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Coupling self-organizing maps with a Na€ıve Bayesian classifier:
Stream classification studies using multiple assessment data

Nikolaos Fytilis1 and Donna M. Rizzo1
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[1] Organizing or clustering data into natural groups is one of the most fundamental aspects
of understanding and mining information. The recent explosion in sensor networks and data
storage associated with hydrological monitoring has created a huge potential for automating
data analysis and classification of large, high-dimensional data sets. In this work, we
develop a new classification tool that couples a Na€ıve Bayesian classifier with a neural
network clustering algorithm (i.e., Kohonen Self-Organizing Map (SOM)). The combined
Bayesian-SOM algorithm reduces classification error by leveraging the Bayesian’s ability to
accommodate parameter uncertainty with the SOM’s ability to reduce high-dimensional
data to lower dimensions. The resulting algorithm is data-driven, nonparametric and is as
computationally efficient as a Na€ıve Bayesian classifier due to its parallel architecture. We
apply, evaluate and test the Bayesian-SOM network using two real-world hydrological data
sets. The first uses genetic data to classify the state of disease in native fish populations in
the upper Madison River, MT, USA. The second uses stream geomorphic and water quality
data measured at �2500 Vermont stream reaches to predict habitat conditions. The new
classification tool has substantial benefits over traditional classification methods due to its
ability to dynamically update prior information, assess the uncertainty/confidence of the
posterior probability values, and visualize both the input data and resulting probabilistic
clusters onto two-dimensional maps to better assess nonlinear mappings between the two.

Citation: Fytilis, N., and D. M. Rizzo (2013), Coupling self-organizing maps with a Na€ıve Bayesian classifier: Stream classification
studies using multiple assessment data, Water Resour. Res., 49, 7747–7762, doi:10.1002/2012WR013422.

1. Introduction

[2] Over the past couple of decades, there has been an
exponential explosion in the development of real-time sen-
sor networks and other means for collecting and storing
data in most areas of modern science [Szalay and Gray,
2006]. But to date, the analysis tools needed to sufficiently
mine these data have not kept pace [Gil et al., 2007].
Recent emphasis on interdisciplinary research adds to the
challenge because the data networks found, for example, in
astronomy [Lang and Hogg, 2011], protein folding [Khatib
et al., 2011], the Earth system [Bickel et al., 2007], and the
hydrological sciences [Wagner et al., 2009] demand exper-
tise across multiple disciplines for interpretation. These
data-intensive issues result in the need for advanced statis-
tical and computational tools capable of analyzing the com-
plex, multivariate associations, and uncertainty inherent in
these large data networks [Emmott and Rison, 2005].

[3] Pattern recognition techniques, such as clustering
and classification, are important components of intelligent
data preprocessing, data mining, and decision making sys-
tems [Schalkoff, 1992]. These tools are of particular interest
in hydrological river research [Dollar et al., 2007; Helsel
and Hirsch, 1992; Wright, 2000], where a number of statis-
tical classification methods, both parametric and nonpara-
metric, have been used to classify river regimes [Harris
et al., 2000], explore the influence of streamflow on biolog-
ical communities [Monk et al., 2006], and optimize the
selection of input data to improve ecohydrological classifi-
cation [Snelder et al., 2005] at multiple scales, including
catchment [Pegg and Pierce, 2002], regional [Nathan and
Mcmahon, 1990], national [Poff, 1996], and continental
[Puckridge et al., 1998]. In addition, hydrologists often
gain insights from well-gauged regions and classify or
extrapolate to sparsely gauged regions using some limited
number of stream characteristics. For example, Kondolf
[1995] used geomorphologic characteristics to classify
stream channel stability ; Alberto et al. [2001] used select
water quality parameters to identify variation at multiple
temporal and spatial scales; Rabeni et al. [2002] used
benthic invertebrates for stream habitat health classifica-
tion; and Besaw et al. [2010] used local climate data to pre-
dict flow in small ungauged streams.

[4] Multiple correlated and cross-correlated data, miss-
ing data, binary data (i.e., presence or absence), and most
importantly, the uncertainty inherent in these data pose sig-
nificant limitations to existing classification and clustering
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algorithms and demand the development of new or hybrid
clustering techniques [Jain, 2010]. A recent NSF-
sponsored workshop, Opportunities and Challenges in
Uncertainty Quantification for Complex Interacting
Systems [Ghanem, 2009] recognized the need for new com-
putationally efficient tools capable of improving the quanti-
fication of uncertainty in inferred models [Roache, 1997],
network structure and model parameters [Katz et al., 2002].

[5] Bayesian methodology provides a fundamental
approach to the problem of pattern classification [Duda and
Hart, 1973], and offers the ability to quantify and reduce
any kind of uncertainty given enough relevant new infor-
mation (i.e., prior data) [Malakoff, 1999]. Combined with
Monte Carlo Markov chain methods, Bayesian approaches
have become popular for processing data and knowledge
[Steinschneider et al., 2012] because of the relative compu-
tational ease with which they handle complex data sets
[Han et al., 2012]. Bayesian methods have proven useful in
hydrologic applications for parameter estimation and
assessing uncertainty [Smith and Marshall, 2008]; and
have been incorporated into stochastic simulation models
[Balakrishnan et al., 2003; Leube et al., 2012; Williams
and Maxwell, 2011] and optimization techniques [Marie-
thoz et al., 2010; Reed and Kollat, 2012] to reduce predic-
tion uncertainty. In this work, we develop a new
classification tool that couples the concept of a Na€ıve
Bayesian classifier with an artificial neural network often
used for nonparametric clustering and classification.

[6] Briefly, artificial neural networks (ANNs) are non-
parametric statistical tools that specialize in nonlinear map-
pings given large amounts of data [Haykin, 1999; Mitra
et al., 2002]. They have gained popularity in applications
that require mining large numbers of multiple data types
with both continuous and categorical responses [Zhang
et al., 1998]. Along with other nonparametric statistical
techniques, they are more suited than physics-based models
[Govindaraju and Artific, 2000a, 2000b] when the objec-
tives are classification or system characterization rather
than an understanding of the physical system [Kokkonen
and Jakeman, 2001]. Recently, ANNs have been shown to
be more successful in many hydrology-related applications
[Maier and Dandy, 2000; Solomatine and Ostfeld, 2008]
than their traditional (parametric) statistical counterparts
such as discriminant analysis [Yoon et al., 1993], regression
techniques [Paruelo and Tomasel, 1997], principal compo-
nent analysis [Kramer, 1991], and Bayesian analysis
[Cheng and Titterington, 1994; Richard and Lippmann,
1991; Wan, 1990].

[7] Bayesian analysis has been incorporated into ANN
algorithms used in hydrology for the purpose of improving
the training procedure and overcoming the computational
limitations associated with optimizing the ANN hidden
weights [Kingston et al., 2005b]. Despite difficulties in cod-
ing these advanced Bayesian approaches into existing ANN
learning algorithms (see Titterington [2004] for details),
these predictive models provide a better means for comput-
ing uncertainty and model validation than the best determin-
istic ANN models while maintaining the high computational
performance associated with traditional ANNs [Kingston
et al., 2005a, 2008; Zhang and Zhao, 2012].

