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Novel Evolutionary Algorithm Identifies Interactions Driving Infestation of Triatoma dimidiata, a
Chagas Disease Vector

John P. Hanley,1* Donna M. Rizzo,1 Lori Stevens,2 Sara Helms Cahan,2 Patricia L. Dorn,3 Leslie A. Morrissey,4†
Antonieta Guadalupe Rodas,5 Lucia C. Orantes,4 and Carlota Monroy5

1Department of Civil and Environmental Engineering, University of Vermont, Burlington, Vermont; 2Department of Biology, University of Vermont,
Burlington, Vermont; 3Department of Biological Sciences, Loyola University New Orleans, New Orleans, Louisiana; 4Rubenstein School of

Environment and Natural Resources, University of Vermont, Burlington, Vermont; 5Laboratorio de Entomologı́a Aplicada y Parasitologı́a, Escuela
de Biologı́a, Universidad de San Carlos de Guatemala, Ciudad de Guatemala, Guatemala

Abstract. Chagas disease is a lethal, neglected tropical disease. Unfortunately, aggressive insecticide-spraying
campaigns have not been able to eliminate domestic infestation of Triatoma dimidiata, the native vector in Guatemala. To
target interventions toward houses most at risk of infestation, comprehensive socioeconomic and entomologic surveys
were conducted in two towns in Jutiapa, Guatemala. Given the exhaustively large search space associated with com-
binations of risk factors, traditional statistics are limited in their ability to discover risk factor interactions. Two recently
developed statistical evolutionary algorithms, specifically designed to accommodate risk factor interactions and het-
erogeneity, were applied to this large combinatorial search space and used in tandem to identify sets of risk factor
combinations associated with infestation. The optimal model includes 10 risk factors in what is known as a third-order
disjunctive normal form (i.e., infested households have chicken coops AND deteriorated bedroom walls OR an accu-
mulation of objects AND dirt floors AND total number of occupants ³ 5 AND years of electricity ³ 5 OR poor hygienic
condition ratings ANDadobewalls ANDdeterioratedwalls ANDdogs). Houseswith dirt floors anddeterioratedwalls have
been reported previously as risk factors and align well with factors currently targeted by Ecohealth interventions to
minimize infestation. However, the tandem evolutionary algorithms also identified two new socioeconomic risk factors
(i.e., households having many occupants and years of electricity ³ 5). Identifying key risk factors may help with the
development of new Ecohealth interventions and/or reduce the survey time needed to identify houses most at risk.

INTRODUCTION

The WHO identifies Chagas disease as one of the most
difficult neglected tropical diseases to control.1 Village-scale
infestation by the native Guatemalan vector, Triatoma dimi-
diata, can be transiently reduced by using pyrethroid in-
secticide; however, the vector often rebounds within months
of application2,3 and can achieve pre-application infestation
levels within 3 years.4 Consequently, different strategies are
necessary for reducing infestation and lowering disease
transmission risk.
In Guatemala, sustainable Ecohealth interventions have

been successful in the long-term reduction of T. dimidiata
infestation.5–8 These interventions include plastering walls8;
replacing dirt floors with locally sourced, cement-likematerials5,6;
educational awareness of the disease, including steps villagers
can take to reduce their risk7,8; and the construction and dis-
tancingof chickencoops from thehouse.7Similar to insecticide
application, Ecohealth interventions minimize infestation, with
the benefit of doing so over longer time frames,5,6 and often
provide other social, economic, and health benefits at a lower
overall cost.7 For example, the installation of cement-like floors
using locally sourced material5,6 can have the dual benefit of
preventingT.dimidiata infestationand lowering the incidenceof
hookworm,9 another important neglected tropical disease in
Guatemala.10

Limited financial and human resources often lead to inter-
ventions that focus on houses most at risk. However, un-
derstanding house infestation requires identifying the best

combinations of risk factors most likely associated with
household infestation. Of particular importance in this work is
the ability to identify risk factor interactions, where the com-
binations of risk factors are associated with a particular out-
come (i.e., infestation), but individually have no main effects.
The statistical community uses the term “interaction” when
referring to this type of multivariate model (i.e., where a single
risk factor will not correlate with an outcome unless it is
combined with at least one other risk factor).11 Identifying risk
factor interactions is an inherent challenge for complex
diseases12,13 such as Chagas disease.
Studies have suggested that the drivers of T. dimidiata in-

