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Ecohealth Interventions Limit Triatomine Reinfestation following Insecticide Spraying

in La Brea, Guatemala

David E. Lucero,* Leslie A. Morrissey, Donna M. Rizzo, Antonieta Rodas, Roberto Garnica, Lori Stevens,
Dulce M. Bustamante, and Maria Carlota Monroy

University of Vermont, Burlington, Vermont; Universidad de San Carlos, Ciudad de Guatemala, Guatemala

Abstract. In this study, we evaluate the effect of participatory Ecohealth interventions on domestic reinfestation of
the Chagas disease vector Triatoma dimidiata after village-wide suppression of the vector population using a residual
insecticide. The study was conducted in the rural community of La Brea, Guatemala between 2002 and 2009 where vector
infestation was analyzed within a spatial data framework based on entomological and socio-economic surveys of home-
steads within the village. Participatory interventions focused on community awareness and low-cost home improvements
using local materials to limit areas of refuge and alternative blood meals for the vector within the home, and potential
shelter for the vector outside the home. As a result, domestic infestation was maintained at £ 3% and peridomestic
infestation at £ 2% for 5 years beyond the last insecticide spraying, in sharp contrast to the rapid reinfestation experi-
enced in earlier insecticide only interventions.

INTRODUCTION

Chagas disease, a parasitic infection caused by the protozoan
Trypanosoma cruzi, remains a serious public health problem in
many Latin American countries despite notable successes in
vector control over the past two decades. The emergence of
Chagas disease in regions where it was not previously known,
its re-emergence in areas where control efforts have been in
effect, the rapid reinfestation of insecticide-treated areas by
the primary insect vectors (Triatominae), and declining con-
trol efforts because of budget limitations are of particular
concern to long-term disease control.1 Endemic to Latin
America, Chagas disease affects an estimated 8 million people
in the Americas alone with ~40,000 new infections each year.2

In Guatemala, 4 million children, women, and men that live in
habitat suitable for the local vector, Triatoma dimidiata, are
at risk.3 Control, however, has proven challenging in part
because of the wide distribution, varied habitats, and adapt-
ability of this vector.1,4 Spread of the disease is expected there-
fore to continue until effective vector control strategies
can be implemented.
Traditional vector control has focused on eliminating the

primary domestic insect vectors through intermittent spraying
of residual insecticides. These measures, however, are costly
and often only effective over a period of months. For exam-
ple, in the Department of Jutiapa, an area in southeastern
Guatemala with high infestation rates, multiple insecticide
applications may be required each year to reduce infestation
in villages where baseline T. dimidiata populations or rein-
festation risk is high.5 Although Guatemala, like its neighbors,
has realized significant progress in vector control through
insecticide spraying, estimates of the annual incidence of
Chagas disease remain among the highest in Central America,
due largely to regional differences in the effectiveness of
control strategies.3,5–9

In view of these health challenges, current global economic
constraints, and the understanding gained through past control
initiatives, interest in developing new or improved, sustain-
able, and cost effective long-term controls is increasing.10–12

Toward this end, Ecohealth approaches that integrate com-
munity participation, home improvements, and current eco-
logical knowledge regarding the vector are being proposed as
an alternative to, or in combination with, traditional insecti-
cide controls. In this study, we evaluate the effectiveness of
Ecohealth interventions to limit domestic reinfestation by the
Chagas disease vector T. dimidiata after suppression of the
village-wide vector population using traditional insecticide
spraying. The study was conducted in the rural community of
La Brea, Guatemala between 2002 and 2009 in a region where
vector reinfestation has hindered vector control efforts.5,7,13

The success of the interventions was measured using standard
entomological surveys before and after each intervention,
entomological indices, and by assessing the spatial pattern of
vector reinfestation within the village. Our analyses are based
on public health metrics evaluated within a spatial data
framework established using high spatial resolution satellite
imagery and a geographic information system (GIS).14 Spa-
tially explicit interpretation of these metrics was made in
combination with information on socio-economic factors,
housing quality, and domestic animals to assess observed vec-
tor infestation densities and distributions within the village
over time. This article is a companion work to Pellecer and
others,15 which analyzed blood meals in a different village in
the same region.

