial resolution of the data to the geographical region serviced by each cellphone tower. We
use a collection of 37 million geolocated tweets to characterize the movement patterns of 180,000
individuals, taking advantage of several orders of magnitude of increased spatial accuracy relative to
previous work. Employing the recently developed sentiment analysis instrument known as the
hedonometer, we characterize changes in word usage as a function of movement, and find that expressed
happiness increases logarithmically with distance from an individual’s average location.

proper characterization of human mobility patterns'™'® is an essential component in the development of

models of urban planning'’, traffic forecasting'®, and the spread of diseases'**'. In the modern commun-

ication era, patterns of human movement have been revealed at an increasingly higher resolution in both
space and time, with mobile phone data in particular complementing existing survey-based investigations. As is
the case with each new instrument measuring macroscale sociotechnical phenomena, the task has become one of
understanding what discernible patterns exist, and what meaning can be derived from those patterns>*>*.

Scientists working to understand mobility have employed a diverse set of methodologies. Brockmann et al.”
used the circulation of nearly 1/2 million U.S. dollar bills whose locations were submitted by over 1 million visitors
to a website® to demonstrate that bank note trajectories are superdiffusive in space and subdiffusive in time, i.e.
moving farther and less frequently than expected.

Gonzalez et al.' used 6 months of mobile phone data from 100,000 individuals to show that human trajectories
are regular in space and time, with each individual having a high probability of returning to a few preferred
locations according to Zipf’s law. Combining phone communication data with measures of community economic
prosperity, Eagle et al.> showed that the diversity of contacts in an individual’s social network is strongly
correlated to the potential for economic development exhibited by their community. Finally, de Montjoye
et al.’ recently used mobile phone data to show that four space-time locations are enough to uniquely identify
95% of individuals.

Exemplifying recent work to characterize sentiment with social network communications, Mitchell et al.*®
combined traditional survey data (e.g., Gallup) with millions of tweets to correlate word usage with the demo-
graphic characteristics of U.S. urban areas. Expressed happiness was shown, for example, to correlate strongly
with percentage of the population married, and anti-correlate with obesity. Words such as “McDonald’s” and
“hungry” appeared far more frequently in obese cities, suggesting their instrument could be used to provide real-
time feedback on social health programs such as the proposed ban on the sale of large sodas in New York City in
2013.

In what follows, we characterize the pattern of life of over 180,000 individuals mainly in the U.S. using messages
sent via the social networking service Twitter, and employ our text-based hedonometer”” to characterize sentiment
as a function of movement. In the calendar year 2011, we collected roughly 4 billion messages through Twitter’s
gardenhose feed, representing a random 10% of all status updates posted during this period.

Along with an abundance of other metadata, location information typically accompanies each message,
resulting from one of three mechanisms by which individuals can report their location when updating their
status. First, when an individual registers their account with Twitter, they are presented with the opportunity to
report their location in a free text box. This region will be displayed in their user profile (e.g. ‘NYC’ or ‘over the
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rainbow’). The metadata accompanying each tweet sent by the indi-
vidual contains this self-reported location. Second, individuals sub-
mitting a message through a web browser can choose to tag their
message with a ‘place’ chosen from a drop-down menu, where the
first option provided is typically the city within which the computer’s
IP address is found. For the purposes of accuracy, we have chosen to
ignore each of these two mechanisms for reporting position when
attempting to assign each tweet a geographical location, and focus
instead on messages located via a third mechanism, namely the
Global Positioning System (GPS).

Individuals using a mobile device application may opt-in to geo-
locate their message, in which case the exact latitude and longitude of
the mobile phone is reported. The accuracy of this information is
governed by the precision of the GPS instrument embedded in the
phone, which can vary depending on the surrounding topography.
As a result of these factors, we are able to approximately place each
geolocated message inside a 10 meter circle on the surface of the
Earth, within which the tweet was sent. Roughly 1% of the status
updates received through the gardenhose feed are geolocated, result-
ing in a total of 37 million messages, collectively representing more
than 180,000 English-speaking people worldwide. Fig. 1 illustrates
the geospatial resolution of the data.

