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Dynamical influence processes on networks: General theory and applications to social contagion

Kameron Decker Harris,* Christopher M. Danforth,† and Peter Sheridan Dodds‡

Department of Mathematics and Statistics, Vermont Advanced Computing Core, Vermont Complex Systems Center,
and Computational Story Lab, University of Vermont, Burlington, Vermont 05405, USA

(Received 25 March 2013; published 28 August 2013)

We study binary state dynamics on a network where each node acts in response to the average state of its
neighborhood. By allowing varying amounts of stochasticity in both the network and node responses, we find
different outcomes in random and deterministic versions of the model. In the limit of a large, dense network,
however, we show that these dynamics coincide. We construct a general mean-field theory for random networks
and show this predicts that the dynamics on the network is a smoothed version of the average response function
dynamics. Thus, the behavior of the system can range from steady state to chaotic depending on the response
functions, network connectivity, and update synchronicity. As a specific example, we model the competing
tendencies of imitation and nonconformity by incorporating an off-threshold into standard threshold models
of social contagion. In this way, we attempt to capture important aspects of fashions and societal trends. We
compare our theory to extensive simulations of this “limited imitation contagion” model on Poisson random
graphs, finding agreement between the mean-field theory and stochastic simulations.

DOI: 10.1103/PhysRevE.88.022816 PACS number(s): 89.65.−s, 64.60.aq, 87.23.Ge, 05.45.−a

I. INTRODUCTION

Networks continue to be an exploding area of research
due to their generality and ubiquity in physical, biological,
technological, and social settings. Dynamical processes taking
place on networks are now recognized as the most natural
description for a number of phenomena. These include neuron
behavior in the brain [1], cellular genetic regulation [2],
ecosystem dynamics and stability [3], and infectious diseases
[4]. This last category, the study of biological contagion,
is in many ways similar to social contagion, which refers
to the spreading of ideas, fashions, or behaviors among
people [5,6]. This concept underlies the vastly important
contemporary area of viral marketing, driven by the ease with
which media can be shared and spread through social network
websites.

In this work, we present results for a very general model
of networked map dynamics, motivated by models of social
contagion. We will describe our model in a social context, but it
is more general since it is a type of Boolean network [7]. These
are closely related to physical models of percolation [8] and
magnetism [7,9], and they have been employed in a number of
fields such as computational neuroscience [10], ecology [11],
and others. Nodes, which in our case represent people, are
allowed two possible states. These could encode rioting or
not rioting [12], buying a particular style of tie [13], liking a
band or style of music, or taking a side in a debate [14]. Each
node has a response function, i.e., a map which determines the
state that the node will take in response to the average state of
nodes in its neighborhood. The model can thus represent many
behaviors, as long as there are only two mutually exclusive
possibilities, where agents make a choice based on the average
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of their neighbors’ choices. Schelling [15,16] and Granovetter
[12] pioneered the use of threshold response functions in such
models of collective social behavior. This was based on the
intuition that for a person to adopt some new behavior, the
fraction of the population exhibiting it might need to exceed
some critical value, i.e., the person’s threshold. These threshold
social contagion models, which are a subclass of our general
model, have already been studied on networks [17,18].

In our theoretical analysis, we focus on the derivation
and analysis of dynamical master equations that describe the
expected evolution of the system state in the general influence
process model. These master equations are given in both
exact form and mean-field approximations. We also show how
certain dense network limits lead to the convergence of the
dynamics to the average response function map dynamics.

We then apply the general theory to a particular limited
imitation contagion model [19]. Nodes act according to
competing tendencies of imitation and nonconformity. One
can argue that these two ingredients are essential to all trends;
indeed, in one of his classic essays, Simmel [20] believed that
these are the main forces behind the creation and destruction
of fashions. Our model is not meant to be quantitative, except
perhaps in carefully designed experiments. Nodes in the
model lack memory of their past states, which is likely an
important effect in the adoption of real fashions. It does capture
qualitative features with which we are familiar: some trends
take off and some do not, and some trends are stable while
others vary wildly through time.

In Sec. II, we define the general model and its deterministic
and stochastic variants. In Sec. III, we provide an analysis of
the model when the underlying network is fixed. In Sec. IV,
we develop a mean-field theory of the model on generalized
random networks. In Sec. V, we consider the model on Poisson
random networks with a specific kind of response function
that reflects the limited imitation we expect in many social
contagion processes. For this specific case, we compare the
results of simulations and theory. Finally, in Sec. VI, we present
conclusions and directions for further research.
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II. GENERAL MODEL

Let G = (V,E) be a network with N = |V | nodes, where V

is the node set and E is the edge set. We let A = A(G ) denote
the adjacency matrix; entry Aij is the number of edges from
node j to node i. Assign each node i ∈ V a response function
fi : [0,1] → {0,1}, and let x(0) ∈ {0,1}N be the vector of
initial node states. At time step t , each node i computes the
fraction

φi(t) =
∑N

j=1 Aijxj (t)∑N
j=1 Aij

(1)

of their neighbors in G who are active and takes the state

xi(t + 1) = fi(φi(t)) (2)

at the next time step.
The above defines a deterministic dynamical system given a

network and set of response functions. We call this a realization
of the model [7]. Each node is in either the 0 or 1 state; we refer
to these as the off (inactive) and on (active) states, respectively.
In the context of contagion, these would be the susceptible
and infected states. With these binary states, our model is
a particular kind of Boolean network. These exhibit rich
dynamics and have a long history in the literature. Unfamiliar
readers should consult the review by Aldana et al. [7] and
references therein. Note that each node reacts only to the
fraction of its neighbors who are active, rather than the absolute
number, and the identities of the input nodes do not matter.
Each node’s input varies from 0 to 1 in steps of 1/ki , where
ki = ∑N

j=1 Aij is node i’s degree (in-degree if G is not a simple
graph).