MATERIALS AND METHODS

Study site. Located in the department of Jutiapa in the high-
lands region of Guatemala, La Brea (14.331° N, 90.063°W) is
typical of the many small, rural villages throughout the region
(Figure 1). Housing within the village ranges from adobe
construction with few amenities to cement block houses with
indoor conveniences and electrical appliances. Homes within
the village did not have screens on the windows or doors
during the study period. The surrounding terrain is rolling,
reflecting a patchwork of forested and agricultural lands. The
climate is temperate and dry with most precipitation falling
between May and September.16

Interventions. A triatomine vector survey was conducted in
La Brea in 2001 under the auspices of the National Vector
Control Program administered by Guatemala’s Ministry of
Health (MoH) (Table 1) and infested homesteads (~42% of

*Address correspondence to David E. Lucero, 109 Carrigan Drive,
Burlington, VT 05401. E-mail: dlucero@uvm.edu
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those surveyed) sprayed with deltamethrin by MoH officials.
All domestic and peridomestic habitats were then sprayed
in March and September of 2003 and again in February 2005
in an effort to significantly reduce or eliminate the vector
within the village.
Beginning in 2005, interventions also focused on community

education regarding Chagas disease and on making houses
resistant to reinfestation by T. dimidiata through hygienic
and targeted home improvements.17,18 Interventions in 2008
focused on limiting vector access to alternative blood meal
sources within the home and on limiting vector survival in
peridomestic habitats.18 Home improvements included plas-
tering of interior walls (2005) and replacing dirt floors with a
cement-like floor material made of volcanic ash and lime
(2008) to eliminate potential areas of refuge for the vector
within the home, as well as limit vector access to soil particles
often used for camouflage.19 Coordinated efforts in 2008 also
focused on removing chicken coops from within the home and
on replacing traditional adobe-constructed chicken coops with
open-mesh wire coops to further limit vector refuge. Interven-
tions were performed only upon approval of the head of house-
hold and were facilitated by local community leaders who,
among other actions, coordinated access to building materials.
Survey data. Five entomological and socio-economic surveys

were completed over the 2002–2009 study period (Table 1) to
evaluate the effectiveness of the combined insecticide spraying
and Ecohealth intervention program and provide insight into

the environmental and socio-economic factors associated with
vector reinfestation.17,18 Five individuals from the Universidad
de San Carlos and five health officials from the Guatemalan
Chagas Program administered the questionnaire and performed
the entomological surveys. All homesteads within the village
were assigned a house number and the geographic coordi-
nates of each home were recorded using a handheld global
positioning system (GPS) receiver. Homesteads where the
residents granted permission (85–95%) were then surveyed
and the information recorded on standardized forms.
The entomological survey involved two individuals, one

from the MoH and one from the Universidad de San Carlos,
searching for T. dimidiata over a 30-minute period inside the
house (intradomiciliary habitat) and an additional 30 min-
utes in the surrounding peridomestic habitat. Microenviron-
ments potentially suitable as triatomine shelter (e.g., cracks
in walls, behind furniture, in chicken coops, and in rock or
woodpiles) were carefully examined using flashlights. All spec-
imens collected were placed in labeled vials and returned to
the Universidad de San Carlos, Guatemala where the life
stage and number of vectors were recorded.
Upon completion of the entomological survey, housing and

socio-economic information hypothesized to be linked to risk
of infestation was recorded. In 2002 only basic information
on house construction materials and number of residents
was collected. From 2004 on, however, information regarding
interior wall, floor and roof construction, hygiene within the

Figure 1. The La Brea, Guatemala study area. (A) GeoEye satellite image shown as a natural color composite with the study area loca-
tion shown in the inset map of Guatemala. (B) Houses and roads were digitized from the imagery and saved as separate geographic information
system (GIS) data layers. The entomological and socio-economic survey data were then joined with the housing data layer using the survey
global positioning system (GPS) coordinates.