Results

Following Gonzilez et al.!, we examine the shape of human mobil-
ity using radius of gyration, hereafter gyradius, as a measure of the
linear size occupied by an individual’s trajectory. In Fig. 2, we
investigate the geographical distribution of movement in four
urban areas by plotting a dot for each tweet, colored by the gyr-
adius of its author. Clockwise from the top left, cities are displayed
in order of their apparent aggregate gyradius, with New York City
seemingly exhibiting a smaller radius than the San Francisco
Bay Area. In Chicago, many individuals writing from downtown
exhibit an order of magnitude greater radius than individuals
posting in areas outside of the city. A similar pattern is seen when
looking at each point colored instead by distance from expected
location (Fig. S2).

In the greater Los Angeles area, we see several clusters of indivi-
duals with larger radius in downtown Los Angeles, as well as Long
Beach, Santa Monica, and Disneyland in Anaheim, while less densely
populated areas are seen as smaller clusters exhibiting much smaller
radii. The geography of the San Francisco Bay Area is clearly
revealed, with many large radius individuals tweeting from down-
town San Francisco, and somewhat less homogeneity in Oakland and
San Jose. Outside of these cities, there are many suburban areas
revealed by individuals with large radius, e.g. Palo Alto. Tweets
appearing in less densely populated Bay Area locations appear to
be far more likely to be authored by large radius individuals than
those appearing in lower population areas of the other cities. This
observation likely reflects the socio-economic and demographic
characteristics of individuals using Twitter in the Bay Area, where
the social network service was founded. Additionally, it could reflect
the presence of tourists who will typically have a larger radius than
someone who lives and works in the Bay Area.

We calculate Geary’s C (local) and Moran’s I (global) spatial auto-
correlation for the data shown in Figures 2 and S2, finding statistical
support for spatial clustering in each (Tables S1 and S2). However,
the correlations benefit from the propensity for each individual’s
collection of tweets to exhibit clustering. To avoid this confound,
we also make city plots of mode location colored by gyradius, where
each dot represents an individual rather than a tweet. These figures
are not included to respect the privacy of individuals in the study.
Table S3 reports the strong spatial autocorrelation we observed,
reflecting a form of geospatial homophily: the tendency of indivi-
duals to author messages in proximity to others with similar gyra-
dius. Tourists are unlikely to be included in this statistic, given the
nature of mode location, and as such the clustering is potentially a
result of similar commute distances.

One observation seemingly apparent in Fig. 2 is that individuals
who move a lot tend to appear in areas of large population density.
Given the apparent economies of scale offered by living in a densely
populated area, one might expect to observe the inverse relationship,
namely that people living in less densely populated areas travel fur-
ther, by necessity, to their place of employment or grocery store, for

- T T -

¥
.+ T

Figure 1 | Each point corresponds to a geolocated tweet posted in 2011. Twitter activity is most apparent in urban areas. Note that the image contains no
cartographic borders, simply a small dot for each message. Legend: A (U.S.), B (Washington, D.C.), C (Los Angeles, C.A.), and D (Earth). Maps

were created using Matlab.
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Figure 2 | The gyradius, calculated for each individual, is shown for each tweet authored in four example cities. Tweet activity reflects population

density, with urban areas clearly visible in each city. Histograms of gyradii for each city are shown in Fig. S1, along with tweet locations colored by distance
from expected location (Fig. S2). The number of tweets shown for each city is N = 56650 (Chicago), N = 103,213 (Los Angeles), N = 42,089 (New York
City), and N = 45,754 (San Francisco). Note that higher resolution versions of the four panels above can be found online®®. Maps were created using

Matlab.

example. Of course, individuals observed to have a large radius could
be tourists, or they could have a long commute. Nevertheless, we find
no statistical evidence for this trend. Comparing individuals whose
average location falls in an area of small vs. large tweet density, we
observe little difference in their average gyradii (not shown).

Moving beyond these four urban areas and looking at 472 cities in
the U.S., we do find a moderate correlation between the mean gyr-
adius and city land area (Pearson p = 0.24, p = 2 X 1077); Fig. S3 and
Table S4 show the top and bottom cities with respect to gyradii.

