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If you’ve seen one worm, have you seen them all?
Spatial, community, and genetic variability of
tubificid communities in Montana

Nilanjan Lodh1,5, Donna M. Rizzo2,6, Billie L. Kerans3,7, Stephanie McGinnis4,8, Nikolaos Fytilis2,9,
and Lori Stevens1,10

1Department of Biology, University of Vermont, 109 Carrigan Drive, Burlington, Vermont 05405 USA
2School of Engineering, University of Vermont, 213 Votey Hall, 33 Colchester Avenue, Burlington, Vermont 05405 USA
3Department of Ecology, Montana State University, 310 Lewis Hall, Bozeman, Montana 59717 USA
4Montana Water Center, 23 Faculty Court, Bozeman, Montana 59717 USA

Abstract: Genetic studies are recognized increasingly as important for understanding naturally occurring dis-
ease dynamics and are used to predict host genetic diversity and coevolutionary processes and to identify spe-
cies composition in ecological communities. Tubifex tubifex, the definitive host of the whirling disease parasite
Myxobolus cerebralis, comprises 6 known lineages that vary widely in parasite susceptibility. We used 16S ribo-
somal DNA (16S rDNA) to identify relationships among genetic variability of 3 oligochaete genera (T. tubifex,
Rhyacodrilus spp., and Ilyodrilus spp.; Oligochaeta:Tubificidae), oligochaete assemblage composition, and the
presence of whirling disease in 9 locations across 4 watersheds in Montana, USA. We assessed genetic variability
among 183 tubificid worms from locations classified as positive or negative for whirling disease based on 5 to 8 y
of monitoring by the Montana Department of Fish, Wildlife, and Parks. Within genera, we found 2 groups of
T. tubifex (lineages I and III), 2 groups of Rhyacodrilus spp., and 4 groups of Ilyodrilus spp., possibly suggesting
cryptic species. The maximum genetic variability within taxa was relatively high (∼10% sequence divergence) for
all 3 genera, but haplotype diversity within groups with >5% sequence divergence was greater for Ilyodrilus spp.
(0.719) than for Tubifex spp. (0.246) and Rhyacodrilus spp. (0.143). The variation was nonrandomly distributed
over the landscape. Oligochaete genetic composition was more similar among locations in the same watershed
than among locations with or without whirling disease. Thus, oligochaete assemblage composition did not appear
to be related to the presence of the disease at this watershed spatial scale.
Key words: tubificid taxa, 16S, haplotype diversity, spatial variation, community assembly

Community assembly has intrigued biologists for decades
(Elton 1946). Comparison of species diversity among com-
munities sheds light on aspects of host–parasite ecology
and evolution important for disease epidemiology, espe-
cially because epidemiological processes can be highly var-
iable over space and time. Host spatial distribution may
influence disease transmission, especially if the parasite is
closely associated with a particular host species (Frantz
et al. 2009). Interactions among hosts and parasites at the
landscape level are particularly interesting because hetero-
geneous features and scale of habitat and environment
affect many patterns of infectious disease (Archie et al.
2009).

Myxobolus cerebralis (Hofer 1903), the causative agent
of whirling disease, was introduced to the USA from Eu-
rope in the 1950s and has spread to >25 states (Barthol-
omew and Reno 2002). In some areas of the Intermoun-
tain West ecoregion, it has caused catastrophic decline of
salmonids (Vincent 1996). Despite continued research on
the role of variability in the oligochaete host, salmonid,
and environment (Hedrick et al. 1998, Gilbert and Granath
2003), much of the temporal and spatial variation in fish
disease risk remains unexplained (Kerans and Zale 2002).
For example, certain tributaries in Montana have tested
consistently negative for the parasite despite close prox-
imity to streams where Rainbow Trout populations have
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declined because of whirling disease. In some tributaries,
whirling disease severity has remained low several years
after introduction of the parasite. Comparisons of the bi-
otic and abiotic factors that cause spatial variation in
whirling disease risk exist among streams within the same
watershed (de la Hoz and Budy 2004), but few compar-
isons have been made across multiple watersheds (but see
McGinnis and Kerans 2013).