Table 1

Entomological survey results for La Brea

Year
No. homesteads

surveyed
No. homesteads
not surveyed

No. homesteads
infested (%)

No. bugs/infested domestic
habitat (mean ± SD)

No. bugs/infested peridomestic
habitat (mean ± SD)

Total no. domestic bugs
(range/homestead)

Total no. peridomestic bugs
(range/homestead)

2001 98 18 41 (42%) 3.2 ± 2.5 17.7 ± 34.6 101 (1–9) 173 (2–107)
2002 122 22 31 (25%) 3.7 ± 4.1 9.0 ± 8.5 68 (1–16) 108 (1–26)
2004 132 10 9 (6.8%) 1.4 ± 0.8 1.0 ± 0 10 (1–3) 2 (1)
2006 128 11 4 (3.1%) 2.0 14.0 ± 17.6 2 (2) 42 (1–37)
2008 152 10 5 (3.3%) 3.0 ± 1.6 48 12 (1–5) 48 (48)
2009 152 14 7 (4.6%) 4.0 ± 5.6 9.0 ± 7.5 20 (1–14) 27 (1–16)
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home, socio-economic status, and domesticated animals within
the house were also collected. Data on wall and floor condi-
tion, hygiene, and the presence of electric appliances were
then used to categorize the risk (high, medium, or low) of
triatomine infestation of each house.17 Houses having plas-
tered walls, cement floors, good hygiene, and multiple electric
appliances were characterized as low risk houses. Moderate
risk houses showed some deterioration of the plaster, moder-
ate hygiene, and fewer electric appliances. High risk houses
had at least one interior wall without plaster or plaster in poor
condition (e.g., peeling, cracked, or having open cavities), at
least one room with dirt floors, poor hygiene within the home
(e.g., piles of clothes, stored grain, boxes, wall hangings), few
to no electric appliances, and chickens living within the home.
Imagery and derived GIS data layers. High spatial resolu-

tion GeoEye satellite imagery (0.5 m panchromatic band and
2.0 m multispectral bands) centered over the village of La
Brea was acquired December 24, 2009 (Figure 1). The data
were then visually enhanced using a Brovey transform resolu-
tion merge to yield a 0.5 m multispectral image (Supplemental
Figure S1). Digital integration of the panchromatic and multi-
spectral data allowed detailed mapping of structures at a
spatial resolution not possible with panchromatic or multi-
spectral data alone. All structures, roadways, and drainages
within or immediately adjacent to the village were screen dig-
itized from the Brovey pan-sharpened image and saved as
individual GIS data layers using the same map projection
and datum as the imagery (UTM zone 15N NAD27). The
GPS coordinate data from the field survey were then joined
with the satellite-derived structures data layer to spatially
combine the survey attribute data with each house location.
Statistical analyses. Triatoma dimidiata infestation and

crowding indices derived from the entomological surveys were
examined before and after interventions and over time to
assess the efficacy of the interventions. The infestation index
was defined as the fraction of houses surveyed that tested
positive for T. dimidiata, whereas crowding density was defined
as the average number of vectors per infestation.20 Descriptive
statistics and hypothesis testing were performed using JMP
(ver. 9, SAS Institute Inc., Cary, NC). Spatial analyses were
performed using ArcGIS ver. 10.0 (ESRI Inc., Redlands, CA).
Geospatial analyses. Measures of the spatial distribution of

vector infestation within the village were standardized using
the area enclosed by the village boundary, operationally defined
as lying 50 m beyond that required to encompass all home-
steads within the village. A homestead was defined as including
both the domestic and associated peridomestic habitats. The
observed spatial distribution of all homesteads and of only
T. dimidiata-infested homesteads before and after the insecti-
cide interventions (2002 versus 2006–2009) were compared
with a hypothesized random distribution of those homesteads
over the same area using the ArcGIS AVERAGE NEAREST
NEIGHBOR function (ArcGIS, ver. 10.0, ESRI Inc.). To
assess whether infested homesteads were concentrated along
the village boundary and thus near potential sylvan source
areas, we used a bootstrap approach to compare the number
of infested homesteads observed along the perimeter to the
number that would be realized if the infestations were ran-
domly distributed among all homesteads in the village.21 This
was accomplished by repeatedly drawing (N = 50) a random
sample from all homesteads with replacement equal in size to
the number of infested homesteads. The observed number of