To investigate the shape of human mobility, we normalize each
individual’s trajectory to a common reference frame (see Methods).
In Fig. 3, we plot a heat map of the probability density function of the
normalized locations of all individuals. For the purposes of this dis-
cussion, we will refer to deviations from an individual’s expected
location in the normalized reference frame as occurring in the direc-
tions north, south, east, and west. Several features of the map reveal
interesting patterns of movement. First, the overall west-to-east tear-
drop shape of the contours demonstrates that people travel predo-
minantly along their principle axis, namely heading west from the
origin along y/c, = 0, with deviations in the orthogonal direction
becoming shorter and less frequent as they move farther away from
the origin.

Second, the appearance of two spatially distinct yellow regions
separated by a less populated green region suggests that people spend
the vast majority of their time near two locations. We refer to these
locations as the work and home locales®, where the home locale is

centered on the dark red region roughly 1 standard deviation east of
the origin, and the work locale is centered approximately 2 standard
deviations west of the origin. These locations highlight the bimodal
distribution of principal axis corridor messages (Fig. 4A).

Finally, a clear asymmetry is observed about the x/c, = 0 axis
indicating the increasingly isotropic variation in movement sur-
rounding the home locale, as compared to the work locale. We inter-
pret this to be a reflection of the tendency to be more familiar with the
surroundings of one’s home, and to explore these surroundings in a
more social context (Fig. 4B). The symmetry observed when reflect-
ing about the y/G, = 0-axis is strong, demonstrating the remarkable
consistency of the movement patterns revealed by the data.

In an effort to characterize the temporal and spatial structure
observed in Fig. 3, in Fig. 5 we examine locations frequently visited
by the most active members of our data set, namely the roughly 300
individuals for whom we received at least 800 geolocated messages.
We suspect that these individuals enabled the geolocating feature to
be on by default for all messages, as implied by the roughly O(10%)
geolocated messages suggested by the gardenhose rate. In Fig. 5, we
focus on these individuals specifically; of all participants, their pro-
lific tweet activity most accurately reflects their movement profile.

The main figure shows the probability of tweeting from each
locale, with locales ordered by rank, for each individual®. We find

that P(H" ) ocR(H") -

bution®. This finding indicates that regardless of the number of tweet

13
which is approximately a Zipf distri-
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Figure 3 | The probability density function of observing an individual in their normalized reference frame, where the origin corresponds to each
individual’s expected location, and 6, = 0 corresponds to their principle axis. This map shows the positions of over 37,000 individuals, each with more

than 50 locations, in their intrinsic reference frame.

locales for a given individual, the majority of their messaging activity
occurs in one of only a few locales, with the probability decaying at a
predictable rate. If the decay were Zipfian, an individual would be
approximately n-times as likely to tweet from their mode location
than from their rank » location. With our slope being steeper, these
probabilities fall at a faster rate with rank. The slope is robust to
variation in number and composition of individuals (Fig. S4).

For roughly 95% of these individuals, each tweet has a greater than
10% chance of being authored from their mode location (Fig. 5B).
Fig. 5C demonstrates each individual’s likelihood of authoring mes-
sages from their mode location (black curve) at different times of day

N

w

Log-10 Counts

N

15

-3 x/%xs

Figure 4 | Looking at messages authored in the principle axis corridor, defined by ‘l‘ <
[y

2
)

throughout the week. A period-2 cycle is observed for each day of the
week. Maxima are seen in the morning (8-10am) and evening
(10pm-midnight), and minima in the afternoon (2-4pm) and over-
night (2-4am) hours. The peak in the morning is consistently higher
than that in the evening, and the afternoon valley is consistently
lower than the overnight valley. The cycle is somewhat less structured
on the weekend. Also plotted are the probabilities of tweeting from
locations other than the mode (red curve).

