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We study a family of binary state, socially inspired contagion models which incorporate imitation

limited by an aversion to complete conformity. We uncover rich behavior in our models whether operating

with either probabilistic or deterministic individual response functions on both dynamic and fixed random

networks. In particular, we find significant variation in the limiting behavior of a population’s infected

fraction, ranging from steady state to chaotic. We show that period doubling arises as we increase the

average node degree, and that the universality class of this well-known route to chaos depends on the

interaction structure of random networks rather than the microscopic behavior of individual nodes. We

find that increasing the fixedness of the system tends to stabilize the infected fraction, yet disjoint,

multiple equilibria are possible depending solely on the choice of the initially infected node.

DOI: 10.1103/PhysRevLett.110.158701 PACS numbers: 89.65.�s, 05.45.�a, 87.23.Ge

The structure and dynamics of real, complex networks
remains an open area of great research interest, particularly
in the realm of evolutionary processes acting on and within
networked systems [1–6]. Here, motivated by considera-
tions of social contagion—the spreading of ideas and
behaviors between people through social networks and
media—we explore an idealized, binary-state social con-
tagion model in which individuals choose to be like others
but only up to a point: they do not want to be like everyone
else [7–10]. We term such behavior ‘‘limited imitation
contagion.’’ We build naturally on previous studies of
threshold models of contagion [12–15], and our model
can also be seen as a specific subfamily of dynamical
Boolean network models [16,17]. We show how macro-
scopic network structure overrides microscopic details, and
we find complex dynamics whose character moves from
universal and predictable to particular and unpredictable as
we allow the system to become increasingly deterministic.

In constructing our model, our main interest is in under-
standing how spreading by limited imitation contagion on
random networks behaves under three main tunable con-
ditions: (1) social awareness: the rate of contact between
individuals; (2) social variability: the extent to which
friendships are fixed; and (3) social influence: the character
of individuals’ responses to the behavior of others.

To begin with, we consider a binary state model for
which individuals are either in a base state S0 or an alter-
nate state S1. We assume individuals interact over an
uncorrelated random network, which may be dynamic or
fixed. For simplicity, and due to the richness of the dynam-
ics we find, we employ standard Erdös-Rényi networks
which possess Poisson degree distributions. We take time
to be discrete (t ¼ 0; 1; 2; . . . ), and we prescribe each
node’s degree k at t ¼ 0. In a dynamic network, when
node i updates, it samples the states of ki randomly
chosen nodes (i.e., the system is a random mixing model

with nonuniform contact rates). For a fixed network, node i
repeatedly samples the same ki nodes. We further restrict
our attention to single-seed contagion processes wherein
all nodes are in state S0 at time t ¼ 0, with one randomly
chosen node in state S1.
The contagion process is manifested through the

response functions of individual nodes. We allow nodes
to update synchronously, and node i’s response function
Fi: ½0; 1� � ½0; 1� gives the probability that node i will be
in state S1 upon updating, where the argument taken by Fi

is the fraction of nodes sampled by node i that are currently
in state S1, �i;t.

We investigate two kinds of response functions, proba-
bilistic and deterministic, both of which incorporate the

(a) (b)

FIG. 1. Examples of probabilistic and deterministic response
functions capturing limited imitation contagion dynamics. At
each time t, nodes use their given response functions to update
their own state based on the perceived fraction of their neighbors
in state S1, �i;t. We construct the tent map T2 (see main text)

shown in (a) by averaging over deterministic response functions
of the kind shown in (b) by considering a family of the latter with
‘‘on’’ and ‘‘off’’ thresholds uniformly distributed in ½0; 12� and
½12 ; 1�, respectively. We then build networked systems whose

macroscopic character is tent map-like but differ strongly at
the microscopic level.
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characteristic of the adoption probability growing and then
diminishing as the perceived popularity of S1 increases. In
Fig. 1(a), we show an example of a probabilistic response
function, the tent map, which is defined as TrðxÞ ¼ rx for
0 � x � 1

2 and rð1� xÞ for 1
2 � x � 1. Here, we consider

the r ¼ 2 case, meaning node i adopts state S1 with proba-
bility T2ð�i;tÞ. We use the tent map T2 for a number of

reasons. (1) As a standard iterative map of the unit interval,
the tent map’s dynamics for r ¼ 2 are both interesting and
well understood [18]—it is fully chaotic and its invariant
density � is uniform on [0,1] (� is the long-term probabil-
ity distribution for the values of a map’s iterates). (2) The
tent map captures a probabilistic flavor of the adopt-when-
novel, drop-when-ubiquitous behavior we aim to model.
(3) We can construct a simple and elegant connection with
deterministic contagion processes which we describe next.

In Fig. 1(b), we show an example of a deterministic
response function which is characterized by ‘‘on’’ and
‘‘off’’ thresholds, �on and �off . Node i will only adopt or
remain in state S1 if it perceives the fraction of others in
state S1 to lie between its on and off thresholds:
�i;on � �i;t < �i;off .