festation may be heterogeneous.14,15 As a result, another
challenge is identifying the combinations of risk factors in
these types of real-world heterogeneous systems. For ex-
ample, in a very broad sense, household infestationmayoccur
when a household is able to provide a food source and shelter
for the vector. Heterogeneity occurs because not every
infested house offers the same combination of vector food
sources and shelter; there are often risk factor combinations
that are only associated with a subset of the infested houses.
Thus, although multiple models may be necessary to fully
predict the outcome, challenges arise because many para-
metric statistical methods are designed to identify only a
single best model.
In addition, socioeconomic and entomologic surveys often

limit questions to determine risk factors most associated with
an outcome (e.g., infestation). Despite painstaking efforts to
reduce the number of questions (whether it be to increase the
sample size, reduce time and effort, overcome language
barriers, etc.), the search space that results when all risk fac-
tors and their range of values are combined quickly becomes
larger than is possible to exhaustively search with most sta-
tistical techniques. As a result, the aim was to find the most
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parsimonious model (i.e., model that uses the fewest risk
factors necessary to explain an outcome). Another short-
coming encountered when constructing traditional multivari-
ate models is that ordinal- and continuous-valued risk factors
often need to be reduced (e.g., binned a priori by domain ex-
perts) to reduce the computational challenges and increase
statistical power. Data reduction often adds bias and obfus-
cates important relationships between risk factors and
infestation.14–17

A number of studies have used traditional multivariate sta-
tistics to identify risk factors for T. dimidiata infestation to help
prioritize interventions.14–17 However, these multivariate
methods relied on identifying single risk factors (i.e., main ef-
fects) a priori and then use this limited subset of the previously
identified “significant” risk factors in a multivariate analysis.
More advanced methods such as random forests and princi-
pal component analysis (PCA) have been used to model other
vector-borne disease such as leishmaniasis and West Nile
virus.18–20 However, random forests are not designed to find
parsimonious solutions because, by definition, they are
combinations of decision trees, where each tree is a complex
multivariate model. In addition, decision trees are not
designed to find true risk factor interactions because the un-
derlying methodology relies on main effects. When Hanley
et al.21 tested decision trees and random forests on a
benchmark problem designed by the machine-learning com-
munity to contain both risk factor interactions and heteroge-
neity, no single decision tree or combination of trees was able
to identify the most parsimonious solution (i.e., a solution that
comprises only the risk factors, their associated values, and
interactions that define the problem). In addition, individual
decision trees had poor classification accuracy, whereas
random forests were prone to overfitting.21 Principal compo-
nent analysis is another popular unsupervised learning tech-
nique often used to reduce the dimension of the original
(continuous-valued) risk factors, whereby the original vari-
ables are transformed into the same number of orthogonal
eigenvectors—each linear combinations of the original risk
factors. The eigenvectors are ordered by their ability to explain
total variance in the dataset. Whereas variance greater than
zero is needed to differentiate between outcomes, PCA is not
a supervised learning tool; thus, eigenvectors are not
designed to be associated with any given outcome (or
designed to classify outcomes). Therefore, selecting a subset
of eigenvectors based on the amount of total variance
explained may likely eliminate vectors important (highly as-
sociated) to a given outcome. In addition, the weights asso-
ciated with select eigenvectors have been used for feature
selection, but the weights are only associated with explaining
the variance in the dataset for a particular eigenvector (i.e.,
how much of the total variance is explained by each of the
principal components with respect to the total sum). Thus
again, PCA is not designed to identify individual risk factors
(especially nominal risk factors) most associated with a given
outcome (e.g., infestation). Because T. dimidiata infestation at
its core involves risk factor interactions (i.e., at aminimum, the
vector requires a food source and shelter for survival), the
development of tools for detecting risk factor interactions is
important.
In this work, we assessed the utility of the conjunctive

clause evolutionary algorithm (CCEA) and disjunctive normal
form evolutionary algorithm (DNFEA), a new supervised, data-

mining tool that has been shown to overcome these statistical
challenges. The method is designed and was successfully
tested on benchmark datasets to accommodate heteroge-
neity, interactions among risk factors, missing data, and
multiple data types potentially associated with the risk of
T. dimidiata infestation21; a brief comparison to logistic re-
gression is presented in the Supplemental Material. We apply
the tool to a real-world dataset containing socioeconomic and
entomologic survey data designed to understand risk factors
for Chagas vector house infestation in two rural communities
in Jutiapa, Guatemala. We discuss how these multivariate
models might be implemented by domain experts familiar
with local stakeholder needs.