The behavior of the model depends strongly on the response
functions fi . Leaving these undetermined, the principle feature
of the model is its neighborhood-averaging property. Because
of local averaging, one might expect that the dynamics of
the network global average activity might be close to the map
dynamics of the average of the fi . We show that this is the
case in dense enough networks in Secs. III B and IV B. This
averaging property also introduces an invariance to the number
of inputs that a given node receives.

In the rest of this section, we will describe some variations
of the basic model which also differentiate our model from
the Boolean networks extant in the literature. This is mainly
due to the response functions, but also to the type of random
network on which the dynamics takes place, varying amounts
of stochasticity introduced into the networks and response
functions, and the possibility of asynchronous updates.

A. The networks considered

The mean-field analysis in Sec. IV is applicable to any
network which can be characterized by its degree distribution.
The vast majority of the theory of random Boolean networks
considers only regular random networks. Fortunately, such
theories are easily generalized to other types of networks with
independently chosen edges, such as Poisson (Erdös-Rényi)
and configuration model random networks [9,21]. We develop
specific results for Poisson random networks, and these are the
networks used for the example problem in Sec. V.

TABLE I. The four different ways we implement the model,
corresponding to differing amounts of quenched randomness. These
are the combinations of fixed or rewired networks and probabilistic or
deterministic response functions. In the thermodynamic limit of the
rewired versions, where the network and response functions change
every time step, the mean-field theory (Sec. IV) is exact.

Rewiring network Fixed network

Probabilistic response P-R P-F
Deterministic response D-R D-F

B. Stochastic variants

The specific network and response functions determine
exactly which behaviors are possible. These are chosen from
some distribution of networks, such as G(N,kavg/N ) (Poisson
random networks on N nodes with edge probability kavg/N),
and some distribution of response functions. In the example
of Sec. V, the response functions are parameterized solely by
two thresholds, φon and φoff , so the distribution of response
functions is determined by the joint density P (φon,φoff).
Again, the specific network and response functions define a
realization of the model. When these are fixed for all time,
we have, in principle, full knowledge of the possible model
dynamics. Given an initial condition x(0), the dynamics x(t) is
deterministic and known for all t � 0. As for all finite Boolean
networks, the system dynamics is eventually periodic, since the
state space {0,1}N is finite [7].

We allow for randomness in two parts of the model: the
network and response functions. The network and responses
are each either fixed for all time or resampled at each time
step. Taking all possible combinations yields four different
designs (see Table I). If the dynamics is stochastic in any
way, the system is no longer eventually periodic. Fluctuations
at the node level enable a greater exploration of state space,
and the behavior is comparable to that of the general class of
discrete-time maps. Roughly speaking, the mean-field theory
we develop in Sec. IV becomes more accurate as we introduce
more stochasticity.

In this paper, the network and response functions are either
fixed for all time or resampled at every time step. One could
tune smoothly between the two extremes by introducing rates
at which these reconfigurations occur. These rates are inversely
related to quantities that behave like temperature, with one for
the network and another for the response functions. Holding a
quantity fixed corresponds to zero temperature, since there are
no fluctuations. Any randomness is quenched. The stochastic
and rewired cases correspond to high or infinite temperature
because reconfigurations occur at every time step. This is an
annealed version of the model.

1. Rewired networks

First, the network itself can change at every time step. This
is the rewiring (R), as opposed to fixed (F), network case. For
example, we could draw a new network from G(N,kavg/N )
at every time step. This amounts to rewiring the links while
keeping the degree distribution fixed, and it is alternately
known as a mean-field, annealed, or random mixing variant,
as opposed to a fixed network or quenched model [7].

022816-2
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2. Probabilistic responses

Second, the response functions can change at every time
step. This is the probabilistic (P), as opposed to the determin-
istic (D), response function case. For our social contagion ex-
ample, there needs to be a well-defined distribution P (φon,φoff)
for the thresholds. For large N , this amounts to having a single
response function, i.e., the expected response function

f̄ (φ) =
∫

dφon

∫
dφoffP (φon,φoff)f (φ; φon,φoff). (3)

We call f̄ : [0,1] → [0,1] the probabilistic response function.
Its interpretation is the following. For an updating node with
a fraction φ of active neighbors at the current time step, the
node assumes the active state with probability f̄ (φ) and the
inactive state with probability 1 − f̄ (φ) at the next time step.

C. Update synchronicity

Finally, we introduce a parameter α for the probability that
a given node updates. When α = 1, all nodes update at each
time step, and the update rule is said to be synchronous. When
α ≈ 1/N , only one node is expected to update with each time
step, and the update rule is said to be effectively asynchronous.
This is equivalent to a randomly ordered sequential update. For
intermediate values, α is the expected fraction of nodes which
update at each time step.