For these deterministic ‘‘on-off’’ response functions, we
examine the special casewhere�on is distributed uniformly

on ½0; 12� and �off likewise on ½12 ; 1�. Averaging over all

deterministic response functions created in this way, we
obtain precisely the tent map T2. Collectively, we then have
the same on-average behavior in both the probabilistic and
deterministic cases, and this allows us to profitably explore
the effect of varying the specific response dynamics at the
micro level, as well as interaction patterns.
We now examine the behavior of four subfamilies of our

model that vary in terms of node response functions being
probabilistic or deterministic (P or D), and whether or not
network connections randomly rewire or are fixed (R or F).
We refer to these model classes as P-R, P-F, D-R, and
D-F. Each class is indexed by the parameter of average
node degree kav, and, as per our design, all four systems
have the same on-average response functions (the tent map
T2) and degree distributions (Poisson).
Our first focus is on the long-term behavior of these four

networked systems. Key to our understanding are the well-
known behaviors of the tent and logistic maps acting
iteratively on the unit interval, the former given above
and the latter by LrðxÞ ¼ rxð1� xÞ. We reproduce the orbit
diagrams for these models in Figs. 2(a) and 2(b). Both
systems are controlled by the amplitude parameter r,
whose increase leads to changes in their invariant densities,

(a) (c) (d)

(b) (e)

(f)

FIG. 2. Comparison of bifurcation diagrams for networked systems with limited imitation contagion based on tent map response
functions. (a), (b) For reference, standard bifurcation diagrams for the tent map and the logistic map operating as maps of the unit
interval, showing distinct universality classes. The gray scale represents the normalized invariant density � (darker indicating higher
values). (c)–(f) Orbit diagrams for limited imitation contagion acting on standard random networks for four model classes with
probabilistic or deterministic responses and network interactions as indicated. The tunable parameter is average degree kav. The inset

in (f) shows the approximate location of the collapse point k
collapse
av as a function of network size, the stars indicating the collapse point

for N ¼ 104. The triangle in (f) indicates kav ¼ 30 for the system examined in Fig. 3. Simulation details: network size N ¼ 104; one
random seed per network; granularity of 0.1 in kav; binning size of 0.001 in �; for P-R, D-R, and P-F systems, we ran simulations for
104 time steps on 103 networks, taking values of �t for t � 103; and for D-F systems, which exhibit long transient behavior (see text),
we ran simulations for 105 time steps on 200 networks, ignoring the first 5� 104 time steps.
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famously resulting in the bifurcation diagram for the logis-
tic map. The two maps, while topologically conjugate,
produce distinct bifurcation diagrams.

As we show in Figs. 2(c)–2(f), the signature of the
microscopic response function of the tent map is erased
by the network dynamics of the four model classes.
Macroscopically, we see four orbit diagrams analogous to
the logistic map’s characteristic bifurcation diagram. We
see that increasing the average connectivity of the network
kav is equivalent to increasing the logistic map’s amplitude
parameter r, and the system moves along the period-
doubling route to chaos.

However, while appearing to belong to the same univer-
sality class, the orbit diagrams of the four models differ
importantly in detail, most profoundly for the fully deter-
ministic D-F class.

First, we observe that the four systems produce only
three distinct orbit diagrams, since for large enough
systems, the two random mixing classes P-R and D-R
must exhibit the same macroscopic behavior [Figs. 2(c)
and 2(d)]. For the D-R class, random rewiring overwhelms
the fact of each node having a fixed deterministic response
function [for finite systems some evidence of discreteness
limits the smoothness of the orbit diagram in Fig. 2(d)].
While we present simulation results only here, we note
that we are able to fully address the P-R and D-R models
analytically, and we find excellent agreement (see Ref. [19]
where we explore more general influence maps).

In next considering the fixed network model with pro-
bablistic response functions, P-R, we see in Fig. 2(e) that
the orbit diagram has slightly moved to the right—the
bifurcation points now occur for higher values of kav
relative to the random mixing cases. A robust, discernible
vertical striation also appears, with separation between
stripes increasing with kav, for which we do not have an
explanation. Thus, making the network fixed appears to
induce some modest changes in the dynamics, though we
cannot discount finite size effects.
Our final model class, D-F—to whose description we

devote the remainder of the Letter—is the most structured,
and it generates considerably different and intricate behav-
ior. Once the network and set of response functions is
realized, the system is now completely deterministic (and
irreversible), and we find surprising changes in the sys-
tem’s behavior at both macroscopic and microscopic
scales. In Fig. 2(f), we see that the orbit diagram for the
D-F model collapses abruptly after several rounds of pe-
riod doubling, which are themselves relatively compressed
in terms of kav. Our simulations suggest that above an
average degree of kav ’ 17, the macroscopic dynamics
always collapse. The inset in Fig. 2(f) shows estimates of
the collapse point for N ¼ 103:5 up to N ¼ 105, and the
asymptotic growth with log10N strongly suggests the col-
lapse is real and not a finite size effect. The collapse
appears to favor a fixed point macroscopic state, around
� ¼ 2=3, which is the fixed point of the tent map T2.