In a study performed with cellphone tower data, Gonzalez et al.!
found that people spend most of their time in two locations, and a
person’s probability of being found at a separate location diminishes
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30
Tooo ¥¢ observe a clear separation between the most likely

and second most likely position (A). The distribution is skewed left, with movement in a heading opposite an individual’s work/home corridor observed
to be highly unlikely. In addition, due to the normalization, we see that individuals are much more likely to tweet slightly east of their expected location than
slightly west. The isotropy ratio (B) measures the change in the density’s shape as a function of gyradius, with large radius individuals exhibiting a less

circular pattern of life. Standard errors are plotted, but are only visible for the largest radius group. The isotropy ratio decays logarithmically with radius.
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Figure 5 | Representing the approximately 300 individuals for whom we have at least 800 geolocated messages, we plot the probability of tweeting from
alocale as a function of the tweet locale rank (A). Each dot represents a single individual’s likelihood of tweeting from one of their locales. The axes are
logarithmic, revealing an approximate Zipfian distribution with slope —1.3%. (B) Distribution of the rank-1 locale, each individual’s mode location.
(C) A robust diurnal cycle is observed in the hourly time of day at which statuses are updated, with those from the mode location (black curve) occurring
more often than other locations (red curve) in the morning and evening. Probabilities sum to 1 for each curve, with bins for each hour. Dashed

vertical lines denote midnight.

rapidly with rank by visitation. While our investigation reveals a
similar pattern, we find a larger difference in the probability that
an individual is tweeting from the home locale than from the work
locale. We attribute these slight differences in our results to the
different spatiotemporal precision of location data, as well as differ-
ences in activities represented by the data. Gonzalez et al. determined
each individual’s location by continuously monitoring the nearest
cellphone tower whose range they were within. As such, we receive
more precise location information, but only when individuals per-
formed the act of tweeting.

One major advantage of using Twitter data to study movement is
the additional source of information provided by the messages them-
selves. Researchers using mobile phone data to characterize mobility
patterns do not have access to conversations occurring during the
time period of interest. To measure the sentiment associated with
different patterns of movement, we use the hedonometer introduced
by Dodds et al.”’. The instrument performs a context-free measure-
ment of the happiness of a large collection of words using the lan-
guage assessment by Mechanical Turk (labMT) word list, as
described in Kloumann et al.*>. LabMT comprises roughly 10,000

of the most frequently used words in the English language, each of
which was scored for happiness on a scale of 1 (sad) to 9 (happy) by
people using Amazon’s Mechanical Turk service®*, resulting in an
average happiness score for each word. Example word scores are
shown in Table 1. Note that in employing the hedonometer, we avoid
assigning sentiment to individual tweets, a challenging task more
appropriately suited to advanced natural language processing soft-
ware.

To examine the relationship between movement and happiness,
we calculate expressed happiness as a function of distance from an
individual’s expected location, as well as gyradius. For the former, we
grouped tweets into ten equally populated bins, with each group
containing more than 500,000 tweets from similar distances. The
happiness of each group was then computed using Eqn 3 (see
Methods), where all words written from a given distance were gath-
ered into a single bin. For the latter, we placed individuals into ten
equally sized groups by gyradius, with each group containing more
than 10,000 individuals with similar gyradii.

Fig. 6 plots average word happiness against the distance from
expected location (A), and gyradius (B). Starting with location, we

| 3:2625 | DOI: 10.1038/srep02625
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‘ch|e] | Example language assessment by Mechanical Turk
(labMT)?72° words and scores. Words with neutral scores 4 <
havglwi) < 6 are colored gray and ignored when assigning the
happiness score to a large text
word havg(wi)

‘happy’ 8.30
‘hahaha’ 7.94
‘fresh’ 7.26
‘cherry’ 7.04
‘pancake’ 6.96
‘piano’ 6.94
‘and’ 5.22
‘the’ 4.98
‘of’ 4.94
‘down’ 3.66
‘worse’ 2.70
‘crash’ 2.60
“( 2.36
‘war’ 1.80
‘iail 1.76

find that tweets written close to an individual’s center of mass are
slightly happier than those written 1 km away. The least happy
words, on average, are used at a distance representative of a short
daily commute to work. Beyond this least happy distance, remark-
ably we find that happiness increases logarithmically with distance
from expected location. Perhaps even more remarkably, we find an
almost identical trend when grouping together individuals rather
than tweets, observing that happiness also increases logarithmically
with gyradius. Individuals with a large radius use happier words than
those with a smaller pattern of life. We find the trend observed in
Fig. 6 holds for 3 of the 4 urban areas (Los Angeles, San Francisco,
and Chicago), see Figs. S5, S6.