Tubifex tubifex (Müller, 1774), the definitive oligochaete
host of M. cerebralis, is now viewed as central to the se-
verity and eventual management of whirling disease for
certain trout populations (Beauchamp et al. 2002, Elwell
et al. 2006). Fish disease risk varies spatially, and a major
biotic factor that contributes to this spatial variation is tu-
bificid assemblage composition, a mixture of species com-
posed of T. tubifex, Limnodrilus hoffmeisteri, Ilyodrilus spp.,
and Rhyacodrilus spp. (Kerans et al. 2004). Sympatric cryp-
tic species, parthenogenetic clones, and polyploidy are
common in these groups (Paoletti 1989). The existence of
different genetic lineages in T. tubifex populations colo-
nizing the same or different habitats (Lang and Langdobler
1979, Lafont 1984) also may contribute to spatial variation
in fish disease risk (Krueger et al. 2006). The influence of
variation in tubificid assemblage composition on disease
severity is not well understood (Kerans et al. 2004), but
quantification of tubificid assemblage composition across
multiple watersheds would provide a starting point for bet-
ter understanding the spatial variation of whirling disease
risk.

We increased the spatial scale at which fish disease
and tubificid assemblage composition have been studied
from single (Krueger et al. 2006) to multiple watersheds
to determine if variation in oligochaete assemblages would
be related to the risk of Rainbow Trout whirling disease at
the watershed scale. This hypothesis, the dilution effect,
posits that high diversity in the tubificid community could
dilute the effect of the most competent host (LoGiudice
et al. 2003). To determine if fish disease and tubificid as-
semblage are related at the watershed scale, we used rel-
ative abundance and DNA-sequence data to test the re-
lationship between tubificid assemblage composition and
incidence of fish disease. We focused on tubificids with
external morphology similar to T. tubifex (i.e., Tubifex
spp., Ilyodrilus spp., and Rhyacodrilus spp.), which made
up the greater part of tubificid assemblages in sampled
watersheds.

We used the genetic species concept (species are ge-
netically isolated) rather than the biological species con-
cept (species are reproductively isolated) (Dobzhansky
1950, Baker and Bradley 2006) because the taxonomy of
these genera is not well developed and cryptic species
have been reported for Tubifex spp. (Sturmbauer et al.
1999) and Rhyacodrilus spp. (Martinsson et al. 2013).
This species concept is useful for DNA-based studies.

However, identifying the threshold for separate species
is problematic. Two lines of evidence suggest >5% se-
quence divergence in the 16S ribosomal DNA (rDNA)
gene is meaningful for tubificids. First, Beauchamp et al.
(2001) found that 16S rDNA sequence divergence for
major lineages of T. tubifex ranged from 5.8 to 12.5%.
Second, Rhyacodrilus spp. showed a similar 16S rDNA
sequence divergence (Martin et al. 2010). Rhyacodrilus
aeternorum and Rhyacodrilus latinus differ by 4.8%, and
these sister species differ from Rhyacodrilus abyssalis by
18.5%.

We examined the distribution and abundance of Tubi-
fex spp., Ilyodrilus spp., and Rhyacodrilus spp. in 4 west-
ern watersheds in Montana, USA, and simultaneously as-
sessed their spatial genetic variability and its relationship
to fish disease. We sampled multiple locations to estimate
the large-scale taxon diversity and genetic variability of
these 3 taxa. The Montana Department of Fish, Wildlife,
and Parks had previously assessed whirling disease inci-
dence in fish at these locations over a 5- to 8-y period.
Our objectives were to: 1) assess the taxon diversity and
genetic variability of Tubifex spp., Ilyodrilus spp., and Rhy-
acodrilus spp. in the study locations, and 2) relate the as-
semblage composition of these 3 genera to the watershed-
scale incidence of whirling disease. In conducting this
study, we also evaluate the possibility of cryptic species
for Ilyodrilus spp. because ours is the first genetic study of
this genus.

METHODS
Sampling locations

We examined tubificids from 9 locations in 4 water-
sheds (Fig. 1A–D): Belmont Creek (Bel), Chamberlain
Creek (Cham), and Gold Creek (Gold) in the Blackfoot
River watershed; Ross Fork (Ross), West Fork Rock Creek
(WFR), and Willow Creek (Wil) in the Rock Creek water-
shed; Ledford (Led) Creek and Ruby River (Ruby) in the
Ruby River watershed; and West Fork Madison River
(WF) in the Madison River watershed (see Table S1 for a
list with global positioning system coordinates). All water-
sheds had naturally reproducing populations of wild Rain-
bow Trout affected to varying degrees by whirling disease
(Vincent 1996, T. E. McMahon, Montana State University,
personal communication), but whirling disease was posi-
tive only at Bel, Cham, WF, Ross, Wil, and Led (Table 1).