METHODS

We use two new evolutionary algorithms, the CCEA and a
DNFEA, in tandem to identify risk factors most closely asso-
ciated with house infestation by the Chagas vector
T. dimidiata, in two rural Guatemalan villages. The CCEA first
searches for combinations of risk factors (i.e., conjunctive
clauses [CCs]) that are associated with infestation, whereas
the DNFEA further refines the search for heterogeneous
combinations of these CCs. The DNFEA takes statistically
strong models of infestation that apply to subsets of the
infested houses and searches for the best combinations of
CCs to cover a larger portion of the search space: in this case,
all infested houses.
Triatoma dimidiata infestation dataset. We applied the

CEAA and DNFEA frameworks to Chagas disease infestation
risk factors using field surveys conducted in the two rural
Guatemalan towns, El Carrizal and El Chaperno. Both study
sites are located in the dry highlands of the department of
Jutiapa, Guatemala, bordering El Salvador (Figure 1). From
October 1, 2012 to October 3, 2012 in El Chaperno and
February 4, 2013 to February 5, 2013 in El Carrizal, personnel
from the University of San Carlos of Guatemala and the
Guatemalan Ministry of Health Office, vector-borne disease
division conducted socioeconomic and entomologic sur-
veys of 182 and 129 houses, respectively. Informed consent
was obtained from all adult participants and parents or legal
guardians of minors with ethical clearance from the Ministry
of Health in Guatemala, the University of San Carlos of
Guatemala bioethics committee, and the Pan American Health
Organization.
The household surveys contain64 risk factors (Supplemental

Table S1) that were either previously shown or are newly
hypothesized to be associated with house infestation with
T. dimidiata. These risk factors include vector shelter (e.g.,
cracks in bedroom walls), vector food sources (e.g., number
of dogs), and socioeconomic conditions (e.g., source of
household income). Previous studies onT. dimidiata focused
on the risk factors associated with infestation and did not
focus on risk factors associated with colonization nor
dispersion.14–17,22–24 Whereas colonization and dispersion
are calculated in one study,22 to the best of our knowledge, no
previous study has calculated the risk factors associated with
colonization ofT. dimidiata. Also, given the challenges of finding
live T. dimidiata,25 we would expect a number of false negatives
when calculating the domestic infestation and colonization
according to the WHO equations for the entomological indica-
tors of Chagas disease control.26 Therefore, to limit the number
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of false negatives, we defined infestation as any sign that the
housewas infestedwith T. dimidiata, either at the time of survey
or in the recent past, including live or dead T. dimidiata, eggs,
exuviae, or characteristic fecal streaks. In thiswork,we combine
the data from both towns, which have a minority of infested
homes (combined 32.2%; see Table 1), to find more general
associations of infestation in this area.
Conjunctive clause evolutionary algorithm and dis-

junctive normal form evolutionary algorithm. The CCEA is
designed to identify multivariate risk factor interactions as-
sociated with large, complex datasets containing multiple
data types (i.e., nominal, ordinal, and continuous) having large
ranges of values, missing data, and imbalanced outcome

classes.21,27 In addition, the ranges of values evolved for each
of the risk factors need not be monotonic. For instance, a
continuous risk factor whose values most associated with
infestation occupy themiddle of a bell curve (or either extreme)
may be discovered, unlike logistic regression whose models
are based on exponentially increasing or decreasing values
(for more detail, see Supplemental Comparison to Logistic
Regression). The CCEA selects for the best CC of the form:

CCk is defined asFi 2 ai ⋀Fj 2 aj . . . , (1)

where Fi represents a risk factor iwhose value lies in the range
ai and the symbol ⋀ represents a conjunction (i.e., logical

FIGURE 1. Topographic map of Guatemala study sites showing locations of houses in El Carrizal (blue dots) and El Chaperno (red dots). The inset
highlights the department of Jutiapa, Guatemala (red), and the location of El Carrizal and El Chaperno (yellow star). Each house location was determined
using a Garmin eTrex® 20 GPS (Garmin Ltd., Olathe, KS). The figure was created using ArcGIS® software by Esri (Esri, Redlands, CA). ArcGIS® and
ArcMap™ are the intellectual properties of Esri and are used herein under license. Copyright © Esri. This figure appears in color at www.ajtmh.org.