To explain the difference in expressed happiness exhibited by
different mobility groups, we turn to word shift graphs in Fig. 7.
Word shift graphs were introduced by Dodds and Danforth*”** as
a means for investigating the elements of language responsible for
happiness differences between two large texts. As an example, con-
sider the difference between tweets authored at distances of roughly
1 km and 2500 km away from an individual’s expected location. The

6.15 T T T T

average happiness scores for these two distances are h,,, = 5.96 and
haye = 6.13 respectively. Individual word contributions to this dif-
ference are shown in Fig. 7A, and can be described as follows.

Words appearing on the right increase the happiness of the
2500 km distance relative 1 km distance. For example, tweets
authored far from an individual’s expected location are more likely
to contain the positive words ‘beach’, ‘new’, ‘great’, ‘park’, ‘restau-
rant’, ‘dinner’, ‘resort’, ‘coffee’, ‘lunch’, ‘cafe’, and ‘food’, and less
likely to contain the negative words ‘no’, ‘don’t’, ‘not’, ‘hate’, ‘can’t’,
‘damn’, and ‘never’ than tweets posted close to home. Words going
against the trend appear on the left, decreasing the happiness of the
2500 km distance group relative to the 1 km group. Tweets close to
home are more likely to contain the positive words ‘me’, lol’, love’,
‘like’, ‘haha’, ‘my’, ‘you’, and ‘good’. Moving clockwise, the three
insets in Fig. 7A show that the two text sizes are comparable, the
biggest contributor to the happiness difference is the decrease in
negative words authored by individuals very far from their expected
location, and the 50 words listed make up roughly 50% of the total
difference between the two bags of words.

Note that the relatively small differences in h,,, scores reflect a
small signal, yet one that we have shown previously can be resolved
by our hedonometer”. Additional word shift comparisons for the
four urban areas investigated earlier are provided in the
Supplemental Material, Figs. S7, S8.

Looking at the word differences between individuals with largest
and smallest radii of gyration in Fig. 7B, we see that individuals in the
large radius group author the negative words ‘hate’, ‘damn’, ‘dont’,
‘mad’, ‘never’, ‘not’ and assorted profanity less frequently, and the
positive words ‘great’, ‘new’, ‘dinner’, ‘hahaha’, and Tunch’ more
frequently than the small radius group. Going against the trend,
the large radius group uses the positive words ‘me’, lol’, ‘love’, ‘like’,
‘funny’, ‘girl’, and ‘my’ less frequently, and the negative words ‘no’,
and ‘Tast’ more frequently. Comparing with other groups, the large
radius group authors an increased frequency of words in reference to
eating, like the words ‘dinner’, ‘lunch’, ‘restaurant’, and ‘food’, and
make less reference to traffic congestion.

Comparing the two figures, we note that individuals with large
radius laugh more (e.g ‘hahaha’) than those with a small radius, but
individuals closer to their expected location laugh more than those
far from home.

These word differences reveal the relationship between an indivi-
dual’s pattern of movement and their experiences. It is not surprising
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Figure 6 | (A) Average happiness of words written as a function of distance from an author’s expected location, with tweets grouped into ten equally
populated bins. Expressed happiness grows logarithmically with distance distance from expected location. (B) A similar trend is observed when
individuals are grouped into ten equally populated bins according to their gyradius. Both trends persist through variations in binning and different

measures of mobility.
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to observe regular international travelers tweeting about the food
they enjoy on vacation. Indeed, we expect that individuals capable
of tweeting at a great distance from their expected location are more
likely to benefit from an advantaged socioeconomic status, which
they happily update frequently. In our earlier work, we have demon-
strated that expressed happiness correlates strongly with many socio-
economic indicators®. Nevertheless, setting aside these luxurious
words, we still see a general decline in the use of negative words as
individuals travel farther from their expected location. In fact, of the
four contributions to the difference in happiness between words
authored close to home vs. far from home, this decline in negative
words is the largest component (bottom right inset, Fig. 7).