III. FIXED NETWORKS

Consider the case where the response functions and network
are fixed (D-F), but the update may be synchronous or
asynchronous. Extend the definition of xi(t) to now be the
probability that node i is in the active state at time t . Note that
this agrees with our previous definition as the state of node i

when xi(t) = 0 or 1. Then the xi follow the master equation

xi(t + 1) = αfi

[∑N
j=1 Aijxj (t)∑N

j=1 Aij

]
+ (1 − α)xi(t), (4)

which can be written in matrix-vector notation as

x(t + 1) = α f[T x(t)] + (1 − α)x(t). (5)

Here, T = D−1A is sometimes called the transition probability
matrix (since it also occurs in the context of a random
walker), D = diag(ki) is the diagonal degree matrix, and
f = (fi) [22]. If α = 1, then x(t) ∈ {0,1}N and we recover the
fully deterministic response function dynamics given by (1)
and (2).

A. Asynchronous limit

Here, we show that when α ≈ 1/N , time is effectively
continuous and the dynamics can be described by an ordinary
differential equation. This is similar to the analysis of Gleeson
[23]. Consider Eq. (5). Subtracting x(t) from both sides and
setting �x(t) = x(t + 1) − x(t) and �t = 1 yields

�x(t)

�t
= α{f[T x(t)] − x(t)}. (6)

Since α is assumed small, the right-hand side is small, and
thus �x(t) is also small. Making the continuum approximation

dx(t)/dt ≈ �x(t)/�t yields the differential equation

dx
dt

= α[f(T x) − x]. (7)

The parameter α sets the time scale for the system. Below
we see that from their form, similar asynchronous, continuous
time limits apply to the dynamical equations in the densely
connected case, given by Eq. (8), and in the mean-field theory,
given by Eqs. (11) and (12).

B. Dense network limit for Poisson random networks

Mathematical random graph and random matrix theories
often deal with condensation results, where quantities of
interest, such as adjacency matrices, become overwhelmingly
concentrated around some typical value in a limit. These limits
are dense in the sense that kavg → ∞ in the thermodynamic
limit N → ∞. The mean-field theory of Sec. IV applies to
sparse graphs, which have finite kavg in the thermodynamic
limit. The following result is particular to Poisson random
networks; however, similar results should hold for other
random networks with corresponding dense limits.

Define the normalized Laplacian matrix as L ≡ I −
D−1/2AD−1/2, where I is the identity [24]. So T = D−1/2(I −
L)D1/2. Let 1N denote the length-N column vector of ones.
Oliveira [25] has shown that when kavg grows at least as fast
as log N , there exists a typical normalized Laplacian matrix
Ltyp = I − 1N 1T

N/N such that the actual L ≈ Ltyp. In this
limit, the degrees should also be approximately uniform, i.e.,
ki ≈ kavg for all i ∈ V , since the coefficient of variation of
degrees vanishes in the Poisson model as kavg → ∞.

If we use the approximationsL ≈ Ltyp and D ≈ diag (kavg),
then T ≈ T typ = 1N1T

N/N . Since

T typx(t) =
N∑

i=1

xi(t)/N ≡ φ(t),

T typ operating on the state gives the network average activity,
denoted φ without any subscript. By using the previous
approximations in Eq. (5) and averaging over all nodes, we
find

φ(t + 1) = αf̄ (φ(t)) + (1 − α)φ(t) ≡ �[φ(t); α] (8)

in the large N limit. This requires the average of the nodes’
individual response functions

∑N
i=1 fi/N to converge in a

suitable sense to the probabilistic response function f̄ , given
by Eq. (3). Note that α tunes between the probabilistic response
function �(φ; 1) = f̄ (φ) and the line �(φ; 0) = φ. Also, the
fixed points of � are fixed points of f̄ , but their stability will
depend on α.

We conclude that when the network is dense, it ceases to
affect the dynamics, since each node sees a large number of
other nodes. The network is effectively the complete graph.
In this way, we recover the map models of Granovetter and
Soong [13], which are derived for a well-mixed population.

IV. MEAN-FIELD THEORY

Making a mean-field calculation refers to replacing the
complicated interactions among many particles by a single
interaction with some effective external field. There are
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analogous techniques for understanding network dynamics.
Instead of considering the |E| interactions among the N nodes,
network mean-field theories derive self-consistent expressions
for the overall behavior of the network after averaging over
large sets of nodes. These have been fruitful in the study
of random Boolean networks [26] and can work well when
networks are nonrandom [27].

We derive a mean-field theory, in the thermodynamic limit,
for the dynamics of the general model by blocking nodes
according to their degree class. This is equivalent to nodes
retaining their degree but rewiring edges at every time step. The
model is then part of the well-known class of random mixing
models with nonuniform contact rates. Probabilistic (P-R) and
deterministic (D-R) response functions result in equivalent
behavior for these random mixing models. The important
state variables end up being the active density of stubs,
i.e., half edges or node-edge pairs. In an undirected network
without degree-degree correlations, the state is described by
a single variable ρ(t). In the presence of correlations, we
must introduce more variables {ρk(t)} to deal with the relevant
degree classes.