[8] In this work, we developed and applied a new frame-
work that couples a Simple Bayesian analysis with a

clustering ANN to advance the efficiency and statistical
optimality of both techniques. Specifically, we use a Na€ıve
Bayesian classifier in combination with an unsupervised
ANN (the Kohonen Self-Organizing Map, SOM, Kohonen
[1982, 1990]) to leverage prior information (or evidence)
embedded in multiple data for the purpose of improving
classification, while minimizing within class variance. To
show proof-of-concept, we applied, evaluated, and tested
the Bayesian-SOM network using two real-world data sets.
The first uses genetic data and expert-assessed morphologi-
cal data to predict the relative abundance of worm taxa
related to the state of Whirling Disease in native fish popu-
lations in the upper Madison River, MT, USA. Specifically,
we spatially estimate the relative abundance of stream
sediment-dwelling worms. These worms are the definitive
host of the parasite that causes Whirling Disease in fish that
ingest these worms. The second application uses stream
geomorphic and water quality data measured in �2500
Vermont stream reaches (comprising 1371 stream miles) to
assess habitat conditions. We compared the new classifica-
tion tool with traditional classification techniques, a Simple
Bayesian analysis, a traditional Na€ıve Bayesian classifier
and Gaussian mixture models.

2. Methods

[9] To circumvent some of the classification challenges
associated with large amounts of multiple data mentioned
above while incorporating uncertainty and minimizing the
classification error, we designed a new classification tool.
This tool couples the concept of a Na€ıve Bayesian classifier
with 1-D and 2-D Kohonen Self-Organizing Maps (SOMs).
The Bayesian-SOM network described in this paper was
coded in Matlab R2012a (MathWorks Inc.). This section
briefly describes the Na€ıve Bayesian classifier, our choice
of the SOM clustering algorithm, and a description of the
coupled classification framework.

2.1. Na€ıve Bayesian Classifier

[10] A Bayesian classifier is a statistical classifier that
leverages conditional probabilities using the degree of
belief of an event (A) before and after accounting for new
evidence (B). According to Bayes’ theorem, the posterior
probability, p AjBð Þ, or the updated degree of belief in A
having observed B, can be expressed as:

p AjBð Þ5 p Að Þ�p BjAð Þ
p Bð Þ : (1)

p(A) is the prior probability of the event A. The prior distri-
bution, supplied by the user, describes what is known about
A before the collection of new observations. These prior
data might be collected using different techniques, models,
personal experience, or alternatively, might be an uninfor-
mative prior, indicating that we have only vague informa-
tion about the variable of interest. The likelihood function,
p BjAð Þ, is the conditional probability of the observed data,
B, given the initial belief in event A; and p Bð Þ is the proba-
bility of the observed data that serves as a normalization
factor [Good, 1965].

[11] The Na€ıve Bayesian classifier assumes the observa-
tion of any feature, Fz, (i.e., particular parameter/data type)
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on a given class, Cz, is independent of the presence of other
features [Lewis, 1998]. This class conditional independence
assumption greatly simplifies the computation. While this
assumption is not met for many real-world applications, it
is possible to preprocess the input variables to meet this
class independence requirement. In this work, we use a
principal component analysis. Despite its simplicity, the
Na€ıve Bayesian classifier has been found to perform sur-
prisingly well [Friedman et al., 1997]. To the best of our
knowledge, the Na€ıve Bayesian classifier has not been used
for stream classification purposes, despite its popularity in
biological [Wang et al., 2007] and text classification related
studies [Androutsopoulos et al., 2000]. To implement the
classifier, one needs to (1) compute the individual condi-
tional probabilities, p FzjC zð Þ, for each feature, z, (2) multi-
ply each with the prior probability for each class, p Czð Þ,
and (3) classify the new information (features presented in
a vector form) to the class with the highest product as:

p CzjF 1; . . .; F zð Þ5p Czð Þ P
Z

z51
p FzjC zð Þ; (2)

which is based on the maximum a posteriori decision rule.
In this work, all the parameter values for the chosen model
distribution (i.e., class priors and feature likelihood proba-
bility distributions) are computed using the Maximum-
Likelihood Estimation (MLE) method utilizing the
expectation-maximization technique because it provides a
systematic method for simple statistical models and large
data sets. The method has one disadvantage: the condi-
tional probabilities may equal zero when a feature is not
present in one of the classes, which cancels the effect of all
other features during multiplication. To circumvent this
problem, we use a Laplacian correction term [Provost and
Domingos, 2003], which adds one (called a pseudocount)

to all feature counts to guarantee that none of the condi-
tional probabilities (p FzjC zð Þ) are set exactly to zero.

2.2. Kohonen Self-Organizing Map

[12] The Kohonen Self-Organizing Map (SOM) is a clus-
tering algorithm developed in the 1980s by Teuvo Kohonen
[Kohonen, 1982, 1990]. It is an unsupervised ANN that
autonomously analyzes properties inherent in the input
data. In general, unsupervised algorithms are used to
extract relationships from data when the response variable
or output classifications are unknown. This nonparametric
clustering method uses what has become known as compet-
itive learning to self-organize the input data into a topologi-
cal map of the resulting clusters. The algorithm is data
driven, and therefore does not require the development of
site-specific, process-based models, or sets of if-then-else
rules associated with expert systems to cluster the data.
SOMs may be used to convert nonlinear, high-dimensional
data to some user-defined lower dimension [Fritzke, 1994].
They are also capable of clustering large amounts of dis-
crete and continuous data types, while relaxing many
assumptions (e.g., normally distributed data) required by
traditional statistical techniques [Kohonen, 1990; Kohonen
et al., 1996].

[13] The SOM has been used in many data exploration
studies [Kaski, 1997], water resources applications [Kalteh
et al., 2008] and ecological studies to classify macroinver-
tebrate communities [Chon et al., 1996], cluster, and fore-
cast flood events [Moradkhani et al., 2004], assess water
quality [Aguilera et al., 2001], and classify streams [Besaw
et al., 2009]. It outperforms many traditional clustering
methods (e.g., hierarchical and K-means) on data with high
dispersion, outliers and irrelevant variables [Mangiameli
et al., 1996]. Figure 1 shows a schematic of the 1-D and 2-
D SOM architectures used in tandem in this work.

