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Abstract. Quantifying and assessing changes in biological diversity are central aspects of
many ecological studies, yet accurate methods of estimating biological diversity from sampling
data have been elusive. Hill numbers, or the effective number of species, are increasingly used
to characterize the taxonomic, phylogenetic, or functional diversity of an assemblage.
However, empirical estimates of Hill numbers, including species richness, tend to be an
increasing function of sampling effort and, thus, tend to increase with sample completeness.
Integrated curves based on sampling theory that smoothly link rarefaction (interpolation) and
prediction (extrapolation) standardize samples on the basis of sample size or sample
completeness and facilitate the comparison of biodiversity data. Here we extended previous
rarefaction and extrapolation models for species richness (Hill number qD, where q ¼ 0) to
measures of taxon diversity incorporating relative abundance (i.e., for any Hill number qD, q
. 0) and present a unified approach for both individual-based (abundance) data and sample-
based (incidence) data. Using this unified sampling framework, we derive both theoretical
formulas and analytic estimators for seamless rarefaction and extrapolation based on Hill
numbers. Detailed examples are provided for the first three Hill numbers: q ¼ 0 (species
richness), q ¼ 1 (the exponential of Shannon’s entropy index), and q ¼ 2 (the inverse of
Simpson’s concentration index). We developed a bootstrap method for constructing
confidence intervals around Hill numbers, facilitating the comparison of multiple assemblages
of both rarefied and extrapolated samples. The proposed estimators are accurate for both
rarefaction and short-range extrapolation. For long-range extrapolation, the performance of
the estimators depends on both the value of q and on the extrapolation range. We tested our
methods on simulated data generated from species abundance models and on data from large
species inventories. We also illustrate the formulas and estimators using empirical data sets
from biodiversity surveys of temperate forest spiders and tropical ants.

Key words: abundance data; diversity; extrapolation; Hill numbers; incidence data; interpolation;
prediction; rarefaction; sample coverage; species richness.

INTRODUCTION

The measurement and assessment of biological

diversity (biodiversity) is an active research focus of

ecology (Magurran 2004, Magurran and McGill 2011)

and a central objective of many monitoring and

management projects (Groom et al. 2005; Convention

on Biological Diversity [CBD], available online).7 The

simplest and still the most frequently used measure of

biodiversity is the species richness of an assemblage.

Species richness features prominently in foundational

models of community ecology (MacArthur and Wilson

1967, Connell 1978, Hubbell 2001), and is a key metric

in conservation biology (May 1988, Brook et al. 2003)

and historical biogeography (Wiens and Donoghue

2004). In spite of its intuitive and universal appeal,

however, species richness is a problematic index of

biodiversity for two reasons related to sampling

intensity and the species abundance distribution.

First, observed species richness is highly sensitive to

sample size (the sampling problem). Because most species

in an assemblage are rare, biodiversity samples are

usually incomplete, and undetected species are a

common problem. As a consequence, the observed

number of species in a well-defined biodiversity sample

(species density; sensu Gotelli and Colwell 2001) is

known to be a biased underestimate of true species

richness, and is highly sensitive to the area surveyed, the

number of individuals counted, and the number of

samples scored for species occurrence (incidence; Col-

well and Coddington 1994). Thus, from a statistical

Manuscript received 22 January 2013; revised 15 April 2013;
accepted 1 May 2013. Corresponding Editor: H. Hillebrand.

6 E-mail: chao@stat.nthu.edu.tw
7 http://www.cbd.int/
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perspective, species richness is very difficult to estimate

accurately from a finite sample.

A second problem with species richness as a measure

of biodiversity is that it does not incorporate any

information about the relative abundance of species (the

abundance problem). By counting all species equally,

species richness weights rare species the same as

common ones. If two assemblages have identical species

richness, it seems intuitive that any subjective sense of

‘‘diversity’’ should be higher in the assemblage with

more-equal abundances among all the component

species, whereas diversity should be lower in the

assemblage that is dominated by the abundance of one

or a few common species (Pielou 1975). Incorporating

abundance into a biodiversity index is critical for studies

of many (but not all) aspects of ecosystem function,

because rare species usually make little contribution to

important measures of ecosystem function such as

biomass, productivity, or nutrient retention (Schwartz

et al. 2000). On the other hand, rare species sometimes

play key roles in ecosystem function (e.g., top predators;

Terborgh et al. 2001) and are generally of greater

conservation and management concern than are com-

mon ones (May 1988, Holsinger and Gottlieb 1991; but

see Gaston and Fuller 2008).