A. Undirected networks

To derive the mean-field equations in the simplest case—
undirected, uncorrelated random networks—consider a degree
k node at time t . The mean-field hypothesis states that the
probability that a given stub is active is uniform across all
nodes and equal to ρ. Then the probability that an average
node is in the active state at time t + 1 given a density ρ of
active stubs is

Fk(ρ; f̄ ) =
k∑

j=0

(
k
j

)
ρj (1 − ρ)k−j f̄ (j/k) , (9)

where each term in the sum counts the contributions from
having j = 0,1, . . . ,k active neighbors. The probability of
choosing a random stub which ends at a degree k node is
qk = kpk/kavg in an uncorrelated random network [9]. This
is sometimes called the edge-degree distribution. So if all of
the nodes update synchronously, the active density of stubs at
t + 1 will be

g(ρ; pk,f̄ ) =
∞∑

k=1

qkFk(ρ; f̄ ) =
∞∑

k=1

kpk

kavg
Fk(ρ; f̄ ). (10)

Finally, if each node only updates with probability α, we have
the following map for the density of active stubs:

ρ(t + 1) = αg[ρ(t); pk,f̄ ] + (1 − α)ρ(t)

≡ G[ρ(t); pk,f̄ ,α]. (11)

By a similar argument, the active density of nodes is given by

φ(t + 1) = αh[ρ(t); pk,f̄ ] + (1 − α)φ(t)

≡ H [ρ(t),φ(t); pk,f̄ ,α], (12)

where

h (ρ; pk,f ) =
∞∑

k=0

pkFk(ρ; f̄ ). (13)

Note that the stub or edge-oriented state variable ρ contains
all of the dynamically important information, rather than the
node-oriented variable φ. This is because nodes can only
influence each other through edges, so the number of active
edges is a more important measure of the network activity
than the number of active nodes. We derived these equations
in terms of stubs, meaning that ρ actually keeps track of both
the node and edge information. Equations (10) and (11) can
be interpreted as a branching process for the density of active
stubs.

B. Analysis of the map equation and another dense limit

Here we study the properties of the mean-field maps
G and H , given by Eqs. (11) and (12), which in turn
depend on Fk , given by Eq. (9). The function Fk(ρ; f̄ )
is known in polynomial approximation theory as the
kth Bernstein polynomial (in the variable ρ) of f̄ [28].
Bernstein polynomials have important applications in com-
puter graphics due to their “shape-preserving properties” [29].
The Bernstein operator Bk takes f̄ �→ Fk . This is a linear,
positive operator which preserves convexity for all k and
exactly interpolates the endpoints f̄ (0) and f̄ (1). Immediate
consequences include that each Fk is a smooth function and
the mth derivatives F

(m)
k (x) → f̄ (m)(x) where f̄ (m)(x) exists.

If f̄ is concave down, such as the tent or logistic maps,
then Fk is concave down for all k, and Fk increases to f̄

(Fk ↗ f̄ ) as k → ∞. This convergence is typically slow. Im-
portantly, Fk ↗ f̄ implies that g(ρ; pk,f̄ ) � f̄ for any degree
distribution pk .

In some cases, the dynamics of the undirected mean-field
theory given by ρ(t + 1) = G[ρ(t)] [Eq. (11)] are effectively
those of the map �, from the dense limit given by Eq. (8). We
see that g, given by Eq. (10), can be seen as the expectation
of a sequence of random functions Fk under the edge-degree
distribution qk . Indeed, this is how it was derived. From the
convergence of the Fk’s, we expect that g(ρ; pk,f̄ ) ≈ f̄ (ρ) if
the average degree kavg is “large enough” and the edge-degree
distribution has a “sharp enough” peak about kavg (we will
clarify this soon). Then, as kavg → ∞, the mean field coincides
with the dense network limit that we found for Poisson random
networks, given by Eq. (8). A sufficient condition for this
kind of convergence is the same that we used in justifying the
uniform degree approximation in Sec. III B: The coefficient
of variation of the degree distribution must vanish as kavg →
∞. Equivalently, the standard deviation σ (kavg) of the degree
distribution must be o(kavg). In Appendix A, we prove this as
Lemma 1.

In general, if the original degree distribution pk is character-
ized by having mean kavg, variance σ 2, and skewness γ1, then
the edge-degree distribution qk will have mean kavg + σ 2/kavg

and variance σ 2[1 + γ1σ/kavg − (σ/kavg)2]. Considering the
behavior as kavg → ∞, we can conclude that requiring σ =
o(kavg) and γ1 = o(1) are sufficient conditions on pk to apply
Lemma 1. Poisson degree distributions (σ = √

kavg and γ1 =
k

−1/2
avg ) fit these criteria. Heavy-tailed families of distributions,

in general, do not.
The fact that we can take a dense limit in the mean-field

model and find the same result using rigorous random matrix
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theory is worth noting. In general, mean-field models are not
rigorously justified. For finite N , the quenched dynamics,
which we know is deterministic and eventually periodic, is very
different from the annealed dynamics, which we will show can
be chaotic. The equivalence of the two limits indicates that
quenched and annealed dynamics become indistinguishable
as N → ∞. We believe that the approach to such a singular
limit should reveal interesting discrepancies between the two
models.