(a) (b) (c)

(d) (e) (f) (g)

FIG. 3. Comprehensive survey of the possible limited imitation contagion dynamics for a single fixed random network (kav ¼ 30)
with its N ¼ 104 nodes having fixed deterministic response functions. We ran N simulations, activating each node as a single seed and
allowed the fully deterministic dynamics to run until collapse. (a)–(c) Partial time series for three different initial seeds leading to the
narrowest and widest postcollapse dynamics (a),(b) and the longest collapse time tc (c). The insets in (a)–(c) magnify two cycles of the
underlying periodic behavior. (d) Complementary cumulative distribution of collapse times (black squares) compared with an example
distribution from another network (gray triangles). (e) Invariant densities, ordered by variance. (f) Histogram of postcollapse
microperiod �. (g) Histogram of postcollapse macroperiod T.
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However, a closer examination of theD-F class’s potential
dynamics reveals a far more subtle story.

In Fig. 3, we summarize the possible dynamics of a lone
realized network (N ¼ 104, kav ¼ 30) with a single set of
fixed deterministic response functions. We exhaustively
ran N ¼ 104 tests of the system’s behavior by separately
seeding each individual node. Of these, 7515 contagion
events successfully lead to long-term, nonzero infection
levels. Figures 3(a)–3(c) show partial time series for three
system evolutions for the same network, differing only by
seed node, and corresponding respectively to the narrowest
and widest collapses, as measured by the variance of �, and
the longest time to collapse. In each case, the initial dy-
namics of � exhibit a clear period three pattern inter-
spersed with intermittent chaotic dynamics, followed by
a sharp collapse to distinct periodic behaviors.

Across all initial seeds, the time to collapse tc varies
greatly, with the extreme example of Fig. 3(c) collapsing
after more than 160 000 time steps and over 1:6� 109

individual node updates. In Fig. 3(d), we provide the
complementary cumulative distribution for collapse times
(black squares). The semilog scale indicates that an expon-
tial decay for tc < 105 covers the majority of cases with the
longest collapse time clearly a singular outlier. Even after
the dynamics collapse, we see that on the order of 10% of
all nodes change state in each time step. Surprisingly, we
see different distributions for tc for different individual
networks. For example, the gray triangles represent the
collapse time distribution for another randomly realized
network with kav ¼ 30. Again we see an exponential dis-
tribution but now with a much steeper decay. Rather than
finding one outlier, we see that a set of exceptional dynam-
ics lasts for much longer than the main exponential decay
would suggest, with an isolated set distributed around tc ’
25 000, and a group ending at around tc ’ 30 000.

We turn lastly to the behavior after the collapse. We call
the postcollapse period of �t the system’s ‘‘macroperiod’’
T, and the period of an individual node its ‘‘microperiod’’ �.
Figure 3(e) shows the invariant density � for all seeds post
collapse, ordered by�’s variance (contagion events that fail
are not included). Strikingly, different seeds almost always
lead to distinct invariant densities, with an apparent domi-
nance of period T ¼ 2 behavior (but see below). We also
find that the tent map’s fixed point of 2=3 [horizontal line in
Fig. 3(e)] is not the center of the invariant densities.

In Figs. 3(f) and 3(g), we provide complete histograms
of all postcollapse microperiods and macroperiods for this
particular network (again ignoring failed spreading
events). Unlike the collapse time distribution, we see
broadly similar distributions for other individual networks.
Microperiods such as 1, 2, 4, 12, and 24 form a dominant
envelope, and many odd-numbered microperiods are
absent. We find that the most common resultant macro-
periods are 4, 8, 12, and 24, that a pure macroperiod 2 is
relatively rare (<0:1%), and that the largest observed

macroperiod is 240. Again, all of these outcomes are
deterministic, depending only on the choice of initial seed.
To conclude, in abstracting from a real world problem,

we have constructed a rich, networked-based model of
limited imitation contagion that allows us to deeply
explore the effects of manifesting either deterministic or
probabilistic microscopic behavior in both network struc-
ture and node response in a well-defined fashion. Our
findings broadly suggest that increasing the degree of a
social system’s microscopic rigidity leads to higher levels
of long-term unpredictability at macroscopic scales. Future
work could take at least two paths, one directed toward the
dynamical system’s aspects and the other toward a more
realistic empirically supported model. Some natural objec-
tives would be to explain why the collapse occurs for the
D-F class, to explore how local properties of seed nodes
such as node degree, correlations, and clustering relate to
the collapse time and postcollapse dynamics, to test other
contagion mechanisms across systems of increasingly
fixed microscopic structure, and to examine these limited
imitation contagion models on real networks and classes of
naturally occurring ones.
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