Discussion

Using 37 million geolocated tweets authored in 2011, we have been
able to characterize the pattern of life of over 180,000 individuals
largely residing in the United States. While observed mobility pat-
terns agree qualitatively with previous work investigating cellphone
data', we are able to connect movement patterns to changes in word
usage for the first time. Our main finding is that expressed happiness
increases logarithmically with both distance from expected location
and gyradius, largely because individuals who travel farther use pos-
itive, food related words more frequently, and negative words and
profanity less frequently.

Several methodological issues are raised by the use of Twitter
messages to characterize mobility and happiness. Considering
Twitter as a source, we note that according to the Pew Internet &
American Life Project, roughly 15% of adults in the U.S. were actively
using Twitter at the end of 2011**. While this fraction represents a
substantial group of Americans, we have no data to quantify the
demographic group represented by the subset of these 15% who
specifically choose to geolocate a large percentage of their messages.
Nevertheless, since we threshold the sample to include individuals
who have geolocated more than approximately 300 of their messages
in 2011, we suspect that the large majority of individuals represented
in our study regularly do so as a matter of daily life, as opposed to
geolocating messages only when encountering a novel experience
such as a vacation.

Regarding word usage as a proxy for happiness, accessing the
internal emotional state of individuals is beyond the scope of our
instrument. We do believe however, that when aggregated, the words
used by large groups of individuals reflect their culture in ways not
captured by surveys or self-report. Indeed, we see the hedonometer as
complementing more traditional economic methods for character-
izing economic and societal health, such as the Gross Domestic
Product or Consumer Confidence Index. Using the same collection
of geolocated messages explored here, the hedonometer was recently
employed by Mitchell et al.*® to characterize trends in word usage for
cities. Expressed happiness was shown to correlate to hundreds of
demographic, socio-economic, and health measures, with interactive
evidence available in the article’s online Appendix™®.

Our work contributes to a growing body of literature aimed at
observing, describing, modeling, and ultimately explaining the spa-
tiotemporal dynamics of large-scale socio-technical systems. The
mobility patterns investigated here could be combined with more
traditional surveys (e.g. census data) to inform public policy regard-
ing many important issues, for example relating to the ‘obesity epi-
demic’ and changes in word usage at the level of individual
neighborhoods targeted by public health campaigns. Feedback on
society’s eating behavior in response to health promotion policies
could be available at the level of neighborhoods on a time scale of
weeks, in advance of health data outcomes that typically take years.
Indeed, epidemiological models of the spread of food-borne illness
can now concurrently leverage information about social network
connections and geographic proximity®.

In addition, future mental health providers could flag changes in
individual behavior revealed through patterns of movement and
communication for intervention. For example, a depressed emo-
tional state may be indicated by simultaneously observing marked
declines in gyradius, decreased social interactions, and sustained
increase in usage of negative words. Natural extensions of this work
might combine topological measures of network interactions with
geospatial data to predict the likelihood of new links appearing in a
social network?”, or to measure the spread of emotions through geo-
graphical and topological space®.

Methods

In an effort at quality control for the geolocated messages, we identified and removed
messages posted by robotic accounts and programmed tweeting services designed to
automatically send tweets typically not reflecting information about human activity.
Preliminary analyses revealed a noticeable presence of bots posting geolocated mes-
sages referring to weather, earthquakes, traffic, and coupons. We identified and
ignored tweets collected from individuals for whom at least half of their tweets
contained any of the words ‘pressure’, ‘humid’, ‘humidity’, ‘earthquake’, ‘traffic’ or
‘coupon’.

Messages referencing Foursquare check-ins (typically of the form ‘T’'m at starbucks
http://4sq.com/qrel9d’) were retained for the purpose of characterizing the mobility
profile of each individual. However, for results involving happiness, we ignored
Foursquare check-in tweets as their content is unlikely to directly reflect sentiment.