C. Generalized random networks

In more general random networks, nodes can have both
undirected and directed incident edges. We denote node
degree by a vector k = (k(u),k(i),k(o))T (for undirected, in-,
and out-degree) and write the degree distribution as pk ≡
P (k). There may also be correlations between node degrees.
We encode correlations of this type by the conditional

probabilities

p
(u)
k,k′ ≡ P (k,undirected|k′),

p
(i)
k,k′ ≡ P (k,incoming|k′), p

(o)
k,k′ ≡ P (k,outgoing|k′),

which represent the probability that an edge starting at a degree
k′ node ends at a degree k node and is, respectively, undirected,
incoming, or outgoing relative to the destination degree k node.
We introduced this convention in a series of papers [30,31].
These conditional probabilities can also be defined in terms of
the joint distributions of node types connected by undirected
and directed edges. We omit a detailed derivation, since it is
similar to that in Sec. IV A and similar to the equations for the
time evolution of a contagion process ([30], Eqs. (13)–(15);
see also [32]).

The result is a coupled system of equations for the density
of active stubs which now may depend on node type (k) and
edge type (undirected or directed):

ρ
(u)
k (t + 1) = (1 − α)ρ(u)

k (t) + α
∑

k′
p

(u)
k,k′

k(u) ′∑
ju=0

k(i) ′∑
ji=0

(
k(u)′

ju

) (
k(i)′

ji

)

× [
ρ

(u)
k′ (t)

]ju
[
1 − ρ

(u)
k′ (t)

](k(u) ′−ju)[
ρ

(i)
k′ (t)

]ji
[
1 − ρ

(i)
k′ (t)

](k(i) ′−ji )
f̄

(
ju + ji

k(u)′ + k(i)′

)
, (14)

ρ
(i)
k (t + 1) = (1 − α)ρ(i)

k (t) + α
∑

k′
p

(i)
k,k′

k(u) ′∑
ju=0

k(i) ′∑
ji=0

(
k(u)′

ju

) (
k(i)′

ji

)

× [
ρ

(u)
k′ (t)

]ju
[
1 − ρ

(u)
k′ (t)

](k(u) ′−ju)[
ρ

(i)
k′ (t)

]ji
[
1 − ρ

(i)
k′ (t)

](k(i) ′−ji )
f̄

(
ju + ji

k(u)′ + k(i)′

)
. (15)

The active fraction of nodes at a given time is

φ(t + 1) = (1 − α)φ(t) + α
∑

k

pk

k(u)∑
ju=0

k(i)∑
ji=0

(
k(u)

ju

)(
k(i)

ji

)

× [
ρ

(u)
k (t)

]ju
[
1 − ρ

(u)
k (t)

](k(u)−ju)[
ρ

(i)
k (t)

]ji
[
1 − ρ

(i)
k (t)

](k(i)−ji )
f̄

(
ju + ji

k(u) + k(i)

)
. (16)

Because these expressions are very similar to the undirected
case, we expect similar convergence properties to those in
Sec. IV B. However, an explicit investigation of this conver-
gence is beyond the scope of the current paper.

V. LIMITED IMITATION CONTAGION MODEL

As a motivating example of these networked map dynamics,
we study an extension of the classical threshold models
of social contagion (such as [12,15–18], among others). In
threshold models, a node becomes active if the active fraction
of its friends surpasses its threshold. What differentiates our
limited imitation contagion model from the standard models is
that the response function includes an off-threshold, above
which the node takes the inactive state. We assign each
node i ∈ V an on-threshold φon,i and an off-threshold φoff,i ,

requiring 0 � φon,i � φoff,i � 1. Node i’s response function
fi(φi) = fi(φi ; φon,i ,φoff,i) is 1 if φon,i � φi � φoff,i and 0
otherwise. See Fig. 1 for an example of an on-off threshold
response function.

This is exactly the model of Granovetter and Soong
[13], but on a network. We motivate this choice with the
following (also see [13]). (1) Imitation: the active state
becomes favored as the fraction of active neighbors surpasses
the on-threshold (bandwagon effect). (2) Nonconformity: the
active state is eventually less favorable with the fraction of
active neighbors past the off-threshold (reverse bandwagon,
snob effect). (3) Simplicity: in the absence of any raw
data of “actual” response functions, which are surely highly
context dependent and variable, we choose arguably the
simplest deterministic functions which capture imitation and
nonconformity.
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FIG. 1. An example of an on-off threshold response function.
Here, φon = 0.33 and φoff = 0.85. The node will “activate” if φon �
φ � φoff , where φ is the fraction of its neighbors who are active.
Otherwise, it takes the “inactive” state.

A crucial difference between our model and many related
threshold models is that in those models, an activated node
can never reenter the susceptible state. Gleeson and Cahalane
[32] call this the permanently active property and elaborate
on its importance to their analysis. Annealed or quenched
models with the permanently active property have monotone
dynamics. The introduction of the off-threshold builds in
a mechanism for node deactivation. Because nodes can
now recurrently transition between on and off states, the
deterministic dynamics can exhibit a chaotic transient (as in
random Boolean networks [7]), and the long time behavior can
be periodic with a potentially high period. With stochasticity,
the dynamics can be truly chaotic.