Figure 1. Schematic showing the (a) 1-D and (b) 2-D tandem SOM architecture.
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2.2.1. Data Preprocessing
[14] Input data are presented to the SOM network as a

matrix, X, which has rows corresponding to each sample,
k, and columns, i, that correspond to the individual data
types. All input data are normalized to values between 0
and 1 to avoid bias. The row vectors, Xk (called training
vectors), associated with sample, k, were normalized inde-
pendently across individual data types, i, such that:

[15] For i 5 1:I (all data types)

Xk5
ðx iÞk-min ðx iÞ

maxðx iÞ-minðx iÞ
for k 51; 2; . . . ;K: (3)

[16] End for loop
[17] After normalization, each training vector, Xk, is

introduced to the 1-D or 2-D SOM input layers (Figure 1);
each vector component corresponds to an input layer node.
The SOM weights, wij, link the measured input nodes to
the 1-D or 2-D Kohonen output maps and are initially set to
random values between 0 and 1.

2.2.2. Self-Organization Phase
[18] During self-organization, each input vector passes

to the Kohonen output map, where a distance metric is
computed as:

zj5jjXk- wjjj for j51; 2; . . .J : (4)

[19] Here, wj represents the weight vectors (rows of the
Kohonen weight matrix, w) associated with each of the j
Kohonen output nodes. In this work, we use the Euclidean
distance as a measure of similarity between the input vector
and each of the j Kohonen weight vectors. This distance
metric, zj, is passed through an activation function such
that the Kohonen node with the minimum distance is
declared the winner (or best matching unit). The ‘‘win-
ning’’ Kohonen node, j, and all nodes in some neighbor-
hood, Nc, of the winning node, are iteratively adjusted to be
more similar to the input vector that caused it to become
activated. The weights are updated as follows:

wj t11ð Þ5wj tð Þ1a tð Þ� wj tð Þ - Xk
� �

for j2 Nc tð Þ

wj t11ð Þ5wj tð Þ for j � Nc tð Þ;
(5)

where a (a learning coefficient) decreases linearly during
training from 0.9 to 0 and controls the magnitude of adjust-
ment at each iteration t. An iteration is defined as a single
pass through all of the input vectors. In this work, we use a
total of 1000 iterations, and introduce the input vectors in
random order to prevent the network from learning any one
sequence of patterns. Initially, the neighborhood size, Nc,
includes half of the nodes in the Kohonen output map and
is decreased linearly to one over the total number of itera-
tions. The reduction of Nc and a during this self-
organization phase ensures that a global data structure is
established in the early phases of self-organization and
more local refinement is established in the latter stages.

2.2.3. Data Visualization Using the Unified-distance
Matrix

[20] After self-organization is complete, the weights
are fixed and the network clustering may be visualized in

one- or two-dimensions using a postprocessing procedure
known as the unified-distance matrix (U-matrix) formu-
lated by Ultsch and Siemon [1989]; however, other techni-
ques have been developed [Kraaijveld et al., 1995;
Manukyan et al., 2012]. The U-matrix is computed by tak-
ing the average Euclidean distance between each of the
fixed (i.e., self-organized) weight vectors and, in this work,
the eight nearest neighbors. We plot the averaged Euclid-
ean distances in gray scale on the 2-D SOM output maps to
better visualize clustering. Any labeling (i.e., classification
identifications, if known) of the data may also be superim-
posed onto the self-organized winning nodes. One addi-
tional benefit of the SOM is that individual vector
components (i.e., original input data used for clustering)
may be plotted on similar 2-D maps. The latter are referred
to as ‘‘component planes’’ [Kohonen, 2001] and are useful
in exploring the relationship of the input data parameters
with resulting self-organized clusters.

2.3. Bayesian-SOM Classification Framework

[21] Our Bayesian-SOM classification framework (Fig-
ure 2) is executed in two phases: a self-organization phase
where the likelihood data are self-organized and clustered
using the tandem 1-D and 2-D SOMs and an operational
phase where the fixed weights from the self-organization
phase are used for classification/prediction. In this work,
the 1-D output map has a toroidal structure ; the 2-D map
does not. The prior distribution parameters are provided by
the user, as they would be using a Na€ıve Bayesian classi-
fier. Whereas, the likelihood pdf parameters are generated
during the self-organization phase, using the prior informa-
tion to replace the parameter estimation method of a tradi-
tional Na€ıve Bayesian classifier. The 2-D grid sizes were
selected using Kohonen’s general rule of thumb (i.e., the
optimal number of nodes is five times the square root of the
number of observation data), but required some trial and
error for both case studies. However, in our applications
the clustering is not very sensitive to the grid size because
the number observation data clustered to each parallel 2-D
map varies and the 2-D SOMs are used simply to construct
the likelihood pdf parameters.
2.3.1. Phase 1: Self-Organization (Training)

[22] The self-organization (training) phase enables esti-
mation of the likelihood distribution parameters. It requires
the available data be subdivided into two sets (prior and
likelihood). The prior data for each of our known output
classes forms the basis of the knowledge we wish to update
and are not processed using a SOM. The distribution
parameters for each class are simply estimated using the
MLE method and all observation data in each class.

[23] The second subset of data is used to generate the
parameters for the likelihood function distributions using
the one-dimensional and two-dimensional SOMs. These
data self-organize (i.e., cluster) onto the 1-D Kohonen out-
put nodes (prespecified by the user to be at least equal to or
greater than the number of expected classes). Specifically,
the user creates an initial hypothesis as to the number of
clusters needed. After self-organization, the weights are
saved for use in the operational phase.

[24] The 2-D Kohonen maps, operating in parallel, fol-
low the same iterative training procedure as the 1-D SOM
maps. We again use the MLE method to estimate the
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distribution parameters for the likelihood pdf networks.
Mapping the high-dimensional data clustered to each 1-D
Kohonen node onto the 2-D Kohonen maps serves a dual
purpose. First, it helps identify similarity (or subtle differ-
ences) when constructing the likelihood functions associ-
ated with each cluster. Second, these 2-D projections are
useful for performing feature extraction (i.e., identifying
the individual vector components (i.e., input data types)
important for sample separation). The latter is accom-
plished by projecting the individual component planes (see
section 2.2.3) onto the same 2-D map as the clustered data.
We provide examples of these in sections 3 and 4.

2.3.2. Phase 2: Operational
[25] During the operational phase, prediction data (new

measurement data the network has never seen before) are
introduced to the network input layer. The saved weights
(from each of the 1-D likelihood function SOMs (Figure 2,
phase 1) are used to assign these new prediction vectors to
one of the 1-D Kohonen output nodes (clusters). To accom-
plish this, the likelihood functions (the self-organized dis-
tribution parameters and each new prediction vector) are
multiplied with each of the associated prior pdfs obtained
from the self-organization phase to estimate the posterior
pdfs. The new prediction vector is then assigned to the
class with the highest posterior probability (maximum
value). It is important to note that there are two ways of

updating the prior probability density functions. One is to
use the pdfs obtained during the self-organization phase;
the other is to update the pdfs after each new prediction
vector is presented to the network. The latter enables a
dynamic analysis of the measurement data and is an impor-
tant feature of the operational phase because it may be used
when the initial prior information is noninformative or
based on erroneous information. However, the former is
arguably better in cases where the prior is based on more
accurate (known) data. Finally, the operational phase (Fig-
ure 2, step 2) is computationally fast because it uses the
fixed weights from the likelihood pdf network and the sim-
ple maximum a posteriori rule to determine the most prob-
able class.