We used estimated risk of whirling disease based on
sentinel cage data available from the Montana Depart-
ment of Fish, Wildlife and Parks over a 5- to 8-y period
for all locations (Krueger et al. 2006). Briefly, these data
were obtained as follows. Locations (i.e., the entire area
draining to a sentinel cage) within single watersheds were
selected such that they were statistically independent. Wire-
mesh enclosures stocked with 50 Rainbow Trout fry were
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placed in streams for ∼10 d. Fish were raised at state facil-
ities for ∼80 d to allow myxospore development, and then
humanely killed and assayed for whirling disease severity
(low, moderate, high).We designated locations having >50%
of sentinel fish with moderate and high infection severities
for whirling as positive. Two negative locations never had
infected fish, and 1 negative location had 1 infected fish
(2%) in 1 of the 8 y tested.

We georeferenced the 9 sampling locations (Table S1)
with GPSmap (version 76CSx; Garmin, Olathe, Kansas).
We downloaded a base map from nris.mt.gov/gis and iden-
tified upstream points with the editor’s distance–distance

tool in ArcGIS (version 10; Environmental Systems Re-
search Institute [ESRI], Redlands, California). We created
the sampling-location map from the base map (GCS_
North_American_1983_CSRS) and mapped the taxon dis-
tributions in ArcMap (version 9.3.1.3000; ESRI).

Oligochaete collection
Between November 2007 and January 2008, we took

2 oligochaete samples upstream of the sentinel cage at
each location. We collected the 1st sample at the 1st road
crossing upstream of the sentinel cage and the 2nd sam-

Figure 1. Oligochaete collection locations in 4 watersheds in western Montana showing assemblage composition of genera of
tubificids with hair chaetae (Tubifex spp., Rhyacodrilus spp., and Ilyodrilus spp.) (A), and composition of groups with >5% genetic
divergence within Tubifex (B), Rhyacodrilus (C), and Ilyodrilus (D). The size of the circles is proportional to sample size. + = presence
and – = absence of whirling disease.
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ple at the next upstream channel unit (40× the largest
width measured along 3 random transects in the 1st sam-
pling location). If an accessible upstream road crossing
did not exist, the 1st sampling location occurred at the
1st point where the stream was ≤200 m from the road
across public land. When an accessible road crossing did
not exist ≤200 m from the stream, we sampled oligo-
chaetes directly upstream of the sentinel cage.

Each sample consisted of four 2-min kick-net collec-
tions and was sorted by 1 to 4 people for a total of 30
person-min or until 200 oligochaetes were collected, which-
ever came first. We transported live oligochaetes to the
laboratory in a cooler and kept them at 10°C in an incu-
bator until processed further (usually within 24 h). In the
laboratory, we selected a random subsample of 15 oligo-
chaetes with hair chaetae (i.e., Tubifex spp., Ilyodrilus spp.,
and Rhyacodrilus spp.). When samples contained <15 indi-
viduals, we selected all oligochaetes with hair chaetae. We
cut each oligochaete in half and slide-mounted the anterior
section for morphological identification using published
keys (Kathman and Brinkhurst 1998) and extracted DNA
from the posterior section (as described in Kerans et al.
2004) for polymerase chain reaction (PCR) analysis of the
16S rDNA mitochondrial gene (Beauchamp et al. 2001).
Thus, we used up to 30 oligochaetes with hair chaetae from
each location (up to 15 from each of 2 samples from the
9 locations for a total of 183) to assess the spatial genetic
pattern and measure the relative abundance of Tubifex
spp., Ilyodrilus spp., and Rhyacodrilus spp. at each loca-
tion. We did the analysis hierarchically based on: 1) genus
(Tubifex spp., Ilyodrilus spp., and Rhyacodrilus spp.), 2) ma-
jor groups within genera (>5% sequence divergence), and
3) haplotypes within groups.