infested homesteads along the perimeter was then tested
against the mean and confidence interval of the randomly
allocated empirical sample distribution (z-score). A similar
approach was also used to evaluate whether infestations were
concentrated along the main road traversing the village to
suggest passive transport as a possible factor influencing infes-
tation. A sampled homestead was defined on the village
perimeter if it were located within 51 m of the village bound-
ary as defined previously or along the main road if it were
located £ 30 m from that road. Distances between domiciles
and the boundary or main road, respectively, were computed
using the ArcGIS NEAR command.
The spatial distribution of infested homesteads in 2002 was

evaluated using Hot Spot Analysis based on the Getis-Ord
Gi* statistic to identify neighborhoods centered around each
homestead having significantly higher or lower vector abun-
dances than the village as a whole.14 We defined the radius of
the neighborhoods as the average distance over which the vec-
tor abundances were spatially autocorrelated as determined
using semi-variogram analysis coded in MATLAB R2010a
(ver. 2010b, The MathWorks, Natick, MA).22

Semi-variance, g(h), is defined as the spatial dissimilarity
between a parameter measured at two points separated by
distance, h:

g hð Þ = 1

2N hð Þ(
�
u
�
a
�� u

�
a + h

��2
,

where N(h) is the number of data pairs separated by the
distance, h, and u(a) and u(a + h) represent the number of
T. dimidiata collected at location, a, at some distance, a + h,
away. These data are assembled into bins defined by the
ranges of separation distance between homestead pairs (e.g.,
in Figure 2 all pairs of homesteads separated by distances
between 0 and 50 m are included in the first bin). The
corresponding average variance associated with the number
of T. dimidiata collected per homestead is calculated (“X” in
Figure 2) creating an experimental semi-variogram. The model
that best fits the experimental semi-variogram describes the
spatial structure of the data using three parameters—the nug-
get, sill, and range.22 Discontinuity at the origin of the plot,
i.e., the nugget, represents measurement error or the general

Figure 2. Best-fit semi-variogram describing the spatial correla-
tion between pairs of homesteads separated by distance. The average
variance for each group of binned data is represented by an “X”.
Each bin summarizes 369 pairwise comparisons of homesteads
weighted by Triatoma dimidiata abundance for 2002 in La Brea,
Guatemala with a 95% confidence envelope (dashed lines). After a
range of decorrelation (~100 m in this study) the data are no longer
spatially correlated.
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variability within the measured parameter that is not spatially
dependent. For the data shown in Figure 2, the nugget is 2.09.
The semi-variogram range (also referred to as the range of
decorrelation) defines the distance beyond which the variable
(in our case, vector abundance per homestead) is no longer
correlated. In this study vector abundances were spatially
autocorrelated over a range of decorrelation of about 100 m.
The sill represents the average variance in vector abundance
for homesteads separated by distances greater than the range
of decorrelation.

RESULTS

Pre-intervention.When surveyed in 2002, nearly 1 in 4 home-
steads (31 of 122 surveyed) in the village of La Brea were
infested by the Chagas vector T. dimidiata (Figure 3) despite
that all known infested homesteads (42% of all homesteads)
had been sprayed the previous year (Table 1). In all, 62% of
the households surveyed in 2002 were classified as being at
“high risk” of infestation based on the housing quality and
socio-economic information collected and, in fact, all domes-
tic infestations observed were in adobe houses lacking well-
maintained interior plaster walls and cement floors. Vector
crowding densities in peridomestic habitats were significantly
higher than domestic habitats (P < 0.02; t test), averaging
9.0 ± 2.4 (SE) and 3.8 ± 1.0 (SE) vectors per infested home-
stead, respectively (Figure 4).
Although the spatial distribution of all houses within the

village in 2002 was clustered, i.e., located statistically closer to
one another than expected by chance alone (P < 0.0001;
AVERAGENEAREST NEIGHBOR), there was no evidence
of clustering of T. dimidiata-infested homesteads (N = 31), i.e.,
the null hypothesis that infested homesteads were randomly
distributed throughout the village could not be rejected (P =
0.39; Figure 5). The average distance between all homesteads
was 32.8 m, whereas the distance between infested homesteads
averaged 67.2 m. Analysis of vector abundances within neigh-