TABLE 1
Summary data metrics for El Chaperno, El Carrizal, and the two towns combined

Dataset
Number of
houses

% Infested
houses

Number of ordinal, nominal,
and binary risk factors % Missing data

% Missing data per risk
factor (median)

% Missing data per risk
factor (min, max)

El Chaperno 182 26.9 12, 8, and 44 28.9 15.7 0.5, 86.8
El Carrizal 129 39.5 14, 8, and 42 22.3 3.9 0.8, 77.5
Combined 311 32.2 14, 8, and 42 26.1 10.3 1.2, 78.5
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AND). The benefit of the CCEA is that it produces parsimoni-
ous models that are correlated with an outcome (e.g., in-
festation). One example of a parsimonious CC is houses with
deteriorated walls AND dogs AND years of electricity ³ 8 are
more likely to be infestedwith T. dimidiata than houses that do
notmatch eachof these criteria. The number of risk factors in a
CC constitutes the order of the CC. Thus, a CC with three risk
factors joinedby logical ANDoperators is referred toasa third-
order CC, whereas an example of a second-order CC asso-
ciated with an infested house is the household has dirt floors
AND number of poultry ³ 5.
The DNFEA tests for heterogeneity in datasets; it combines

the CCs identified by the CCEA with logical OR statements to
evolve sets of CCs using the DNF in the following structure:

DNFk is defined as CCi ⋁CCj . . . , (2)

where each CCi has the form of Equation 1 and the symbol ⋁
represents a disjunction (i.e., logical OR).19 The number of
CCs constitutes the order of the DNF. Thus, a second-order
DNF consists of two CCs joined by a logical OR operator. An
example of a second-order DNF is an infested house that has
deteriorated walls AND dogs AND years of electricity ³ 8 (i.e.,
third-order CCi ) OR an infested house has dirt floors AND
number of poultry ³ 5 (i.e., second-order CCj ). The advantage
of a logical ORoperator is that it can account for heterogeneity
in a given problem domain. For example, a simple CC (e.g.,
deteriorated walls AND dogs) that identified as highly corre-
lated with infestation for one subset of infested houses might
be just as likely as another clause (e.g., deterioratedwalls AND
poultry) for a different subset of infested houses because
poultry have replaced the dog as a potential food source for
T. dimidiata.
The fitness of each CC and DNF is evaluated using the

hypergeometric probability mass function (PMF) and only the
most fit are archived (i.e., saved). Unlike traditional statistics,
the hypergeometric PMF is not a P-value and, thus, is not
constrained by issues associated with what threshold is
“significant.”28–30 However, much like the Akaike information
criterion, the hypergeometric PMF in conjunction with the CC
and DNF orders is used to compare the relative strengths of
models for a given dataset.31 The hypergeometric PMF con-
siders the positive predictive value and infested house cov-
erage. Positive predictive value is the number of true positives
divided by the sum of true and false positives (also known as
precision), and infested house coverage is the number of true
positives divided by the sum of true positives and false neg-
atives (also known as true positive rate, recall, sensitivity,
probability of detection, andpower). Toprevent overfitting, the
CCEA performs risk factor sensitivity on each CC to ensure
each factor contributes to the overall fitness. For each risk
factor in a CC, the sensitivity is calculated by taking the dif-
ference between the CC fitness and the fitness when that risk
factor is removed. Thus, a risk factor’s sensitivity may be
viewed as the amount of fitness that each risk factor contrib-
utes to the CC. In this study, we only archived CCs in which all
risk factors contribute at least log10ð0:05Þ to the fitness. To
visualize the fitness landscape, both positive predictive value
and infested house coverage are calculated.
The CCEA is first run to archive CCs most likely associated

with T. dimidiata house infestation. After the first run, risk
factors that were not archived were removed, and continuous

risk factors were transformed into newly dichotomized risk
factors based on the risk factor values archived during the
first run. With this new set of risk factors, the CCEA was
rerun. The CCs archived during the second CCEA run be-
come the input data for the DNFEA. To contextualize the
size of the search space of the CCEA, there are approxi-
mately 6 × 105, 2 × 108, and 3 × 1010 unique second-, third-,
and fourth-order CCs in the infestation dataset. If one did
not run the CCEA and DNFEA in tandem, then there would
be ∼1020, ∼1030, and ∼1040 unique second-, third-, and
fourth-order DNFs assuming that one limited the search
space to fourth-order (or lower) CCs. The CCEA and DNFEA
codes and example scripts can be found at Matlab Cen-
tral32; further detail is provided in the Supplemental
Methods and Hanley et al.21

RESULTS

The tandem CCEA and DNFEA archived more than 1,000
multivariate models associated with the infestation of
T. dimidiata. Thesemodels contain a subset of the initial risk
factors that our stakeholders believed to be associated with
infestation. The first CCEA run evolved a set of 1,289 CCs
that contained 48 of the original 64 input risk factors; 43 of
these 48 were archived in second- or higher order CCs. In
addition, nine of the continuous, ordinal, and discrete risk
factors were dichotomized (Supplemental Figure S1,
Table 2). Of the nine dichotomized risk factors, two (number
of poultry and years of electricity for the household) were
dichotomized into multiple risk factors covering different
ranges (Table 2).
After rerunning the CCEA on the reduced dataset, 128