2.4. Tools to Evaluate the Bayesian-SOM Network
Performance

[26] We compare the results of the Bayesian-SOM to tra-
ditional discriminant analysis, k-nearest neighbor using a
Euclidean distance metric, a Simple Bayesian analysis and
a traditional Na€ıve Bayesian classifier. We also used Gaus-
sian mixture models as a surrogate for the 2-D SOM to esti-
mate the likelihood distribution parameters of the resulting
probabilistic models. Gaussian mixture models may use an
unsupervised learning procedure similar to that of the SOM
and provide a more fair comparison with the Bayesian-

Figure 2. Classification framework flowchart : Training data are subdivided into two groups. The prior
data are used to generate Maximum-Likelihood Estimates (MLE) of the class prior distribution parame-
ters. Phase 1 outlines the training or self-organization phase and phase 2 uses the likelihood data to gen-
erate the MLE of the feature likelihood function distributions and then uses the fixed weights from the
self-organization phase to classify new data. The user may opt to update the prior probability distribu-
tions dynamically.
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SOM network because we use the same MLE technique
using the expectation-maximization technique. The Gaus-
sian mixture model is known to perform better when
clusters overlap [McLachlan and Peel, 2000]. The discrimi-
nant, k-nearest and the Gaussian mixture models were per-
formed using JMP PRO (version 9, SAS Institute Inc.). The
Simple Bayesian analysis and Na€ıve Bayesian classifier
were coded in Matlab R2012a (MathWorks Inc.).

3. Results

3.1. Case Study 1: Estimating Aquatic Worm
Community Composition in the Madison River, MT

[27] Oligochaeta worms, specifically from the Tubifici-
dae family are ingested by salmonid fish and are the inter-
mediate host for a parasite, Myxobolus cerebralis, that
causes Whirling Disease [Wolf et al., 1986]. Whirling Dis-
ease has caused a 90% reduction of rainbow trout popula-
tions in the area of Madison River, MT, USA [Vincent,
1996] and is responsible for the loss of millions of dollars
in revenue from recreational fishing in the Intermountain
West. One of the challenges in reducing the disease
involves the spatial characterization and accurate identifi-
cation of the oligochaete (worm) community [Kerans and
Zale, 2002]. Three of the oligochaete taxa of particular

interest vary widely in parasite susceptibility and constitute
>90% of the oligochaete community. These taxa are Tubi-
fex tubifex, Rhyacodrilus spp., and Ilyodrilus templetoni,
hereafter referred to as Tt, Rhy, and Ily, respectively.
Unfortunately, taxonomic identification of oligochaetes by
experts depends largely on the morphological characteris-
tics of sexually mature worms; and this life stage consti-
tutes a relatively short period (�2 weeks) of their life cycle
[Brinkhurst, 1986]. To more easily distinguish between
tubificid taxa of interest, we developed a multiplex probe-
based qualitative real-time polymerase chain reaction assay
(hereafter referred to as the PCR probe assay) that distin-
guishes the definitive host Tt from the nonhost Rhy. The
latter approach is less labor-intensive and less costly than
expert-based morphological identifications or DNA
sequencing of worms. Details of the PCR probe assays may
be found in Fytilis et al. [2013].

3.1.1. Study Area
[28] Our study area is a 39 km section of the river

located between Quake Lake and Ennis Lake in Madison
County, MT, USA. Six sites (Figure 3), previously showing
variation in fish disease risk and tubificid composition
[Krueger et al., 2006], were sampled until 250 worms had
been collected. After field collection, we observed that Ily

Figure 3. Madison River watershed showing our study reach and the six study site locations.
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represented <2% of the total worm community composi-
tion and therefore did not include it in the PCR probe assay
design. Eighty-eight worms (i.e., representative samples of
the two taxa of interest, Tt and Rhy) from each site were
selected randomly for the PCR probe assay. The data for
Case Study 1 are comprised of the fluorescent signals from
each of the two PCR probes (hereafter referred to as probe
data) designed to detect Tt and Rhy taxa. Each probe value
varies from 0 to 60 with units represented as derivatives of
fluorescence with respect to temperature (2dF/dT). Since
the units are the same for both probes, the minimum and
maximum values used for normalization (equation (3))
were calculated over both sets of input data rather than
each independently.

3.1.2. Overall Goals and Hypothesis (Case Study 1)
[29] Since it is not possible to identify immature worms

morphologically, our goal is to accurately predict the rela-
tive abundance of the two worm taxa at individual stream
sites using probe data from immature worms as our likeli-
hood data and probe data from the less abundant sexually
mature worms as our prior. All sexually mature worms
were morphologically identified (labeled Rhy or Tt) by
experts; and all morphological identifications were verified
by DNA sequencing.

[30] Our hypothesis is : Can probe data (from immature
worms), in combination with the prior morphological iden-
tification (Tt or Rhy) of sexually mature worms, improve
site-specific relative abundance estimates of these two
taxa?

[31] This hypothesis is predicated on the observation that
the sexually mature worms, which only exist in this life
stage for a limited time, comprise a relatively small per-
centage of the sampled worm community composition.

3.1.3. Bayesian-SOM Network Architecture
[32] The likelihood function distribution parameters are

estimated using the 1-D SOM architecture with two input
nodes (one corresponding to each of the normalized fluo-
rescent signals obtained from the species-specific PCR
probes) and three output nodes. The selection of three out-
put nodes is based on the desire to cluster all data into one
of three worm taxa categories (i.e., Tt, Rhy, and unknown).
We assumed normal Gaussian distributions to represent

each fluorescent signal. The classified data are projected
onto a 2-D SOM to further identify the spread of each fluo-
rescent signal. The 2-D maps for the likelihood pdf net-
works are 10 3 10 grids (Figure 4a). The grid size required
some trial and error but is not sensitive (e.g., similar clus-
tering occurs with only four nodes) or computational
expensive (e.g., a 10-fold increase in map size only
increases the run times from 11.9 to 15.8 s on a HP Pavilion
Elite h8–1280t with Intel Core i7–3820 3.6 GHz and 16
GB RAM). The averaged Euclidean distances are plotted in
gray scale to visualize clustering. One such U-matrix asso-
ciated with Case Study 1 is provided in Figure 4b. In our
example, labels T and R of Figure 4c are associated with
our known prior information. The nodes that self-organize
(cluster) worm samples of interest (i.e., Tt and Rhy) are
expected to have a smaller spread than the samples that
classify to the output node with ambiguous fluorescent sig-
nals (i.e., unknown). The likelihood functions represent
confidence (or uncertainty) that the observed data are com-
patible with our initial hypothesis of the existence of two
taxa.