DNA extraction and amplification
We extracted DNA from individuals by repeated freez-

ing (–20°C) and thawing (37°C) of samples in lysis buffer
with proteinase K, followed by incubation at 65°C for
90 min and 95°C for 15 min (Crottini et al. 2008). We
quantified the extracted DNA with a NanoDrop (Thermo
Scientific, Wilmington, Delaware) spectrophotometer, di-

luted it to 10 to 100 ng/μL with water, and stored it at
–20°C.

We determined the 16S rDNA sequence of each indi-
vidual by DNA sequencing of PCR products. We used 2
primer sets. We amplified an ∼550 base pair (bp) frag-
ment using 16Sar (5′-CGCCTGTTTATCAAAAACAT-
3′) and 16Sbr (5′-CCGGTYTGAACTCAGATCAYGT-3′)
(Palumbi et al. 1991) or an ∼350-bp fragment using T.
tubifex-specific Tub16SF (5′-AACGGCCGCGGTATCC-
TG-3′) and Tub16SR (5′-TAARCCAACATYGAGGTGCC-
3′) (Beauchamp et al. 2001). We ran the PCR amplification
in 25 μL volume with 2× MangoMix (Bioline, Tauton,
Massachusetts), 0.5 μL of 10 μM of each primer, 1 to 2 μL
(20–100 ng/μL) of DNA and PCR-grade water (W1754;
Sigma-Aldrich, St Louis, Missouri). The amplification pro-
file was initial denaturation at 95°C for 5 min and 35 cycles
at 95°C for 1 min, 65°C for 2 min 30 s, 72°C for 1 min 30 s,
and a final extension at 72°C for 10 min. To confirm am-
plification and correct amplicon size, we visualized PCR
products in 2% agarose gel stained with SYBR Green I
nucleic acid gel stain (Invitrogen, Eugene, Oregon).

DNA sequencing and alignment
Sequencing was done by the DNA analysis facility at

the University of Vermont or by Agencourt (Beckman
Coulter Genomics, Danvers, Massachusetts). The cycling
conditions for both facilities were denaturation for 3 min
at 95°C and 25 cycles of amplification at 96°C for 10 s,
50°C for 5 s, and 60°C for 4 min. Automated sequenc-
ing was done in both directions with the same amplifi-
cation primers used for PCR with BigDye Terminator
(version 3.1; Applied Biosystems, Carlsbad, California). Se-
quences were determined with an ABI 377 DNA sequencer
(Vermont) or ABI PRISM 3730xl (Agencourt) (both Ap-
plied Biosystems).

All sequences were trimmed to the ∼320 bp between
the primers (no insertions or deletions), aligned, and ed-
ited using Sequencer 4.10.1 (Gene Codes Corporation,
Ann Arbor, Michigan). We deposited 1 sequence for each
haplotype in GenBank (see Table S2 for a list of haplo-
types and GenBank accession numbers). The taxonomic

Table 1. The relative abundances of 3 oligochaete genera (Tubifex spp., Rhyacodrilus spp., and Ilyodrilus spp.) and presence or
absence of whirling disease at 9 locations in 4 watersheds in Montana. Values for the highest abundance of each taxon are in bold.

Taxon

Blackfoot Madison Rock Ruby
Total

(All taxa)Belmont Chamberlain Gold West Fork Ross Fork West Fork Willow Ledford Ruby

Tubifex 0 0 0 12 (100%) 10 (83%) 10 (62%) 5 (24%) 25 (100%) 28 (97%) 90 (49%)

Rhyacodrilus 0 14 (61%) 6 (24%) 0 0 0 0 0 0 20 (11%)

Ilyodrilus 10 (100%) 9 (39%) 19 (76%) 0 2 (17%) 16 (38%) 16 (76%) 0 1 (3%) 73 (40%)

Total 10 23 25 12 12 26 21 25 29 183

Whirling disease Positive Positive Negative Positive Positive Negative Positive Positive Negative
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identity of each individual was determined using the Basic
Local Alignment Search Tool (BLAST) algorithm (National
Center for Biotechnology Information [NCBI] BLAST) and
compared to sequences of laboratory-reared tubificids of
known taxa. Species-level identification was not possible
for Ilyodrilus spp. and Rhyacodrilus spp. because they did
not fit descriptions in taxonomic keys and similar sequences
were not present in GenBank. We grouped these tubificids
within genera based on genetic differences >5%.