CCswere archived (∼10%of the 1,289 from the first run) and
used as input to the DNFEA to find the best disjunctive
normal form (i.e., set of CCs); they contained 36 of the
original 64 risk factors, with 32 of these risk factors em-
bedded in second- or higher order CCs (Figure 2). The
DNFEA results (green squares of Figure 2) contain 105 of the
128 CCs archived by the CCEA. The dashed contour lines
represent the hypergeometric PMF model fitness. Overall,
fitness increases from the lower left to the upper right corner
of Figure 2. The blue circles represent the DNFEA output
(2,571 archived second- to sixth-order disjunctive normal
forms) (Figure 2, Supplemental Table S2).
Most of the archived DNFs are more fit than the most fit

CC (Figure 2A). Thus, multiple models joined by logical OR
statements are usually more fit than any single CC model. In
general, as the order of the DNF increases, the gain in fitness
diminishes, indicating there may be a fitness threshold for the
number of models joined by logical OR statements. Although
in theory all DNF models that lie along a given fitness contour
may be considered “Pareto optimal” in terms of the hyper-
geometric PMF fitness, in practice, there is a desire to balance
the trade-offs between multiple objectives. Selecting an op-
timal DNF is often constrained by the available resources.
Ideally, the optimal DNF will have a 100% positive predictive
value and 100% infested house coverage. In practice, there is
a trade-off between the two. Therefore, as the percentage of
infested house coverage increases, the positive predictive
value decreases; thus, more resources are directed to houses
that have false positives. However, a DNF with more risk
factors may require more resources to reduce infestation.
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The third-order disjunctive normal form (red pentagram of
Figure 2) identifies as an optimal solution because it is the
most fit (fitness of 10−25) third-order DNF as defined by our
hypergeometric PMF fitness function. Higher order DNFs
were not selected because they are more complex models
(i.e.,more risk factors)with onlyminimal gain in fitness, and the

second-order DNFs are not selected because they either have
much lower fitness and/or less infested house coverage. This
third-orderDNFhas a hypergeometric PMFof 2:49× 10�25, an
infested house coverage of 82%, a positive predictive value of
65%,andaclassification accuracyof 80%.The threeCCs that
make up this DNF (orange hexagrams of Figure 2) are one

TABLE 2
After the first conjunctive clause evolutionary algorithm run, nine of the original risk factor data types (continuous, ordinal, or discrete) were
dichotomized into binary data or multiple binary (see number of poultry or years with electricity) data types

Risk factor Data range Dichotomized risk factor

Number of people 0, 15 ³ 5
Number of dogs 0, 13 ³ 1
Number of poultry 0, 35 ³ 5 and ³ 6
Number of cats 0, 3 ³ 1
Number of pigs 0, 4 ³ 1
Number of beasts of burden 0, 4 ³ 1
Construction material location Inside, against house, or outside Inside, NOT inside
Chicken coop location Inside, against house, or outside Inside, NOT inside
Years with electricity 0.04, 20 ³ 3, ³ 5, ³ 6, ³ 7, and ³ 8

FIGURE 2. Archived results of the conjunctive clause (CC) evolutionary algorithm and disjunctive normal form evolutionary algorithm
(DNFEA) output. The CCs are shown as green squares (where darker shades of green represent higher order CCs). The DNFEA output
(archived disjunctive normal forms DNFs) are shown as blue circles (where darker shades of blue represent higher order DNFs). (A) All of
the archived CCs and DNFs. (B) CCs present in the 100 most fit DNFs. The axes represent the positive predictive value and infested
house coverage for towns of El Carrizal and El Chaperno. Dashed contour lines represent equally spaced fitness using the hyper-
geometric probability mass function. The optimal solution (third-order optimal disjunctive normal form) is identified by the red penta-
gram. The CCs embedded in this third-order disjunctive normal form are shown as orange hexagrams. This figure appears in color at
www.ajtmh.org.
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second-order CC and two fourth-order CCs, of Figure 3. The
first CC, CC1, has two risk factors (i.e., a chicken coop and
deteriorated bedroom walls), a hypergeometric PMF of
3:31×10�10, an infested house coverage of 33%, and a
positive predictive value of 75%. The second conjunctive
clause has a hypergeometric PMF of 3:28×10�12, an infested
house coverage of 38%, and a positive predictive value of
72%. The third conjunctive clause has a hypergeometric PMF
of 1:05×10�10, an infested house coverage of 55%, and a
positive predictive value of 65%.
Logistic regression models for the three CCs that com-