[33] During the operational phase, we present new pre-
diction data (probe data from site-specific worms of
unknown taxa) to the network and multiply the self-
organized likelihood functions with each of the associated
prior pdfs to estimate the site-specific posterior probability
of each new prediction vector being classified as Rhy or Tt.
Once a new vector has been assigned to a class, we dynam-
ically update the ‘‘winning’’ prior probability to make an
‘‘improved’’ estimate for the next unknown sample point.

3.1.4. Bayesian-SOM Network Performance
[34] We apply and compare the Bayesian-SOM network

performance and computational efficiency against a Simple
Bayesian and a traditional Na€ıve Bayesian classifier. Run-
times for the Bayesian-SOM and the Na€ıve Bayesian classi-
fier were 12.59 and 11.84 s, respectively on a HP Pavilion
Elite h8-1280t with Intel Core i7-3820 3.6 GHz and 16 GB
RAM. Table 1 compares estimates of relative abundance
for the two taxa at each of our six sites using each of
the three methods. The column labeled ‘‘Ground Truth’’
represents our best estimate of relative abundance for the
two taxa because it is based on DNA sequencing of all

Figure 4. An example of the (a) 10 3 10, 2-D output map used in Case Study 1, (b) resulting (gray
scale) U-matrix showing the separation distance between our clustered data, and (c) known labels super-
imposed on the associated self-organized samples.
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available samples (mature and immature worms). The taxa
relative abundances determined using expert morphological
identification of sexually mature worms and the PCR
probe-based estimates of the immature worms are pre-
sented in columns two and three, respectively. The relative
abundances provided by the Simple Bayesian analysis
(Table 1, column 4) were generated using a beta distribu-
tion as a prior distribution and sample size of 1000. The
prior data comprised the morphological identifications of
mature worms (column 2). The likelihood function distri-
bution parameters were estimated using the PCR-probe
data from immature worms (column 3) assuming a bino-
mial distribution. The traditional Na€ıve Bayesian classifier
estimates (column 5) use the same prior and likelihood
information as in the Simple Bayesian method and the
Bayesian-SOM network. The Bayesian-SOM estimates
(Table 1, column 6) show sites 2 and 5 as having high Rhy
relative abundance compared to Tt. At site 1, Rhy and Tt
are more similar ; and the remaining sites have higher rela-
tive abundance of Tt. In addition to generating estimates of
relative abundance, we are able to produce high-density
regions (HDRs). Figure 5 shows an example of the 90%
posterior probability intervals generated for the relative
abundance of Tt at site 1 and represents the probability of
observing Tt at site 1 knowing that we collected 1000 sam-
ples. The dashed black line represents our best estimate of
the relative abundance of Tt at that site using our Bayesian-
SOM network and the solid line identifies the actual rela-
tive abundance of Tt for this site based on DNA sequencing
(Ground Truth measurements).

3.2. Case Study 2: Estimating Stream-Reach
Habitat Health Using Geomorphic and Water
Quality Assessment Data in Vermont Streams

[35] Various divisions within the Vermont Agency of
Natural Resources (VTANR) (e.g., Department of Environ-
mental Conservation, River Management Program, Depart-
ment of Fish and Wildlife and Vermont Geological Survey)
launched a three-phase system to perform stream geomor-
phic and habitat assessments. The stream-reach Rapid Geo-
morphic Assessment (RGA) and the legacy Reach Habitat
Assessment (RHA) field data used in the case study were

collected at �2500 stream segments or 1371 (6% of the
total) stream miles over the period from 2003 to 2008. The
RGA quantifies the degree to which the stream reach has
departed from the reference or dynamic equilibrium condi-
tion via the assessment of four fluvial processes : degrada-
tion, aggradation, widening, and planform changes using
various reach-scale metrics (e.g., width/depth ratio, sinuos-
ity, bed substrate composition to name a few). These met-
rics are combined with expert opinion to assess an integer
score between 0 (poor) and 20 (excellent) for each of the
four processes. The four resulting scores are then summed
to produce an overall reach-scale geomorphic score
between 0 and 80 (higher scores indicate the stream reach
is more likely to be in dynamic equilibrium).

[36] The reach habitat assessment (RHA) uses a combi-
nation of 10 parameters representative of the channel bed,
bank and riparian vegetation to assess key processes

Table 1. Relative Abundance Estimates for Each Worm Taxa Using the Bayesian-SOM Network (Column 6) Compared with the Mor-
phological Taxonomic Identification of Sexually Mature Worms (Column 2), PCR-Probe Assay Results of Immature Worms (Column
3), Simple Bayesian Approach (Column 4), Na€ıve Bayesian Analysis (Column 5), and the Inferred ‘‘Ground Truth’’ Estimates (Column
7) at Each of Our Six Sites

Taxa

(n) Morph. ID
(Mature
Worms)

(n) PCR Assay
(Immature
Worms)

(n) Simple
Bayesian

Na€ıve
Bayesian

Bayesian-SOM
Network Ground Truth Sites

Rhy (77) 0.630 (90) 0.311 (167) 0.458 0.488 0.415 0.398 1. South Slide
Tt 0.370 0.689 0.542 0.512 0.585 0.602
Rhy (32) 1 (31) 1 (63) 1 0.984 0.936 1 2. Slide Inn
Tt 0 0 0 0.016 0.064 0
Rhy (33) 0.545 (135) 0.081 (168) 0.096 0.238 0.163 0.161 3. Pine Butte
Tt 0.455 0.919 0.904 0.762 0.837 0.839
Rhy (57) 0 (112) 0 (169) 0 0.006 0.027 0 4. West Fork
Tt 1 1 1 0.994 0.973 1
Rhy (83) 0.847 (78) 0.744 (161) 0.943 0.758 0.776 0.777 5. Kirby
Tt 0.153 0.256 0.057 0.242 0.224 0.223
Rhy (25) 0.059 (108) 0.028 (133) 0.003 0.023 0.029 0.039 6. Lyons Bridge
Tt 0.941 0.972 0.997 0.977 0.971 0.963

Figure 5. High-density region (90%) showing the site-
specific credible interval where estimates of Tt relative
abundance should lie knowing that 1000 samples were col-
lected at site 1. The dashed line represents the relative
abundance of Tt estimated using the Bayesian-SOM net-
work; the solid black line identifies the relative abundance
of Tt actually observed at site 1.
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(physical, chemical, and biological) associated with the
reach-scale aquatic habitat health. Each parameter has a
score between 0 (poor) and 20 (excellent) that results,
when summed, in a total RHA score no greater than 200.
The final RGA and RHA stream-reach condition scores are
further assigned to one of four categories—poor, fair, good,
or excellent. The intersection of stream reaches with both
types of RGA and RHA assessment data results in
n 5 1363 stream reaches (Figure 6). For details on RGA
and RHA data as of 2008 see http://www.vtwaterquali-
ty.org/rivers/htm/rv_geoassesspro.htm.