borhoods using the Getis-Ord Gi* statistic, however, identi-
fied five hot spots that together accounted for 52% of all
vectors sampled in 2002 (P < 0.05; Figure 6). In each case, the
identified neighborhood was centered on a single homestead
having an exceptionally high vector count, three representing
peridomestic infestations (chicken coops) and two represent-
ing high risk domestic infestations. No homestead was observed
in which the domestic and peridomestic habitats were simulta-
neously infested to suggest clustering within a homestead.
Of the 31 infested homesteads observed at this time, 13 (42%)

were located along the village perimeter. Our bootstrap anal-
ysis, however, suggested that nearly 50% of infested home-
steads (15.4 ± 2.3) could be located along the perimeter by
chance alone. As a consequence we cannot reject the null
hypothesis (P = 0.16), that infested homesteads were not con-
centrated near potential sylvan source areas along the village
periphery (Figure 5). We also observed seven infested home-
steads within a 30 m corridor along the length of the main
road traversing the village. However, if all infested home-
steads were randomly distributed throughout the village ~8.7 ±
2.4 would be expected to be located along the main road.
The null hypothesis that infested homesteads were not con-
centrated along the main road was therefore not rejected
(P = 0.24). In summary, therefore, we found no evidence of
reinfestation due either to passive transport into the village
along the main road or from sylvan sources beyond the vil-
lage periphery.
Post-intervention. The combined insecticide and Ecohealth

interventions successfully reduced T. dimidiata homestead
infestation in La Brea from 25% to < 5% and maintained it
at this level over the 5-year period of study that followed
the most recent insecticide application (Figure 3). Domestic
infestation dropped from 14.8% to 5.3% in response to the
two village-wide insecticide applications in 2003, and then
to < 0.8% after the insecticide treatment in early 2005 and
implementation of the first phase of the participatory inter-
ventions (interior wall plastering) through the remainder of
2005. Domestic infestation thereafter rose to 3.3% by 2009,
but remained well within the target level of < 5% set by
the National Chagas Disease Control Project.6 Peridomestic
infestation similarly decreased from 9.8% to 1.5% after insec-
ticide treatments in 2003 and then held steady near or below
2% for the remainder of the study.

Figure 3. Triatoma dimidiata infestation in La Brea, Guatemala
before and after scheduled interventions. Data represent the fraction
of houses surveyed within which the vector was found, summarized
by habitat, i.e., domestic (�), peridomestic (□), and total (▴). The
overlying shaded bars represent the scheduled interventions: a) insec-
ticide applications (March and September), b) insecticide application
(February), c) wall plastering, and d) cement-like flooring, exclusion
of chicken coops from houses, and construction of coops using open-
mesh wire. Also shown is the number of homesteads surveyed each
survey year (grey solid line).

Figure 4. Crowding densities (average vector abundance per
infested homestead) for domestic (open bar) and peridomestic
(shaded bar) Triatoma dimidiata populations in La Brea, Guatemala.
The data shown represent the mean ± 1 SE.
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Vector crowding densities in response to insecticide interven-
tions in 2003 fell from a mean of 3.8 to 1.4 in domestic habitats
and from 9.0 to 1.0 in peridomestic habitats (Figure 4). How-
ever, crowding densities soon began to rebound, reaching
near pre-intervention levels in peridomestic habitats by 2006
and in domestic habitats by 2008. The large peridomestic
crowding densities observed in 2006 (N = 3) and 2008 (N = 1)
suggests that the vector is capable of rapidly colonizing when
conditions are favorable, although the small number of
homesteads infested over this period limits statistical ana-
lyses. We note, however, although no change in domestic or
peridomestic infestation (Figure 3) was detected after the
2008 interventions (i.e., cementing floors, removing chicken
coops from houses, wire construction of coops), the drop in
the peridomestic vector crowding density in 2009 (N = 3) is
consistent with expectations (Figure 4).
Viewed in combination with observed infestation levels,

these results illustrate the effectiveness of the combined tra-
ditional insecticide and participatory interventions to make
houses resistant to reinfestation and hold the village-wide
T. dimidiata population in check over the 5-year period that
followed the insecticide interventions. For example, the esti-
mated village-wide vector population in 2009 (i.e. crowding
density + infestation index + no. of homesteads) was only
26% of the pre-intervention (2002) population.
Spatial and temporal patterns of reinfestation. Figure 5