Finally, to ensure that individual movement profiles are based on a reasonably
sized collection of locations, for this study we focus on individuals for whom we have
at least 30 geolocated tweets. Given the uniformity of the random sample provided by
the gardenhose, we can assume these individuals geolocated a minimum of
approximately 300 status updates in 2011. Individuals were included in Figures 6, 7 if
their messages matched LabMT words.

For reasons of privacy, we ignored all user specific information including indi-
vidual names. In addition, where the trajectories traced out by specific individuals are
visualized, we obscured the coordinate system of reference. Tweets were assigned to
urban areas as defined by the 2010 United States Census Bureaus MAF/TIGER
(Master Address File/Topologically Integrated Geographic Encoding and
Referencing) database®.

The gyradius for individual a is defined as

N@
r<“>—$@; (7))’ )

where the two-dimensional vector ﬁfa) is the ith position in the trajectory of individual
a, given by the geolocation of that individual’s ith tweet, as observed in our database.

N@ is the total number of tweets from individual 4, and <ﬁ(“)> =1 / N@ Zf\g ‘5?“) is

the center of mass of their trajectory, which we denote their expected location. Note
that if we consider each message to be a prediction of an individual’s location, then the
gyradius is in fact the root mean square error (RMSE) of that prediction. Fig. S9 plots
the Complementary Cumulative Distribution Function (CCDF) of the gyradii of all
individuals.

To compare the shape of individual trajectories, we normalize for both differences
in gyradius and direction of trajectory. Considering each individual’s trajectory as a
set of (x,y)-pairs {(x1,91), (x2,02),. . ..,(xnsyn)}, we calculate the two dimensional matrix
known as the tensor of inertia, considering each point in a individual’s trajectory as an
equally weighted mass at location (x;,y;). We then find this tensor’s eigenvectors and
eigenvalues. The eigenvector corresponding to the largest eigenvalue represents the
axis along which most of the individual’s trajectory occurs (hereafter called the
individual’s principal axis). Previous work has demonstrated that for most indivi-
duals, this axis is parallel to the corridor between their work location and home™*.

To normalize the different compass orientations of individual trajectories, we
rotate the coordinate system of each individual so that their principal axis points due
west. The expected location for each individual (%, y) is then used to translate their
position vector, i.e. (x; —X, y; — ), to ensure that the shape of each individual’s
trajectory is in a common frame of reference. However, the distances travelled by each
individual vary widely despite their shared orientation (e.g. pedestrian vs. airline
commute). In order to compare these trajectories, we calculate the standard deviation
G, O, for a given individual’s trajectory, and divide their x- and y-coordinates by o,
and o), respectively. For more information about this process, including a pair of
example trajectory normalizations, see Figs. S10-S14.

In an attempt to characterize time spent in each location, we define the ith tweet
locale for individual a, denoted H;"', to be a circle within which individual a posted at
least 10 messages®. The center of the circle is defined by the average position of all
messages appearing in the locale, and the radius of the circle is chosen such that each
tweet posted within a locale is at most 100 meters away from the center, and no locales
overlap. To measure the importance of locale i to individual a, we count the number of

messages appearing in each tweet locale and produce the ranking R(H,@ ) for indi-

vidual a. The probability that individual a tweets from locale Hi(a) is
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P(Hf“)) - )

where Hf“) is the number of tweet locations contained in H,-W. Notice that the locale

probabilities for individual 4 may not sum to one since it may be the case that
individual a has tweet locations that are not contained in a tweet locale. Hereafter, we
will refer to an individual’s most frequently visited, or rank-1 locale, as their mode
location.

Using the labMT scores”, we determine the average happiness (h,,,) of a given text
T containing N unique words by

N N.£ N
havg (T) = 72,-:12%1;13(@)/{ = Z Havg (wi) i 3)

where f; is the frequency with which the ith word w;, for which we have an average
word happiness score hq,,(w;), occurred in text T. The normalized frequency of w; is

then given by pi=£,/>"\ | f.

The hedonometer instrument can be tuned to emphasize the most emotionally
charged words by removing words within Ah,,, of the neutral score of h,,, = 5. We
have further shown that ignoring these neutral words with 4 < h,,,(w;) < 6 provides a
good balance of sensitivity and robustness, and thus we chose Ah,,, = 1 for this

study?’.
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