[37] In 1990, the Vermont Department of Environmental
Conservation established a long-term water quality and bio-
logical monitoring project that monitors �70 water quality
parameters, including 30 metals (both dissolved and total
concentrations), chlorophyll a, conductivity, dissolved oxy-
gen, E. coli, alkalinity, total hardness, total suspended sol-
ids, turbidity, visual total color, and pH. Water quality
measurements were collected at anywhere from one to
seven locations within individual stream reaches and there-
fore averaged over the reach scale. Temporally, water qual-
ity data were collected multiple times within a given
season in a single year; thus, these data were seasonally
averaged over each of the 5 years. The intersection of the
stream reaches with RGA, RHA, and water quality data
further reduced our data set from n 5 1363 to n 5 235
(Figure 7).

[38] In this work, we chose nine (i.e., E. coli, conductiv-
ity, total suspended solids, total phosphorus, total nitrogen,
turbidity, dissolved chromium, dissolved iron, and
dissolved arsenic) of the original 70 parameters for proof-
of-concept. Selection was based on information provided
in the 2011 Water Quality Integrated Assessment
Report (http://www.anr.state.vt.us/dec/waterq/mapp/htm/
mp_monitoring.htm), the availability of water quality data
(i.e., we selected parameters that were monitored most con-
sistently at the n 5 235 reaches over the 5 year study
period) using a buffer analysis in ArcGIS 10.0 (Esri Inc.,

Redlands, USA), and the amount of variance explained
using a principal component analysis. The reduced set of
nine water quality parameters provides a good representa-
tion of the three major causes of impairment (i.e., nutrients,
metals, turbidity).

3.2.1. Overall Goal (Case Study 2)
[39] Here, we estimate the habitat health (RHA) at the

stream-reach scale while constructing our likelihood pdf
using both the RGA and the VT-DEC water quality data.
This is desirable for environmental managers because these
data are often less labor-intensive, more quantitative and
easily obtained over a broader spatial coverage than biolog-
ical integrity metrics that depend on a variety of aquatic
species at specific life stages. Table 2 (matrix a) shows the
raw expert-assigned assessment data (classified RGA
against the RHA scores). A preliminary discriminant analy-
sis (Table 2, matrix b), for all n 5 1363 stream reaches
accurately classifies 69.97% of the stream reaches using the
four expert-assigned geomorphic RGA scores (i.e., degra-
dation, aggradation, widening, and planform) as covariates.
In an ideal world, RGA would align well with RHA and
data might plot more along the matrix diagonal. In reality,
this is not the case. This led us to hypothesize that using
additional relevant information (i.e., water quality) might
improve the overall stream-reach classification.

[40] Classification on the reduced data (i.e., n 5 235
locations) with RGA, RHA, and water quality data was
repeated using discriminant analysis and the same four
RGA covariates (Table 3, matrix b). Interestingly, our abil-
ity to correctly classify stream habitat increases (76.17%
from 69.97%) using this smaller n 5 235 data set. The k-
nearest neighbor classification analysis (Table 3, matrix c)
produces the same classification error as the discriminant
analysis.

3.2.2. Bayesian-SOM Network Architecture
[41] The input and output layers of the 1-D likelihood

pdf network have four nodes each (Figure 8) corresponding
to the four fluvial RGA processes and the expert-assigned
RGA classes, respectively; whereas, the sequential 10 3
10 2-D SOM has nine input nodes, each corresponding to
one of the nine VT-DEC water quality parameters. The
prior information, p RHAð Þ, is generated using the original
n 5 1363 expert-assigned RHA data and describes the
probability of stream-reach habitat health being classified
as poor, fair, good, or excellent.

[42] The likelihood distribution parameters, on the other
hand, were estimated using two probabilistic representations
of the data. In the first approach, the likelihood pdf parame-
ters, p WQjRHAð Þ, are constructed assuming a normal
Gaussian distribution and the nine water quality parameters
measured at 50% of the reduced (n 5 235) stream reaches.
The remaining reach data are held back for testing and vali-
dation. The posterior probability is calculated as

p RHAjWQð Þ5p RHAð Þ�p WQjRHAð Þ; (6)

and represents the probability of stream-reach habitat being
classified as poor, fair, good, or excellent given the nine
select water quality measurements.

[43] In the second approach, the Gaussian distribution
parameters for each likelihood function are estimated using

Figure 6. Scatter plot showing the number of Vermont
stream reaches with both RGA and RHA data (n 5 1363)
over the period from 2003 to 2008. The vertical and hori-
zontal lines mark divisions between VTANR assigned
stream condition categories.
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only the ‘‘worst case’’ water quality parameters instead of
using all nine water quality parameters. ‘‘Worst case’’
refers to water quality parameter measurements that exceed

the Vermont Water Quality Standards. At reaches where
more than one water quality parameter exceeds the stand-
ards, all parameters that exceed the defined thresholds are

Figure 7. Vermont map showing the reduced (n 5 235) number of stream reaches having RGA, RHA,
and water quality data. The inset scatter plot shows the distribution of RGA and RHA scores for these
235 stream reaches. The vertical and horizontal lines mark divisions between VTANR assigned categori-
cal stream conditions.

Table 2. (a) Expert-Assessed RGA and RHA Scores for (n 5 1363) VT Stream Reaches and RHA Classified Using (b) Discriminant
Analysis Using Four Fluvial RGA Processes as the Covariates

(a) Reality (n 5 1363) (b) Discriminant Analysis (69.97%)

RHA

Excellent 0 2 15 39 Excellent 0 0 8 22
Good 6 216 261 23 Good 1 112 277 37
Fair 40 612 119 1 Fair 27 684 241 1
Poor 11 17 1 0 Poor 1 0 0 0

Poor Fair Good Excellent Poor Fair Good Excellent
RGA RGA
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used to estimate of the likelihood function parameters. As a
result, the posterior probability for stream-reach habitat
classified as poor, fair, good, or excellent given ‘‘worst
case’’ water quality measurements is formulated:

p RHAj‘‘worst ’’ WQð Þ5p RHAð Þ�p ‘‘worst’’ WQjRHAð Þ: (7)

3.2.3. Bayesian-SOM Network Performance
[44] In this section, we compare the Bayesian-SOM net-

work to a discriminant analysis and a nonparametric k-
nearest neighbor classification analysis using the reduced
n 5 235 data. To ensure a fair comparison with discrimi-
nant analysis, we constructed priors by setting them propor-
tional to the RHA class occurrence in the original n 5 1363
RGA/RHA data set. Adding the nine water quality parame-
ters as covariates to the discriminant analysis and the k-
nearest neighbor (Table 4, matrixes a and b) only improves
our classification error by �1.7% compared to that of the
traditional discriminant analysis (Table 3, matrix c).