shows the spatial and temporal pattern of T. dimidiata infes-

tation within the village before and after the 2003 and 2005
insecticide interventions. Because of the limited number of
reinfestations we combined the domestic and peridomestic
observations between 2006 and 2009 to obtain a sufficient
number of observations (N = 15) to test the spatial distribu-
tion of infestation within the village. Although based on a
limited number of infestations, we saw no evidence of cluster-
ing of infested homesteads within the village after the insecti-
cide interventions (i.e., the null hypothesis that infested
homesteads were randomly distributed throughout the village
was not rejected) to suggest the presence of one or more
domestic foci from which reinfestation might have spread.
Neither was there any evidence of a concentration of reinfested
homesteads (8 of 15 total; P = 0.48) along the village perim-
eter or along the main road (4 of 15 total; P = 0.36) to suggest
a measurable sylvan source or a passive source associated
with traffic through the village. No repeat domestic infes-
tation was observed between consecutive surveys over this
period, although four non-consecutive repeat infestations
were observed over the entire study period (2002–2009); three
before the February 2005 insecticide spraying, and the fourth
only after a 5-year interval (2005–2009).
Homestead improvements. Nearly 80% of houses within

the village of La Brea were improved to various degrees over
the study period. Overall, the proportion of houses consid-
ered to be at “high risk” to T. dimidiata infestation was
reduced from 62% of all houses surveyed in 2002 to 15% in

Figure 5. Spatial and temporal distribution of Triatoma dimidiata infestation within La Brea, Guatemala by survey year (2002–2009). Data
represent vector densities in peridomestic (blue diamond) and domestic (red square) habitats. Symbols are sized in proportion to the vector density
observed. Non-infested homesteads (black polygons) and homesteads that were not surveyed (grey polygons) are also represented. The geo-
graphic center of vector abundance (mean ± 1 SD) for each year is identified by a star and ellipse.
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2009, despite a 25% increase in the number of houses (Table 2).
An additional 40 houses were abandoned or razed and only
nine occupied houses saw no improvement. By 2009, 56% of
houses had cement-like floors and all homesteads with chickens
(118 of 152 households in 2009) had outdoor coops, most of
which were of wire construction. At least 20% of homesteads
were improved on the residents own initiative; the remainder
were completed under the auspices of this study.

DISCUSSION

The results of this study show that participatory Ecohealth
interventions after suppression of the vector population suc-
cessfully held domestic infestation by T. dimidiata to £ 3%

and peridomestic infestation to £ 2% over a 5-year study
period in a rural community in western Jutiapa where rein-
festation had previously frustrated vector control efforts.
The extended period over which the vector was controlled
contrasts sharply to early control efforts using insecticides
in La Brea and elsewhere in Jutiapa.5–7,13 Although a formal
control was not present in this study, results from numerous
studies have shown that residual insecticides alone cannot
curtail reinfestation long term.5–9,18,19,23 The time scale over
which residual insecticides are effective varies regionally but
is typically on the order of weeks in peridomestic environ-
ments and months in domestic habitats. In La Brea, annual
interventions were thought necessary because of rapid rein-
festation following treatment. It would appear highly unlikely,
therefore, that the low rates of T. dimidiata reinfestation
observed from 2005 to 2009 after earlier insecticide applica-
tions was caused by the residual effects of the insecticide or to
chance alone. Instead, we argue that these results suggest that
a comprehensive vector control program combining tradi-
tional insecticide and participatory interventions appropri-
ately tailored for the locality offers significant promise to not
only limit vector-human contact, and thus the potential trans-
mission of T. cruzi, but also reduce the costs and health risks
associated with frequent insecticide applications.24

Table 2

Assigned household risk of Triatoma dimidiata infestation based on
the quality of home construction and other socio-economic factors
before and after scheduled interventions17

Year

Risk of infestation (% of houses surveyed)