Diversity assessment
We compared taxon diversity between locations with

the Jaccard Index (Jaccard 1901), which estimates simi-
larity on a scale of 0 (no taxa in common) to 1 (identical
composition) between locations a and b:

Jða; bÞ ¼ a∪b
a∩b0

where a ∪ b is the number of taxa shared between 2
locations and a ∪ b is the total number of taxa in the 2
locations. We examined taxon similarity among locations
grouped by: 1) watershed and 2) presence (WD+) or ab-
sence (WD−) of whirling disease. We calculated Jaccard
indices with EstimateS (version 9; University of Con-
necticut, Storrs, Connecticut) with an abundance-based
probabilistic approach that depends primarily on relative
abundance, assuming random mixing and equivalent de-
tectability (Chao et al. 2005). We ran 1000 bootstrap rep-
licates to calculate standard deviations.

Estimating relative abundance and nucleotide
and haplotype diversity

We calculated the relative abundances of each genus
and of groups with >5% sequence divergence within gen-
era for each location and compared them with the Pear-
son χ2 test (JMP®, version 9; SAS Institute, Cary, North
Carolina). We estimated nucleotide diversity (π; Nei 1987),
haplotype diversity (h; Nei and Tajima 1981), and the num-
ber of segregating sites (θw; Watterson 1975) in DnaSP
(version 5; Librado and Rozas 2009). We created a haplo-
type network for each genus in Network (version 4.516;
available from: fluxus-engineering.com) (Fig. S1).

RESULTS
Spatial variation in community composition

Samples from our 9 locations included 2 lineages of
T. tubifex (TI and TIII), 2 groups of Rhyacodrilus spp.
(RhyA and RhyB), and 4 groups of Ilyodrilus spp. (IlyA,
IlyB, IlyC, IlyD) (Table S2, Fig. 1A–D). The distribution
of the 3 genera was nonrandom across watersheds (like-
lihood ratio: χ2 = 185, df = 6, p < 0.0001) and among lo-
cations (likelihood ratio: χ2 = 215, df = 16, p < 0.0001).

Tubifex spp. were widely distributed (i.e., in 3 of the 4
watersheds). Tubifex spp. were not found in Blackfoot
River watershed, but this was the only watershed in which
Rhyacodrilus spp. were found. Ilyodrilus spp. were found
in 3 of the 4 watersheds, and were absent from the Mad-
ison River watershed (Table S2, Fig 1A).

We never found all 3 genera together. Three locations
(Bel, Led, and WF) had 1 genus, and the other 6 locations
had 2 (Fig. 1A). Assemblage composition at the 6 loca-
tions with 2 genera ranged from dominance by 1 genus to
a fairly even distribution of abundance (Fig. 1A). When
considering groups with >5% sequence divergence, the
Rock Creek (6 groups) and Blackfoot River (5 groups)
watersheds had the highest richness compared to 3 groups
for Ruby River watershed and only 1 for the Madison River
watershed. Highest group richness occurred at Rock Creek
(6 groups), and 2 locations (Led and WF) had only 1 group
(Fig. 1B–D).

Tubifex tubifex was present at only 6 locations. Four
of these locations (WF, Ross, Wil, Led) were WD+, and
2 (Rock, Ruby) were WD–. Two locations that lacked
T. tubifex were WD+ (Bel, Cham) (Table 1, Fig. 1A).

Biotic and abiotic associations
Assemblage similarity at the genus level (Tubifex spp.,

Rhyacodrilus spp., and Ilyodrilus spp.) was greater on
average (0.58–1.00) for locations grouped by watershed
(geography) than for locations grouped by presence or ab-
sence of whirling disease (WD+: 0.12–0.59, WD–: 0.27–
0.76; Fig. 2A). For example, on average, Led (WD+) was
more similar to other locations in the same watershed
(J [Led, Ruby] = 0.97) than to other WD+ locations (e.g.,
J [Led, Gold] = 0, J [Led, Cham] = 0, J [Led, Ross] = 0.83,
and J [Led, Will] = 0.24; average J [Led, WD+] = 0.27). The
same pattern was seen when considering groups with >5%
sequence divergence, but J-values were lower (see Table S4
for values, Fig. 2B).