prise the optimal disjunctive normal form (Figure 3) are pre-
sented in the Supplemental Section Comparison to Logistic
Regression. Although a direct comparison between the CCEA
models and logistic regression is not possible, the comparison
was intended to help foster better understanding of how to
interpret the CC results.
Another way to use the results of the evolutionary algo-

rithms is to examine the individual risk factors that comprise
themost-fitDNFmodels. Asa result,wehaveorganized the25
risk factors into three groups: 1) vector food sources (i.e.,
potential blood meals for T. dimidiata), 2) vector shelter (day-
time vector hiding places), and 3) socioeconomic conditions
(Venn diagram of Figure 4). Based on this analysis, the main
vector food sources associated with infestation are dogs,
poultry, andhumans. For dogs, only their presenceor absence
is associatedwith infestation,whereas for the other two vector
food sources, infestation is most associated with larger
numbers of poultry (³ 5) and human household occupancy.
With respect to vector shelter, the risk factorsmost associated
with household infestation are having a poor hygiene rating
and an accumulation of building materials, with the latter as-
sociated with a higher socioeconomic status. The socioeco-
nomic risk factorsmost associatedwith infestation include the
household income is something other than salary and the
household has electricity for many years.
Further analysis of the 100most fit DNFmodels shows they

span second- to sixth-order DNFs, with the majority being
fourth-order DNFs (Figure 2B). Of thesemost fit DNFs, only 29
distinct CCs are represented. The most common CC is fourth
order and represented in 47 of the most fit 100 DNFs and is
defined as having objects in the bedroom AND dogs AND
number of poultry ³ 5 AND years of electricity ³ 8; the CC has
a hypergeometric PMF of 6:64× 10�9, an infested house
coverageof 29%,andapositive predictive valueof 74%.Most

importantly, CCs in the optimal DNF (Figure 3) are present in
16, 13, and 37 of the most fit 100 DNF models for CC1, CC2,
and CC3, respectively.

DISCUSSION

We applied a new, supervised, data mining tool for
identifying socioeconomic and entomologic risk factors
most associated with household infestation of T. dimidiata,
the native vector of Chagas disease in Central America. The
tandem CCEA and DNFEA provide a powerful and rigorous
way to exhaustively explore the complex interactions
among large numbers of risk factors (e.g., Supplemental
Table S3). Although the combined algorithm produces
multiple models that strongly correlate with infestation, we
can identify a near optimal, third-order DNFmodel when the
trade-offs among model simplicity, infested house cover-
age, and positive predictive value are balanced. The het-
erogeneity inherent in the models archived using this
evolutionary framework provides support for previous
studies,14,15 which found no statistical support for a single
“best” model of T. dimidiata infestation. We view the third-
order DNF model as a tool to help domain experts identify
households most at risk for T. dimidiata infestation (e.g.,
reducing the number of survey questions needed to identify
houses most at risk) and promote best Ecohealth
interventions.
The optimal DNF model (Figure 3) contains 10 risk factors

associated with infestation. These include the following:
household construction materials, such as 1) adobe walls
and 2) dirt floors; 3) deteriorated household walls; 4) de-
teriorated bedroom walls; 5) the presence of chicken coops;
6) the presence of dogs; 7) objects accumulated in the bed-
room; 8) household occupants ³ 5; 9) a household hygiene
rating of poor; and 10) years of electricity ³ 5. Some of these
risk factors (i.e., dirt floors, adobe walls, the deterioration of
household walls, and the presence of chicken coops) have
been previously identified as risk factors of T. dimidiata
infestation.14,15,22–24 Moreover, seven of these risk factors
have been successfully targeted using Ecohealth interven-
tions developed with local expertise, such as the replacement
of dirt floors with cement-like material,5,6 the replastering of
deteriorated adobe walls,8 and the construction of chicken
coops with better materials and placement further from the
house.7 The overlap between these efforts and risk factors

FIGURE 3. The three conjunctive clauses (CCs), joined by logical or statements, comprise the third-order DNF with the best fitness. Moving from
left to right for the orange hexagrams in Figure 2, the first orange hexagram is CC1, a second-order CC). The next two orange hexagrams areCC2
and CC3, both are fourth-order CCs.
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identifiedby this new tandemevolutionary selectionmethod is
comforting from a model validation point of view.
In addition to determining the optimal DNFmodel, a macro-