The networks we consider are Poisson random networks
from G(N,kavg/N ). The thresholds φon and φoff are distributed
uniformly on [0,1/2) and [1/2,1), respectively. This distribu-

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

ρ

f(
ρ)

FIG. 2. The tent map probabilistic response function f̄ (ρ), given
by Eq. (17), used in the limited imitation contagion model. This
is compared to the edge maps g(ρ; kavg) = g(ρ; pk,f̄ ), given by
Eq. (10), with kavg = 1,10,100 (dashed, dot-dashed, and dotted lines).
These pk are Poisson distributions with mean kavg. As kavg increases,
g(ρ; kavg) increases to f̄ (ρ).

FIG. 3. Bifurcation diagram for the dense map �(φ; α), given by
Eq. (18). This was generated by iterating the map at 1000 α values
between 0 and 1. The iteration was carried out with three random
initial conditions for 10 000 time steps each, discarding the first
1000. The φ axis contains 1000 bins and the invariant density, shown
by the grayscale value, is normalized by the maximum for each α.
With α < 2/3, all trajectories go to the fixed point at φ = 2/3.

tion results in the probabilistic response function (see Fig. 2)

f̄ (φ) =
{

2φ if 0 � φ < 1/2,

2 − 2φ if 1/2 � φ � 1.
(17)

The tent map is a well-known chaotic map of the unit interval
[33]. We thus expected the limited imitation model with this
probabilistic response function to exhibit similarly interesting
behavior.

A. Analysis of the dense limit

When the network is in the dense limit (Sec. III B), the
dynamics follows φ(t + 1) = �[φ(t); α], where

�(φ; α) = αf̄ (φ) + (1 − α)φ

=
{

(1 + α)φ if 0 � φ < 1/2,

(1 − 3α)φ + 2α if 1/2 � φ � 1.
(18)

Solving for the fixed points of �(φ; α), we find one at φ = 0
and another at φ = 2/3. When α < 2/3, the nonzero fixed
point is attracting for all initial conditions except φ = 0. When
α = 2/3, [1/2,5/6] is an interval of period-2 centers. Any orbit
will eventually land on one of these period-2 orbits. When α >

2/3, this interval of period-2 centers ceases to exist, and more
complicated behavior ensues. Figure 3 shows the bifurcation
diagram for �(φ; α). From the bifurcation diagram, the orbit
appears to cover dense subsets of the unit interval when α >

2/3. The bifurcation diagram appears like that of the tent map
(not shown; see [19,33]), except the branches to the right of
the first bifurcation point are separated here by the interval of
period-2 centers.

1. The effect of conformists: An aside

Suppose some fraction c of the population is made up of
individuals without any off-threshold (alternatively, each of
their off-thresholds φoff = 1). These individuals are conformist
or purely prosocial in the sense that they are content with
being part of the majority. For simplicity, assume α = 1. The
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map �(φ; c) = 2φ for 0 � φ < 1/2 and 2 − 2(1 − c)φ for
1/2 � φ � 1. If c > 1/2, then the equilibrium at 2/3 is stable.
Pure conformists, then, have a stabilizing effect on the process.
We expect a similar effect when the network is not dense.

B. Mean field

Here we mention the methods which were used to compute
the mean-field maps derived in Sec. IV. In this specific
example, we can write the degree-dependent map Fk(ρ; f̄ )
in terms of incomplete regularized β functions Iz(a,b) [34].
Since f̄ is understood to be the tent map, we will write
Fk(ρ; f̄ ) = Fk(ρ). We find that

Fk(ρ) = 2ρ − 4ρIρ(M,k − M), (19)

where we have let M = 
k/2� for clarity (
·� and �· are the
floor and ceiling functions). The details of this derivation are
given in Appendix B.

The map g(ρ; pk,f̄ ) is parameterized here by the network
parameter kavg, since pk is fixed as a Poisson distribution with
mean kavg and f̄ is the tent map, and we write it as simply
g(ρ; kavg). To evaluate g(ρ; kavg), we compute Fk(ρ) using
Eq. (19) and constrain the sum in Eq. (10) to values of k

with 
kavg − 3
√

kavg� � k � �kavg + 3
√

kavg. This computes
contributions to within three standard deviations of the average
degree in the network, requiring only O(

√
kavg) evaluations

of Eq. (19). The representation in Eq. (19) allows for quick
numerical evaluation of Fk(ρ) for any k, which we performed
in MATLAB.

In Fig. 2, we show g(ρ; kavg) for kavg = 1,10, and 100.
We confirm the conclusions of Sec. IV B: g(ρ; kavg) is
bounded above by f̄ (ρ), and g(ρ; kavg) ↗ f̄ (ρ) as kavg → ∞.
Convergence is slowest at ρ = 1/2, where the kink exhibited
by the tent map has been smoothed out by the effect of the
Bernstein operator.

C. Simulations

We performed stochastic simulations of the limited im-
itation model for the D-F, P-F, and P-R designs, in the
abbreviations of Table I. See the Supplemental Material [35]

FIG. 4. Deterministic (D-F) dynamics on a small network. Here,
N = 100 and kavg = 17. The upper plot shows individual node states
as a raster plot (black = active), sorted by their eventual level of
activity. The lower plot shows the total number of active nodes over
time. We see that the contagion takes off, followed by a transient
period of unstable behavior until time step 80, when the system enters
a macroperiod-4 orbit. Note that individual nodes exhibit different
microperiods (explained in Sec. V D).

for the PYTHON code. Unless otherwise noted, N = 104. For
all of the bifurcation diagrams, the first 3000 time steps were
considered transient and were discarded, and the invariant
density of ρ was calculated from the following 1000 points.
For plotting purposes, the invariant density was normalized by
its maximum at those parameters. For example, in Fig. 3, we
plot P (φ|α)/ maxφ P (φ|α) rather than the raw density P (φ|α).