An extensive literature addresses both of these issues.

For the sampling problem, standardized comparisons of

species richness can be made after interpolation with

rarefaction (Tipper 1979) to a common level of

abundance (Sanders 1968, Hurlbert 1971, Simberloff

1972, Gotelli and Colwell 2001, 2011), sampling effort

(Colwell et al. 2004), or sample completeness (Alroy

2010, Jost 2010, Chao and Jost 2012). Alternatively,

biodiversity data can be used to estimate an asymptotic

estimator of species richness that is relatively indepen-

dent of additional sampling effort. Methods for

obtaining asymptotic richness estimators include esti-

mating the area beneath a smoothed curve of a

parametric species abundance distribution (Fisher et

al. 1943, Connolly and Dornelas 2011), extending the

species accumulation curve by fitting parametric func-

tions (Soberón and Llorente 1993), or using nonpara-

metric asymptotic richness estimators (Chao 1984,

Colwell and Coddington 1994) that are based on the

frequency of rare species in a sample. Although many

ecologists still publish analyses of raw species density

data, rarefaction and asymptotic estimators based on

statistical sampling theory are becoming standard tools

in biodiversity analysis (Gotelli and Ellison 2012).

Colwell et al. (2012) recently unified the interpolation

and extrapolation procedures for species richness. They

showed that a single, smooth sampling curve (with an

expectation and an unconditional variance), derived

from a reference sample (a collection of individuals [or

sampling units] that would be gathered in a typical

biodiversity survey) can be interpolated (rarefied) to

smaller sample sizes or extrapolated to a larger sample

size, guided by an estimate of asymptotic richness. Thus,

rigorous statistical comparison of species richness can be

performed not only for rarefied subsamples, but also for

extrapolated richness values based on samples of

arbitrary and equal size. Chao and Jost (2012) developed

coverage-based rarefaction and extrapolation method-

ology to compare species richness of a set of assemblages

based on samples of equal completeness (equal cover-

age). The Colwell et al. (2012) sample-size-based

approach standardizes based on sample effort, whereas

the Chao and Jost (2012) coverage-based approach

standardizes based on sample completeness, an estimat-

ed assemblage characteristic. The sample size- and

coverage-based integration of rarefaction and extrapo-

lation together represent a unified framework for

estimating species richness and for making statistical

inferences based on these estimates.

Like the sampling problem, the abundance problem

has been recognized for decades in the ecological

literature. Ecologists have introduced a plethora of

diversity indices that combine species richness and the

proportion of each species into a single metric (Wash-

ington 1984). These indices tend to be highly correlated

with one another, are not always expressed in units that

are intuitive, sensible, or that allow comparisons, and

have sampling and statistical properties that have been

poorly studied (Ghent 1991). Hill numbers are a

mathematically unified family of diversity indices

(differing among themselves only by an exponent q)

that incorporate relative abundance and species richness

and overcome many of these shortcomings. They were

first used in ecology by MacArthur (1965), developed by

Hill (1973), and recently reintroduced to ecologists by

Jost (2006, 2007).

Hill numbers offer five distinct advantages over other

diversity indices. First, Hill numbers obey an intuitive

replication principle or doubling property. Hill (1973)

proved a weak version of the doubling property: If two

completely distinct assemblages (i.e., no species in

common) have identical relative abundance distribu-

tions, then the Hill number doubles if the assemblages

are combined with equal weights. Chiu et al. (2013:

Appendix B) recently proved a strong version of the

doubling property: If two completely distinct assem-

blages have identical Hill numbers of order q (relative

abundance distributions may be different, unlike the

weak version), then the Hill number of the same order

doubles if the two assemblages are combined with equal

weights. Species richness is a Hill number (with q ¼ 0)

and obeys both versions of the doubling property, but

most other diversity indices do not obey even the weak

version.