Spatial variation in taxa and cryptic species
The 16S rDNA gene was useful for identifying taxo-

nomic groups, but not for examining variation within
groups with >5% sequence divergence, as shown by the
overall low genetic diversity (Table 2). Genetic diversity
measures generally were 1.5× higher for Ilyodrilus spp.
than for the other genera. The 32 to 50 mutations within
each genus resulted in similar θw, h, and π values for
Tubifex spp., Rhyacodrilus spp., and Ilyodrilus spp. (Ta-
ble 2). All diversity indices were lower for TIII than IlyD
(Table 2). IlyD was more variable than the other Ilyo-
drilus groups, Tubifex spp., and Rhyacodrilus spp. Six Ilyo-
drilus spp. haplotypes were found from 21 sequences
resulting in a haplotype diversity of 0.719. The number of
segregating sites per sequence within IlyD was ∼4× that
within TIII (Table 2).
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Tubifex spp. (n = 90) consisted of 2 groups, TI and
TIII, which diverged by ∼10% (36–38 mutations). Tubifex
spp. had 4 haplotypes (see Fig. S1A for the haplotype
network). TI had only 1 haplotype and was found in the
2 southern watersheds. The 3 TIII haplotypes were only
2 mutations apart. TIII was found in the Rock Creek wa-
tershed and the 2 southern watersheds (Fig. 1B).

Rhyacodrilus spp. (n = 20) consisted of 2 major groups,
RhyA and RhyB, which differed by ∼10% (31–32 muta-
tions) (Table 2). Rhyacodrilus had 3 haplotypes (Table S2).
RhyA consisted of 1 haplotype found in 6 individuals, all
from Gold Creek. RhyB was found only at Chamberlain,
where 13 individuals shared a haplotype, and 1 individual
differed (Table S2, Fig. 1C).

Ilyodrilus spp. (n = 76) consisted of 4 major groups
(IlyA–IlyD) separated by 5 to 10% (15–31 mutations) (Ta-
ble 2, Fig. S1B). This result suggests the existence of mul-
tiple Ilyodrilus spp. lineages and perhaps cryptic species.
IlyD had 6 haplotypes, whereas IlyA, IlyB, and IlyC had
only 1 or 2 (Table 2, Fig. S1B). The single IlyA haplotype
was widely distributed, but rare in the southern part of
the study area. IlyB, IlyC, and IlyD were restricted to the
Blackfoot and Rock watersheds (Fig. 1D).

DISCUSSION
Relationship between tubificid assemblage
composition and risk of whirling disease

Spatial variation in infection prevalence can be caused
by variation in the genetic makeup of the host and by
abiotic and biotic factors. We investigated the hypothesis
that variation in oligochaete assemblages, particularly the
distribution and abundance of Tubifex spp., Rhyacodrilus
spp., and Ilyodrilus spp., would be related to the risk of
Rainbow Trout whirling disease because high abundance
provides ample host habitat for M. cerebralis (Krueger

Figure 2. Mean values of Jaccard’s Index of Similarity
among assemblages of oligochaete genera (A) and groups with
>5% genetic divergence (B) at sampling locations grouped by
watershed and by presence of whirling disease (WD+ or WD–).
Only one stream (West Fork Madison) was sampled in the
Madison River watershed, so this site was excluded from these
analyses.

Table 2. Genetic variability of an ∼350 base pair segment of 16S ribosomal DNA from tubificid assemblages
sampled from 9 locations in 4 watersheds in Montana. Variability is shown for 3 genera (Tubifex spp.,
Rhyacodrilus spp., and Ilyodrilus spp.), T. tubifex lineage III (TIII), Rhyacodrilus sp. group B (RhyB), and
Ilyodrilus sp. groups C (IlyC ) and D (IlyD). N = number of specimens, π = nucleotide diversity, θw = segregating
sites per sequence and h = haplotype diversity.