To compare the mean-field theory to those simulations, we
numerically iterated the edge map ρ(t + 1) = G[ρ(t); kavg,α]
for different values of α and kavg. We then created bifurcation
diagrams of the possible behavior in the mean field as was
done for the simulations.

D. Results

To provide a feel for the deterministic dynamics, we show
the result of running the D-F model on a small network
in Fig. 4. Here, N = 100 and kavg = 17. Starting from a
single initially active node at t = 0, the active population
grows monotonically over the next six time steps. From
time t = 6 to t = 80, the active fraction varies in a similar
manner to the dynamics in the stochastic and mean-field cases.

FIG. 5. (Color online) The three-dimensional bifurcation diagram
computed from the mean-field theory. The axes X = average degree
kavg, Y = update probability α, and Z = active edge fraction ρ.
The discontinuities of the surface are due to the limited resolution
of our simulations. See Fig. 6 for the parameters used. This was
visualized using PARAVIEW. See the Supplemental Material [35] for
the underlying data.

022816-7



HARRIS, DANFORTH, AND DODDS PHYSICAL REVIEW E 88, 022816 (2013)

FIG. 6. Mean-field theory bifurcation diagram slices for various fixed values of kavg and α. The top row (a)–(c) shows slices for fixed kavg.
As kavg → ∞, the kavg-slice bifurcation diagram asymptotically approaches the bifurcation diagram for the dense map; see Fig. 3. Note that the
location of the first period-doubling bifurcation point approaches 2/3, and the bifurcation diagram more closely resembles Fig. 3, as kavg → ∞.
The bottom row (d)–(f) shows slices for fixed α. The resolution of the simulations was α = 0.664,0.665, . . . ,1, kavg = 1,1.33, . . . ,100, and ρ

bins were made for 1000 points between 0 and 1.

After the transient, the state collapses into a period-4 orbit.
We call the overall period of the system its “macroperiod,”
while individual nodes may exhibit different “microperiods.”
Note that the macroperiod is the lowest common multiple
of the individual nodes’ microperiods. In Fig. 4, we observe
microperiods 1, 2, and 4 in the time series of individual
node activity. In other networks, we have observed up to
macroperiod 240 [19]. A majority of the nodes end up frozen
in the on or off state, with approximately 20% of the nodes
exhibiting cyclical behavior after collapse. The focus of this
paper has been the analysis of the on-off threshold model,
and the D-F case has not been as amenable to analysis as
the stochastic cases. We offer a deeper examination through
simulation of the deterministic case in [19].

We explore the mean-field dynamics by examining the
limiting behavior of the active edge fraction ρ under the map
G(ρ; kavg,α). We simulated the map dynamics for a mesh of
points in the (kavg,α) plane. We plot the three-dimensional
(3D) bifurcation structure of the mean-field theory in Fig. 5.
We also show 2D bifurcation plots for fixed kavg and α slices
through this volume in Figs. 6 and 7. For more visualizations of
this bifurcation structure, including movies of the bifurcation
diagram as the parameters are dialed and individual node
dynamics, see the Supplemental Material [35]. In all cases,
the invariant density of ρ is normalized by its maximum for
that (kavg,α) pair and indicated by the grayscale value.

The mean-field map dynamics exhibits period-doubling
bifurcations in both parameters kavg and α. Visualizing the

FIG. 7. Bifurcation diagram from fully stochastic (P-R) simulations, made in the same way as Fig. 6. The bifurcation structure of these
stochastic simulations matches that of the mean-field theory (Fig. 6), albeit with some blurring.
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bifurcation structure in 3D (Fig. 5) shows interlacing period-
doubling cascades in the two parameter dimensions. These
bifurcations are more clearly resolved when we take slices of
the volume for fixed parameter values. The mean-field theory
(Fig. 6) closely matches the P-R simulations (Fig. 7). The
first derivative ∂G

∂ρ
(ρ; kavg,α) < ∂�

∂ρ
(ρ; α) for any finite kavg, so

the bifurcation point α = 2/3 which we found for the dense
map � is an upper bound for the first bifurcation point of G.
The actual location of the first bifurcation point depends on
kavg, but α = 2/3 becomes more accurate for higher kavg [it
is an excellent approximation in Figs. 6(c) and 7(c), where
kavg = 100]. When α = 1, the first bifurcation point occurs at
kavg ≈ 7.

The bifurcation diagram slices resemble each other and
evidently fall into the same universality class as the logistic
map [36,37]. This class contains all 1D maps with a single,
locally quadratic maximum. Due to the properties of the
Bernstein polynomials, Fk(ρ; f̄ ) will universally have such a
quadratic maximum for any concave down, continuous f̄ [28].
So this will also be true for g(ρ; kavg,f̄ ) with kavg finite, and
we see that kavg partially determines the amplitude of that
maximum in Fig. 2. Thus, kavg acts as a bifurcation parameter.
The parameter α tunes between G(ρ; kavg,1) = g(ρ; kavg,f̄ )
and G(ρ; kavg,0) = ρ, so it has a similar effect. Note that
the tent map f̄ and the dense limit map � are kinked at
their maxima, so their bifurcation diagrams are qualitatively
different from those of the mean field. The network, by
locally averaging the node interactions, causes the mean-field
behavior to fall into a different universality class than the
individual response function map.