[45] Next, we compare the results of the Bayesian-SOM
network on the same reduced (n 5 235) data set using two
sets of likelihood data (i.e., nine water quality parameters

versus ‘‘worst case’’ water quality parameters of Table 5).
Using the nine water quality parameters to construct the like-
lihood shows only slight improvement (79.57% classification
accuracy, Table 5, matrix a) compared to discriminant analy-
sis (77.87%) and the k-nearest neighbor method (77.44%)
using the same information. However, the Bayesian-SOM
network, using only the ‘‘worst case’’ parameters, improves
classification error by an additional 5% (Table 5, matrix c).

[46] Lastly, we replaced the 2-D SOM clustering analy-
sis with a Gaussian mixture model using the nine water
quality parameters and one that uses the ‘‘worst case’’
water quality parameters of the above example. In both
cases, classifications using the mixture models were similar
to, but less accurate than, using the 2-D SOM (Table 6).
The results again show classifications using the ‘‘worst
case’’ water quality parameters to be more accurate (80%
versus 72.76%, Table 6).

4. Discussion

[47] We develop and apply a new classification frame-
work that couples a Na€ıve Bayesian classifier with a

Table 3. (a) Observed (n 5 235) Classified Stream Reaches and RHA Classified Using (b) Discriminant Analysis and (c) k-Nearest
Neighbor Using Four Fluvial RGA Processes as the Covariates

(a) Reality (n 5 235) (Raw Classified Data)
(b) Discriminant Analysis

Using RGA (76.17%) (c) k-Nearest Neighbor Using RGA (76.17%)

RHA

Excellent 0 2 1 5 Excellent 0 1 0 4 Excellent 0 0 0 2
Good 0 29 42 5 Good 0 14 50 6 Good 0 13 45 9
Fair 7 117 22 0 Fair 8 135 15 0 Fair 9 136 20 0
Poor 3 2 0 0 Poor 2 0 0 0 Poor 1 0 0 0

Poor Fair Good Excellent Poor Fair Good Excellent Poor Fair Good Excellent
RGA RGA RGA

Figure 8. Network architecture of the likelihood pdf network used in Case Study 2. The input and out-
put layers of the 1-D pdf network each have four nodes. The input vector of the 2-D SOM has nine nodes
each corresponding to one of the nine select water quality parameters.
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nonparametric SOM clustering algorithm using two hydro-
logical stream-monitoring studies to improve the clustering
and feature extraction of large, nonlinear data networks.
Identifying the number of clusters present in a given data
set has been highlighted as one of the fundamental chal-
lenges associated with the clustering [Jain and Dubes,
1988]. It is still relevant today and the primary motivation
for our using the 1-D classification and 2-D clustering
SOMs in tandem. The 1-D Kohonen map serves to classify
the likelihood data, where observations are assigned to one
of some number of prespecified nodes. The 2-D Kohonen
clustering algorithm works in tandem with the 1-D classi-
fier to better identify the homogeneity of the input data
classified to each of the 1-D Kohonen nodes. A commonly
used technique (U-matrices of Figures 4 and 9) enables vis-
ualization of the sample spread associated within each
class. We use the 2-D mappings of these high-dimensional
data to estimate the probability distribution parameters.
Even in the rare case of ‘‘perfect’’ classification (e.g., no
misclassifications of Figure 4c), one can infer cluster simi-
larity or at least check whether the data has a clustering
tendency [Smith and Jain, 1984].

[48] One advantage of the network’s operational phase
(Figure 2) is the ability to dynamically update the prior
based on recently ‘‘classified’’ information. In Case Study
1, the Bayesian-SOM network estimates the relative abun-
dance of the two worm taxa slightly better than the Simple
Bayesian and the Na€ıve Bayesian approaches (odds ratios
of Table 1, columns 4–6) across all sites, except those with
only one worm taxa (e.g., Na€ıve classifier slightly outper-
forms the Bayesian-SOM network at sites 2 and 4). We
attribute this to the Bayesian-SOM’s use of the Laplacian
correction term; the latter ensures that sites without taxa
have (pseudo) counts slightly greater than zero. It should
be noted that in this case study, the prior data (morphologi-
cally identified sexually mature worms) comprise a rela-
tively small number (n values of Table 1) of the sampled
worm community and, therefore, are not a good representa-

tion of the site’s overall worm composition. Since charac-
terizing the community composition is critical to areas with
high or low Whirling Disease risk, any method capable of
leveraging the likelihood data associated with our more
abundant worm population (i.e., immature worm popula-
tion provided by the PCR probe data) will improve estima-
tion, primarily because this information better represents
the overall site-specific worm communities.

[49] The fact that we used a different statistical model
(i.e., continuous Gaussian in the Bayesian-SOM rather than
the discrete Beta binomial of the Simple Bayesian method)
may explain the improved performance over the Simple
Bayesian analysis. However, it should be noted that the
Bayesian-SOM network performs better at sites where
the observed relative abundances of Tt do not fall within
the 90% credible interval calculated by the Na€ıve classifier
(e.g., site 1 of Figure 5 where both the Bayesian-SOM net-
work estimate and the real observation fall in the upper
2.5% of the relative abundance distribution). Overall, the
Bayesian-SOM network suggests reliable estimation of the
taxa relative abundance without the need for DNA
sequencing.

[50] In Case Study 2, the Bayesian-SOM is used to clas-
sify stream-reach habitat health (RHA) using the VTANR
reach-scale geomorphic assessments (RGA) and water
quality data. In an ideal world, the correlation between
RGA and RHA scores should be strongly positive. Figures
6 and 7 show positive correlation, but call attention to the
need for additional information (e.g., water quality data) to
improve habitat predictions. Both data sets are biased
toward reaches classified as ‘‘fair’’ and ‘‘good’’ compared
to the two extremes (poor and excellent). Preliminary dis-
criminant analysis using the four components of RGA
shows the classification accuracy of reach-scale RHA to be
higher for the reduced n 5 235 data set (76.17%; Table 3,
matrix b) than the larger n 5 1363 data set (69.97%; Table
2, matrix b) suggesting the reduced data set may be a better
representation of the underlying RGA and RHA dynamics.

Table 4. RHA Classified Using (a) Discriminant Analysis and (b) k-Nearest Neighbor Using RGA and Water Quality Data for n 5 235
VT Stream Reaches

(a) Discriminant Analysis Using RGA and WQ (77.87%) (b) k-Nearest Neighbor Using RGA and WQ (77.44%)

RHA

Excellent 0 2 14 10 Excellent 0 0 0 1
Good 0 30 40 0 Good 0 18 42 0
Fair 7 109 11 0 Fair 10 131 32 0
Poor 3 9 0 0 Poor 0 1 0 0

Poor Fair Good Excellent Poor Fair Good Excellent
RGA RGA

Table 5. RHA Classified Using the Bayesian-SOM Network and a Likelihood Pdf Generated Using (a) Nine Water Quality Parameters
and (b) Only the ‘‘Worst Case’’ Water Quality Parameters for n 5 235 VT Stream Reaches

(a) Bayesian-SOM Network Using
Nine WQ Parameters (79.14%)

(b) Bayesian-SOM Network Using
‘‘Worst Case’’ WQ Parameters (84.97%)