Taxon name N
No. of

variable sites
No. of

haplotypes % polymorphic sites π θw/sequence h

Tubifex 90 38 4 0.112 0.037 7.693 0.471

Rhyacodrilus 20 32 3 0.096 0.001 9.020 0.511

Ilyodrilus 76 50 10 0.148 0.041 10.420 0.809

TIII 73 2 3 0.006 0.065 0.411 0.246

RhyB 14 1 2 0.006 0.143

IlyC 23 2 0.087

IlyD 21 6 6 0.018 1.668 0.719
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et al. 2006). This hypothesis, the dilution effect, posits
that high diversity in the tubificid community could di-
lute the effect of the most competent host (LoGiudice
et al. 2003). TIII is highly susceptible and TI is moder-
ately susceptible to M. cerebralis (Beauchamp et al. 2002,
DuBey et al. 2005, Lodh et al. 2011). Rhyacodrilus spp.
(R. Lamb, Montana State University, unpublished results)
and Ilyodrilus spp. (Kerans et al. 2004) are not suitable
hosts, but might contribute in some way to variability in
infection prevalence (e.g., by interacting with T. tubifex
to influence its distribution). Therefore, we measured the
genetic variability for these 3 taxa and evaluated what
this variation could tell us about the disease dynamics.
We found that group composition of the tubificid assem-
blage was not related to presence of whirling disease. Sim-
ilarity in tubificid assemblages between streams was much
more strongly related to geographic proximity than to
presence or absence of fish disease, i.e., streams within
the same watershed had similar tubificid assemblages,
regardless of presence or absence of disease. In fact, we
did not collect either TIII or TI at 2 locations (Belmont
and Chamberlain, both in the Blackfoot River watershed)
where whirling disease had been previously found; we
speculate Tubifex spp. may be rare in this watershed and
the worm samples collected for this study were further
away from the cage locations than in Krueger et al. (2006).

Spontaneous phylogeographic structure can arise in a
parasite system (Real and Biek 2007) because the para-
site relies on its host for dispersal (Criscione and Blouin
2007). Spatial variation and environmental factors (Kaeser
et al. 2006, Anlauf and Moffitt 2008, Alexander et al.
2011) and the presence of susceptible and resistant lin-
eages of T. tubifex play an important role in the spatial
distribution of fish disease (Beauchamp et al. 2005). How-
ever, the variation among watersheds in the relative abun-
dance and genetic variability of Tubifex spp., Rhyacodrilus
spp., and Ilyodrilus spp. leads us to conclude that although
previous investigators found that fish disease was related
to the tubificid assemblage at the local scale (Krueger et al.
2006, Lodh et al. 2011), the tubificid community may not
be a good predictor of fish disease at the watershed scale.
Moreover, we found little relationship between the pres-
ence of T. tubifex and risk of whirling disease at the water-
shed scale.

Cryptic diversity in the tubificid assemblage
Cryptic species have been reported for both Tubifex

spp. (Sturmbauer et al. 1999) and Rhyacodrilus spp.
(Martinsson et al. 2013), but to our knowledge, not for
Ilyodrilus spp. Ilyodrilus spp. were more variable than
Tubifex spp. and Rhyacodrilus spp. in terms of genetic
variation within and between groups with <5% sequence
divergence and the number of locations at which the
lineages and taxa were found. Moreover, haplotype diver-

sity was higher in Ilyodrilus spp. than in Tubifex spp. or
Rhyacodrilus spp. (Table S2). All of the Ilyodrilus spp.
individuals examined in our study were morphologically
similar to Ilyodrilus templetoni, but the large amount of
genetic variation leads us to conclude that cryptic species
exist in this genus.

The high amount of genetic variation within Ilyodrilus
spp. is surprising, especially given the relatively small spa-
tial scale of our sampling. Verdonschot (2006) sampled
across Europe and found only Ilyodrilus templetoni. In
contrast, we found Ilyodrilus spp. to be more genetically
variable than T. tubifex and Rhyacodrilus spp. at the >5%
and <5% levels of genetic variation. Possible explanations
for this difference include that Ilyodrilus spp. are more var-
iable in the closely adjacent watersheds in Montana than
across Europe for some unknown reason. Additional re-
search on Rhyacodrilus spp. and Ilyodrilus spp. may tell us
about the physiological traits that determine their distri-
bution or accompany their genetic variability.

Our results show a spatial component to the distribu-
tion and abundance of these taxa, and highlight the impor-
tance of spatial context and spatial scale when studying
host–parasite interactions. They also leave us with ques-
tions about the relationship between oligochaete assem-
blage composition and risk of whirling disease. Future re-
search, with more intensive sampling within watersheds,
could examine intermediate spatial scales for the relation-
ship between oligochaete assemblage composition and risk
of whirling disease.
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