VI. CONCLUSIONS

We described a very general class of synchronous or
asynchronous, binary state dynamics occurring on networks.
We obtained an exact master equation and showed that
when random networks are sufficiently dense, the networked
dynamics approaches those of the fully connected case. We
developed a mean-field theory and found that it also predicted
the same limiting behavior. The convergence of the mean-field
map to the average response function is related to the Bernstein
polynomials, allowing us to employ many previous results
in order to analyze the mean-field map equation. We also
extended those mean-field equations to correlated random
networks. We expect that a rigorous mathematical justification
can be given for the mean-field theory of the general influence
model on annealed graphs using a condensation theorem for
configuration model networks.

The general model we describe was motivated by the limited
imitation model of social contagion. We see that including
an aversion to total conformity results in more complicated,
even chaotic, dynamics, as opposed to the simple spreading
behavior typically seen in the single threshold case. The
theory developed for the general case successfully captured the
behavior of the stochastic network dynamics. We have focused
on the rich structure of bifurcations as the two parameters,
update synchronicity α and average degree kavg, were varied.
We see that the universality class of the dynamics matches
those of the logistic map. Using the mean-field theory, we
can understand this as a result of the smoothing effect of

the Bernstein polynomials on the tent map average response
function. However, this universality class will appear for any
unimodular, concave down stochastic response function.

The deterministic case, which we have barely touched on,
merits further study (see [19]). In particular, we would like to
characterize the distribution of periodic sinks, how the collapse
time scales with system size, and how similar the transient
dynamics is to the mean-field dynamics.

Furthermore, the model should be tested on realistic
networks. These could include power law or small world
random networks, or real social networks gleaned from data.
One possibility would be to compare data such as food choices
[38] or Facebook likes [5] to the model behavior. In a manner
similar to Melnik et al. [27], one could evaluate the accuracy
of the mean-field theory for real networks.

Finally, the ultimate usefulness of these social models relies
on a better understanding of social dynamics themselves.
The characterization of people’s “real” response functions
is therefore critical (some work has gone in this direction;
see [5,6,39,40]). The comparison of model output to large data
sets, such as observational data from social media or online
experiments, is an area for further experimentation. This might
lead to more complicated context- and history-dependent
models. As we collect more data and refine experiments,
the eventual goal of quantifiably predicting social behavior,
including fashions and trends, seems achievable.
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APPENDIX A: PROOF OF LEMMA 1

Lemma 1. For k � 1, let fk be continuous real-valued
functions on a compact domain X with fk → f uniformly.
Let pk be a probability mass function on Z+ parameterized by
its mean μ and with standard deviation σ (μ), assumed to be
o(μ). Then,

lim
μ→∞

( ∞∑
k=0

pkfk

)
= f.

Proof. Suppose 0 � a < 1 and let K = 
μ − μa�. Then,

g =
∞∑

k=0

pkfk =
K∑

k=0

pkfk +
∞∑

k=K+1

pkfk. (A1)

Since fk → f uniformly as k → ∞, for any ε > 0, we can
choose μ large enough that

|fk(x) − f (x)| < ε (A2)
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for all k > K and all x ∈ X. Without loss of generality, assume
that |fk| � 1 for all k. Then,

|g − f | �
(

σ

μa

)2

+ ε.

The σ/μa term is a consequence of the Chebyshev inequality
[21] applied to the first sum in (A1). Since σ grows sublinearly
in μ, this term vanishes for some 0 � a < 1 when we take the
limit μ → ∞. The ε term comes from using (A2) in the second
sum in (A1), and it can be made arbitrarily small. �

APPENDIX B: β FUNCTION REPRESENTATION OF Fk

We now show how, when f̄ is the tent map (17), the map
Fk(ρ; f̄ ) can be written in terms of incomplete regularized β

functions. First, use the piecewise form of Eq. (17) to write

Fk(ρ) =
M∑

j=0

(
k

j

)
ρj (1 − ρ)k−j

(
2j

k

)

+
k∑

j=M+1

(
k

j

)
ρj (1 − ρ)k−j

(
2 − 2j

k

)

= 2 − 2ρ − 2
M∑

j=0

(
k

j

)
ρj (1 − ρ)k−j

+
(

4

k

) M∑
j=0

(
k

j

)
ρj (1 − ρ)k−j j. (B1)

We have used the fact that the binomial distribution ( k
j )ρj (1 −

ρ)k−j sums to one and has mean kρ. For n � M , we have the
identity

M∑
j=0

(j )n

(
k

j

)
ρj (1 − ρ)k − j

= ρn(k)nI1 − ρ(k − M,M − n+ 1), (B2)

where Ix(a,b) is the regularized incomplete β function
and (k)n = k(k − 1) · · · [k − (n − 1)] is the falling factorial
[34,41]. This is an expression for the partial (up to M) nth
factorial moment of the binomial distribution with parameters
k and ρ. Note that when n = 0, we recover the well-known
expression for the binomial cumulative distribution function.
From Eqs. (B1) and (B2), we arrive at Eq. (19).
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