analysis approachwasperformed to identify all the risk factors
present in the optimal DNFmodel as well as 99 nearly optimal
models. In addition to the 10 risk factors associated with
T. dimidiata infestation in theoptimalDNFmodel (Figure 3), the
macro-analysis provides a broader view of important risk
factors associated with T. dimidiata infestation that are not
represented in the optimal DNFmodel. It highlights another 15
risk factors that are present in nearly optimalmodels (Figure 4).
The macro-analysis risk factors may be grouped as vector
food sources, vector shelter, and/or socioeconomic risk fac-
tors associated with infestation. Some of these risk factors
associated with T. dimidiata infestation, such as years of
household electricity, are risk factors identified in the optimal
DNF model; however, other factors (e.g., the source of
household income not being salary) are not associated with
the optimal DNF model.
Both the optimal DNF model and the macro-analysis in-

dicate that the presence of dogs as themost important vector
food source associated with the infestation of T. dimidiata. In
fact, the presence of dogs as a risk factor associated with
infestation is present in all of the top 100most fit DNFmodels.

Previous studies also show the presence of dogs to be a risk
factor for T. dimidiata infestation.15,22 Dogs are of particular
concern because they are known reservoirs of Chagas dis-
ease in Central America, with a high infection prevalence
(27.7–65.4%),33–35 yet identifying a viable Ecohealth in-
tervention could prove challenging. The construction of dog
houses using materials and methods similar to those iden-
tified for chicken coopsmight be one solution. Alternatively,
a proposed spay and neuter campaign might help reduce
the risk of human infection,36 albeit not necessarily do-
mestic infestation unless all dogs are removed from the
household.
The presence of poultry is another important vector food

source associated with T. dimidiata infestation. Six of the 25
risk factors identified in the macro-analysis (Figure 4) involve
poultry (e.g., households having poultry nests inside the
house, poor materials for chicken coop walls, and number of
poultry ³ 5). For summary purposes, poor construction ma-
terials for chicken coops include any wall material that is not
chicken wire and any roof material that is not corrugated
metal. TheEcohealth interventions for chicken coops involved
using both chicken wire and corrugated metal as the primary
wall and roof materials, respectively.7 Unlike adobe and
thatched materials, these building materials provide little

FIGURE 4. Venn diagram showing the 25 risk factors present in the 100 most fit DNFs defined by three groups, 1) vector food sources, 2) vector
shelter, and 3) socioeconomic. The font size directly corresponds to the number of times the risk factor was archived in these DNFs. This figure
appears in color at www.ajtmh.org.
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shelter for T. dimidiata to hide during the day. In addition to
improved construction materials, the chicken coops are
relocated away from the house to help distance a T. dimidiata
food source. There is support in theVenndiagram (Figure 4) for
moving chicken coops away from the house because the
presence of any animals in the house is an important risk
factor. However, the algorithm did not find a relationship be-
tween chicken coop location and infestation. This may be due
to a large number of chicken coops that are leaning against the
house, making the location of the chicken coop irrelevant.
In addition to the vector food sources, vector shelters are

present in the optimal DNFmodel andmacro-analysis. Clutter
(e.g., the accumulation of objects in the bedroom and a poor
household hygiene rating) have been suggested as being
correlatedwith infestation but never identified statistically.14 A
study in Costa Rica found correlation between T. dimidiata
infestation and peri-domestic clutter both outside and under,
but not within the house,37 whereas a study in Guatemala
posited but did not demonstrate a correlation between do-
mestic infestation of T. dimidiata and objects accumulated
inside houses and poor house hygiene.8 As a result, they used
an educational campaign to encourage cleaning and unclut-
tering houses as part of their Ecohealth interventions.8 In this
work, not only is an accumulation of objects present in the
optimal DNF model of T. dimidiata infestation but it is also
present in nearly all of the100mostfitDNFmodels. In addition,
other risk factors associated with clutter (e.g., construction
material and poor house hygiene) are risk factors in the 100
most fit DNFmodels associatedwith infestation (Figure 4).Our
findings add statistical support to the contributions of these
studies and the resulting educational campaign to reduce
infestation.
The macro-analysis presented here identifies a large

number of socioeconomic risk factors, most of which are di-
rectly related to a steady source of shelter (e.g., deteriorated
bedroom walls, dirt floors, and residency ³ 7 years) for
T. dimidiata.25,38 The negative association between the ac-
cumulation of cinder blocks and infestation is interesting.
Typically, the accumulation of objects and construction ma-
terials serves as a potential source of T. dimidiata shelter.
However, cinder blocks are expensive, perhaps indicative of
households with higher income, and are less likely to be left
unused for any length of time.
The household income being identified as not salary based