RHA

Excellent 0 2 1 5 Excellent 0 1 0 3
Good 3 17 56 0 Good 0 26 50 4
Fair 2 122 22 0 Fair 7 107 32 0
Poor 4 0 1 0 Poor 4 1 0 0

Poor Fair Good Excellent Poor Fair Good Excellent
RGA RGA

FYTILIS AND RIZZO: A COMBINED NA€IVE BAYESIAN-SOM CLASSIFICATION NETWORK

7758



Adding nine water quality parameters to the discriminant
analysis does not significantly increase RHA classification
accuracy (76.17% versus 77.87%; Tables 3 matrix b and 4
matrix a, respectively) ; similar findings are observed when
using the k-nearest neighbor classification method (Tables
3 matrix c and 4 matrix b). Given the substantial number of
data provided by the water quality data set, we found this
interesting, although not necessarily surprising, since the
relationship between biological habitat health and water
quality data are complex (i.e., fish can move, and macroin-
vertebrate data are often biased spatially to locations where
one expects to find macroinvertebrates). As a result, we
hypothesized that our nine water quality parameter data set,
selected primarily on availability, might be at fault.

[51] To test the power of the Bayesian-SOM tandem net-
work, we used the same four RGA covariates and two dif-
ferent sets of likelihood data—the nine water quality
parameters versus ‘‘worst case’’ water quality parameters
(i.e., those that exceed the state standards). The Bayesian-

SOM showed only slight improvement over the better dis-
criminant analysis approach (�79.14% versus 77.87%)
using the nine water quality parameter likelihood data;
whereas, using the ‘‘worst case’’ water quality data set
improved classification error by an additional 6%. In addi-
tion, the worst-case likelihood data are particularly benefi-
cial when classifying RHA scores in the stream-reach
categories ‘‘fair’’ to ‘‘good.’’ From a management perspec-
tive, this is useful because these two categories (1) com-
prise the majority of all assessed reaches, (2) have the
weakest correlation between RGA and RHA, and (3) show
stronger sensitivity to change compared to streams catego-
rized in one of the two extremes. The latter approach not
only provides more weight to water quality data of greatest
concern at a local stream-reach scale, but also enables man-
agers to identify spatial correlations between these reach-
specific water quality data and reach-scale RHA for best
management practice design (e.g., in areas where sus-
pended sediments are the primary problem, the best

Table 6. RHA classified Using Gaussian Mixture Models to Replace the 2-D SOM Clustering Using (a) Nine Water Quality Parameters
and (b) ‘‘Worst Case’’ Water Quality Parameters for the n 5 235 VT Streams

(a) Gaussian Mixture Models Using
Nine WQ Parameters (72.76%)

(b) Gaussian Mixture Models Using
‘‘Worst Case’’ WQ Parameters (80%)

RHA

Excellent 0 1 1 4 Excellent 0 1 1 5
Good 9 33 31 6 Good 1 33 30 5
Fair 6 99 31 1 Fair 6 107 35 0
Poor 3 8 2 0 Poor 3 5 2 0

Poor Fair Good Excellent Poor Fair Good Excellent
RGA RGA

Figure 9. (a) U-matrix showing the three self-organized clustered to one of three 1-D SOM nodes.
These three clusters correspond to stream reaches classified by experts as having fair and good stream
habitat condition (labeled F and G, respectively). Five of the ‘‘worst case’’ water quality input data vec-
tors are plotted in the same 2-D grid and represent (b) conductivity, (c) chromium/arsenic, (d) dissolved
iron, (e) total phosphorus, and (f) total suspended solids. The latter are referred to as the component
planes.
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management practice would differ from areas where E. coli
or phosphorus loadings are the major challenge). Since it
has been noted that any clustering algorithm will improve
the performance of a Na€ıve Bayesian classifier [Chapelle
et al., 2006], we replaced the 2-D SOM clustering analysis
with Gaussian mixture models (using the nine water quality
parameters and one that uses the ‘‘worst case’’ water qual-
ity parameters, Table 6) to ensure that the improved classi-
fication was indeed a result of using the nonparametric
SOM (as a choice of clustering method) in tandem with the
Bayesian analysis.

[52] We also provide an example of the 2-D SOM ‘‘com-
ponent planes’’ to further explore the relationship between
the input data (e.g., in this case, water quality information)
and the three self-organized stream habitat clusters (Figure
9a). The sample labels are superimposed corresponding to
their classified RHA condition (e.g., expert-assigned cate-
gories good (G) or fair (F)). In this example, the component
planes of the five ‘‘worst case’’ water quality parameters
(Figures 9b–9f) for samples that clustered to a single 1-D
node in the likelihood pdf network are plotted next to their
associated U-matrix of Figure 9a. One advantage of plot-
ting high-dimensional information onto 2-D maps is that a
manager can readily see, for example, that the water quality
parameter ‘‘conductivity’’ (Figure 9b) helps discriminate
between RHA classified as fair and those classified as
good. Whereas, chromium, arsenic and dissolved iron (Fig-
ures 9c and 9d) help discriminate between the two clusters
classified as ‘‘good.’’ Total phosphorus (Figure 9e) distin-
guishes fair from good; while total suspended solids (Fig-
ure 9f) do not appear to discriminate between any of the
Figure 9a clusters, with perhaps the exception of the two
samples classified as good (bottom left corner).

5. Conclusions

[53] Neither the SOM clustering algorithm nor Bayesian
statistics are new; however, using the two in tandem lever-
age the prior information found in multiple types of data to
minimize classification error and enhance the confidence in
our classifications. The SOM clustering improves the per-
formance of the Na€ıve Bayesian classifier; and we selected
the latter because the class conditional independence
assumption requires less training data and is simple to
code. In addition, the method converges faster than dis-
criminative models [Jordan and Touretzky, 2002]. In this
work, we compare a variety of clustering methods and find
the SOM provides two advantages over the more traditional
clustering algorithms. First, combining the 1-D and 2-D
SOMs to compute the likelihood pdf allows one to visual-
ize the resulting 2-D likelihood data. This helps determine
or optimize a sufficient number of nodes for the 1-D classi-
fication. Second, the component planes allow one to
explore linkages between particular input features and the
resulting classes or clusters. Visualizing relationships
between high-dimensional inputs and the resulting clusters
enables managers to hypothesize system processes that
may explain the resulting groupings. For applications with
a very large number of clusters, one can increase the size of
the 2-D SOM map and assess the variability/similarity of
the clusters. Next, the user can vary the credible interval to
identify ambiguous samples, and if necessary, readjust the

number of initial classes (1-D nodes) accordingly, and
repeat the analysis. The network’s ability to learn directly
from the data and dynamically update both estimates and
the associated uncertainty as the data collection evolves
enables a more adaptive hydrological management
approach. Bayesian uncertainty analysis and computational
models in hydrology are clearly of vital importance and
warrant future research that targets artificial neural network
models coupled with Bayesian methods.
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