A second advantage of Hill numbers is that they are

all expressed in units of effective numbers of species: the

number of equally abundant species that would be

needed to give the same value of a diversity measure.

Third, key diversity indices proposed in the literature,

including the widely used Shannon entropy and the

Gini-Simpson index, can be converted to Hill numbers

ANNE CHAO ET AL.46 Ecological Monographs
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by simple algebraic transformations. Fourth, Hill

numbers can be effectively generalized to incorporate

taxonomic, phylogenetic, and functional diversity, and

thus provide a unified framework for measuring

biodiversity (Chao et al. 2010, Gotelli and Chao 2013).

Fifth, in the comparison of multiple assemblages, there

is a direct link between Hill numbers and species

compositional similarity (or differentiation) among

assemblages (Jost 2007). This property unites diversity

and similarity (or differentiation).

Although species richness is one of the Hill numbers,

the literature on Hill numbers and on sampling models

for species richness have developed independently. The

recent literature generally fails to emphasize that Hill

numbers other than species richness (those with q . 0)

are also sensitive to the number of individuals or

samples collected, although the under-sampling bias is

progressively less severe for Hill numbers of higher

orders of q. In theory, simple rarefaction curves can be

constructed for any diversity index by resampling

(Walker et al. 2008, Ricotta et al. 2012), although only

recently has this been done explicitly for Hill numbers

(Gotelli and Ellison 2012; R. Colwell, available online).8

Asymptotic estimators for Hill numbers with q ¼ 1 are

closely related to the well-known entropy estimation (for

reviews, see Paninski 2003, Chao et al. 2013). For q¼ 2

and any integer .2, nearly unbiased estimators exist

(Nielsen et al. 2003, Gotelli and Chao 2013).

In this paper, we unify the two fundamental

frameworks used for the measurement and estimation

of species diversity: rarefaction/extrapolation and Hill

numbers. Specifically, we generalize the sample-size-

based approach of Colwell et al. (2012) and the

coverage-based approach of Chao and Jost (2012) to

the entire family of Hill numbers. We provide asymp-

totic estimators for Hill numbers and use them to link

analytic estimators for rarefaction and extrapolation

from an empirical reference sample. To characterize the

species diversity of an assemblage, we propose using

three integrated rarefaction/extrapolation curves based

on the first three Hill numbers: species richness, the

exponential of Shannon entropy (which we refer to as

Shannon diversity), and the inverse Simpson concentra-

tion (which we refer to as Simpson diversity). The

formulas and estimators are tested with simulated data

generated from species abundance models/inventories

and applied to several empirical data sets. Finally, we

highlight the close theoretical links between Hill

numbers and expected species accumulation curves

(Hurlbert 1971, Dauby and Hardy 2011). With this

expanded framework, ecologists will be able to effec-

tively use Hill numbers for a host of problems in

biodiversity estimation, including comparison of the

species diversity of different assemblages in time or

space, with reliable statistical inferences about these

comparisons.

TWO TYPES OF DATA AND MODELS

To describe model parameters and sample data, we

adopt the notation and terminology of Colwell et al.

(2012) and Gotelli and Chao (2013). Consider a species

assemblage consisting of N total individuals, each

belonging to one of S distinct species. The total

abundance of species i is Ni, where i ¼ 1, 2, . . . , S, Ni

. 0, and N ¼
PS

i¼1 Ni. Let pi ¼ Ni/N denote the true

relative abundance of species i, so that
PS

i¼1 pi ¼ 1. We

emphasize that the quantities N, S, (N1, N2, . . . , NS) and

( p1, p2, . . . , pS) are the parameters representing,

respectively, the true (albeit unknown) underlying

assemblage size, the complete species richness of the

assemblage, and the species absolute and relative

abundance sets. We consider two sampling data

structures for reference samples.