(i.e., the source of income is something other than salary such
asday laborer or farmer) is the only purely economic risk factor
identified to be associated with infestation. Determining the
importance of an income that is not salary based in relation to
other risk factors identified in the macro-analysis would re-
quire further study beyond the scope of this manuscript.
However, given the health benefits that a guaranteed salary
had on a rural community in a developed country39 and the
association of poverty with high levels of illness,40 a future
study on the impact of a guaranteed salary in a T. dimidiata–
endemic community would be interesting.
A household having many years of electricity is a socio-

economic risk factor associated with infestation that was
neither previously identified in the literature nor is it currently
targeted by Ecohealth interventions. Unlike the number of
household occupants, dichotomizing the number of years
that a household has electricity into a single risk factor
was difficult because there was no clear minimum number of

years associated with infestation. However, given that the
macro-analysis approach contains all five of the dichotomized
“years of electricity” factors in the 100 most fit DNF models
shows the robustness of the positive association between
many years of electricity and T. dimidiata infestation. Despite
the nocturnal nature of T. dimidiata, their affinity for light has
been well documented in studies involving their capture using
light traps.41,42 InMexico, studies also showed an association
between public street lights and household T. dimidiata in-
festation yet no association with house light in the peri-
domicile.43,44 In fact, wewere not able to find any prior studies
specifically identifying household light as a risk factor for
T. dimidiata infestation. Field observations identifymost of the
household electrical devices, such as light bulbs, televisions,
and cell phones, all of which emit light. In an indirect way, both
the risk factor selection andmacro-analysis of the 100most fit
DNFs (i.e., Venn diagram, Figure 4) in this study suggest the
presence of light within the household to be a risk factor (i.e.,
there is high correlation between increased household in-
festation and the number of years a household has electricity).
However, light attracts T. dimidiata, and there are a number of
electrical devices that emit light in El Carrizal and El Chaperno;
therefore, barriers blocking the entry of T. dimidiata into the
household could help prevent infestation. In the Yucatan
where T. dimidiata infestation is seasonal, window screens
installed in houses in rural villages moderately reduced do-
mestic infestation.45 Although the use of window screens
might help mitigate the risk of infestation due to household
electricity in Jutiapa, it is costly and may not be effective, as
not all houses havewindows, and of thosewith windows, they
are often left closed. In addition, a number of homeshavegaps
around the door frame and between thewalls and the roof that
provide additional points of entry.
Another challenging socioeconomic risk factor associated

with infestation is a household having the total number of
occupants ³ 5. The latter is present in the optimalmodel and in
45of the 100most fit DNFmodels.Much like the risk factor of a
house having many years of electricity, there is no obvious
intervention because it is not currently known if households in
these villages have large occupancy out of choice or neces-
sity.With that being said, it may not be necessary (or possible)
to develop interventions for every risk factor associated with
reducing T. dimidiata infestation.
The evolutionary algorithms used in this analysis helped

identify additional risk factors associated with infestation not
previously identified in the literature and those that do not
currently have viable interventions, specifically households
having a larger number of occupants (i.e., ³ 5), household
income not being salary based, and households having
electricity for anextendedperiodof time. Targeting risk factors
identified in CCs that do not have viable interventions would
be an inefficient use of limited resources; efforts should be
directed toward those factors with viable interventions, for
instance, CC2 in the optimal DNF (Figure 3). This clause con-
tains two risk factors (the total number of occupants ³ 5 and
households having years of electricity ³ 5) that do not have
viable interventions. However, it also contains two risk factors
(an accumulation of objects and dirt floors) with viable Eco-
health interventions. Based on this CC model, a decluttering
campaign8 and replacing dirt floors with cement-like floors5,6

may reduce the risk of infestation. Alternatively, risk factors
that do not have a viable intervention might be used to help
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streamline household surveys that are designed to identify
households most at risk.
Unlike traditional multivariate statistics, this novel method-

ology uses the hypergeometric PMF that like the Akaike in-
formation criterion is not subject to selecting a P-value.28–30

The method is specifically designed to search for risk factor
interactions and heterogeneity. The existence of heteroge-
neity shows that targeting the risk factors present in any one
CCwill only help prevent infestation ofT. dimidiata for a subset
of the households. Thus, local stakeholders will have to use
their domain expertise when balancing positive predictive
value, infested house coverage, and risk factors that have vi-
able interventions in terms of resources and their applications.
When stakeholder resources are limited, selecting “best” so-
lutions often becomes an “art form” that should be performed
in concert with domain experts46 to ensure fewer complex
models with fewer yet more manageable risk factors. Thus, in
addition to identifying risk factors associated with infestation,
this novel tandem evolutionary algorithm is able to provide a
suite of solutions that leverage interactions among large
numbers of risk factors associated with socioeconomic and
entomologic surveydata to assist domain experts familiarwith
local resources and stakeholder needs.
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