High Moderate Low

2002 62.0 23.0 15.0
2009 15.2 47.8 37.0

Figure 6. Hot Spot analysis of Triatoma dimidiata infested homesteads in La Brea, Guatemala in 2002. Based on the Getis-Ord Gi* statistic,
Hot Spots represent 100 m radius neighborhoods (circles) having significantly higher vector crowding densities than the village as a whole. The size
(diameter) of the neighborhoods was chosen based on the range of decorrelation from the semi-variogram analysis (Figure 2).
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The limited reinfestation of both domestic and peridomestic
habitats over the period of study after the insecticide inter-
ventions in La Brea is attributable not only to a low village-
wide vector population, limited immigration from nearby
sylvan habitats, and the slow reproductive rate (6–12 months)
of T. dimidiata, but also to increased community awareness
of Chagas disease and its vector and on community participa-
tion to render domestic and peridomestic environments more
resistant to reinfestation. The latter was implemented through
low-cost improvements in home construction to limit areas of
refuge for the vector within the home, limit vector access to
alternative blood meal sources within the home, and limit areas
of refuge for the vector in peridomestic habitats. These improve-
ments were completed by the village residents using local
materials or materials (chicken wire) made available through
efforts coordinated by local community leaders and health
officials. Together, the house improvements cost about US$ 30/
household and are expected to remain effective 3–5 years or
more.18 The cost of insecticide spraying is about US$ 8.00/
home,18 although multiple applications are often needed to
effectively suppress the vector population.5 The total cost of
vector control, therefore, will vary regionally depending upon
the approach, the efficacy of the interventions, the period over
which they are effective, and the projected period of control.
The higher infestation in domestic habitats compared with

peridomestic habitats in four of the five surveys conducted
before and after the initial home improvements (wall plaster
and cement floors) may be attributable in part to the contin-
ued presence of chicken coops within houses until late 2008
when all remaining coops were removed. Alternatively, the
rate at which T. dimidiata is reintroduced to domestic habitats
may be greater than for peridomestic habitats. Various poten-
tial pathways of vector transport from sylvatic or peridomestic
environments into the home have been suggested, including
by domestic (e.g., chickens and dogs) or synanthropic (e.g.,
mice) animals or by the village residents themselves through
gathering of firewood or accidentally in daily travels to and
from nearby infested areas.8,25,26 The increased use of electrical
lighting in rural communities also raises the possibility that the
vector may be drawn not only to the village but also to homes
when the lights are in use.9,27,28 Vector survival in peridomestic
environments may also be lower than in domestic habitats.
The diversity of potential blood meals and microhabitats
offering shelter to the vector in peridomestic environments,
however, suggest this is unlikely.23

An important component of any vector control program is
continual surveillance. Spatial analysis of vector abundance in
such efforts can provide important insight into vector distri-
butions and abundance hot spots, reinfestation source areas,
and change over time to complement traditional multivariate
analyses. For example in this study, we identified five hot
spots in vector abundance in 2002 that accounted for more
than half of all vectors observed. The ability to identify neigh-
borhoods having significantly higher vector abundances than
the village as a whole could potentially aid vector control
agencies to more effectively target intervention efforts to
improve efficacy or limit costs. Although our results provide
insight into Chagas disease risk, the ability to assess the spa-
tial distribution of vector abundance in concert with informa-
tion on human blood meals would allow researchers to also
identify potential source areas and pathways of reinfestation
and more directly assess disease risk to humans.23

Future efforts.Understanding the ecological, socio-economic,
and genetic factors most important to the transmission of
Chagas disease is challenging because disease transmission is
influenced by a complex interplay of ecological and evolu-
tionary processes. Based on the results of this study, however,
we recommend future interventions focus on long-term con-
trol and targeted Ecohealth interventions that limit domestic
and peridomestic reinfestation after suppression of the vec-
tor by traditional methods. Approaches that combine insec-
ticide use and community-based participatory approaches
are expected to offer long-term benefits, although many
uncertainties remain. For example, improved understanding
of sylvatic, peridomestic, and domestic population interactions
and dynamics is needed, particularly as it relates to vector
immigration from external sources and vector survival in
domestic and peridomestic environments. We also recom-
mend that future surveillance and analyses efforts be con-
ducted within a spatial framework to aid both identifying
risk factors and targeting specific sites at both regional and
village scales for subsequent intervention.
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