Individual-based (abundance) data and model

In most biological surveys, a sample of n individuals is

taken with replacement from the assemblage, and a total

of Sobs (�S ) species are observed. (If individuals are

sampled without replacement, we need to assume that

the assemblage size N is much larger than the sample

size n). Let Xi be the number of individuals of the ith

species that are observed in the sample, i¼ 1, 2, . . . , S;
we refer to Xi as the sample species frequency. Let fk be

the number of species represented by exactly k

individuals in the sample, k ¼ 0, 1, . . . , n; we refer to

fk as the abundance frequency counts. From these

definitions, n ¼
PS

i¼1 Xi ¼
P

k�1 kfk, and Sobs ¼
P

k�1 fk.
In particular, f1 is the number of species represented by

exactly one individual (singletons) in the sample, and f2
is the number of species represented by exactly two

individuals (doubletons). The unobservable frequency f0
denotes the number of species present in the entire

assemblage, but are not observed in the sample.

The multinomial probability distribution is the most

widely used model for the observed species sample

frequencies (X1, X2, . . . , XS) for given S and ( p1, p2, . . . ,
pS):

PðX1 ¼ x1; � � �;XS ¼ xSÞ ¼
n!

x1!� � � xS!
px1

1 px2

2 � � � pxS

S : ð1Þ

Note that undetected species, i.e., Xi ¼ 0, do not

contribute to this distribution. In this model, the

detection probability for the ith species is simply the

true relative abundance pi ¼ Ni/N. In this case, the

sample size n is fixed. Thus, the number of individuals

represented by any single species is at most n, which is

fixed by the sampling design.

Alternatively, abundance data can also be collected by

sampling a fixed area or by applying a fixed sampling

effort, rather than a fixed sample size. With this

sampling protocol, the sample size is a random variable

and thus cannot be fixed in advance, implying that the

number of individuals represented by any single species

can be large, without any particular limit. A commonly8 http://purl.oclc.org/estimates
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used area-based model is the Poisson product model,

which assumes that individuals of the ith species

accumulate in the reference sample according to a

Poisson process (Ross 1995). This model can be traced

to Fisher et al. (1943) and forms the basis for Coleman

et al.’s (1982) random sampling model for species–area

relationships. As shown by Colwell et al. (2012), the

Poisson product model produces results that are

virtually indistinguishable from those based on a

multinomial model. A statistical reason for this is that

the Poisson product model is closely related to a

multinomial model; see Chao and Chiu (2013) for

details. Therefore, we considered only the multinomial

model, which can accommodate both individual-based

and area-based abundance data.

Sample-based (incidence) data and model

When the sampling unit is not an individual, but a

trap, net, quadrat, plot, or timed survey, it is these

sampling units, not the individual organisms that are

sampled randomly and independently. Because it is not

always possible to count individuals within a sampling

unit, estimation can be based on a set of sampling units

in which only the incidence (presence) of each species is

recorded. The reference sample for such incidence data

consists of a set of T sampling units. The presence or

absence (technically, non-detection) of each species

within each sampling unit is recorded to form a

species-by-sampling-unit incidence matrix (Wij) with S

rows and T columns. The value of the elementWij of this

matrix is 1 if species i is recorded in the jth sampling

unit, and 0 if it is absent. The row sum of the incidence

matrix Yi ¼
PT

j¼1 Wij denotes the incidence-based

frequency of species i, i ¼ 1, 2, . . . , S. Here, Yi is

analogous to Xi in the individual-based frequency

vector. Species present in the assemblage but not

detected in any sampling unit yield Yi ¼ 0. The total

number of species observed in the reference sample is

Sobs (only species with Yi . 0 contribute to Sobs).

Following Colwell et al. (2012), we adopted a

Bernoulli product model, which assumes that the ith

species has its own unique incidence probability pi that is
constant for any randomly selected sampling unit. Each

element Wij in the incidence matrix is a Bernoulli

random variable (since Wij ¼ 0 or Wij ¼ 1), with

probability pi thatWij¼1 and probability 1� pi thatWij

¼0. The probability distribution for the incidence matrix

is

PðWij ¼ wij 8i; jÞ ¼
YS

i¼1

YT

j¼1

p
wij

i ð1� piÞ1�wij

¼
YS

i¼1

pyi

i ð1� piÞT�yi : ð2aÞ

The model is equivalent to a binomial product model for

the observed row sums (Y1, Y2, . . . , YS) as follows:

PðYi ¼ yi; i ¼ 1; 2; :::; SÞ ¼
YS

i¼1

T
yi

� �
pyi

i ð1� piÞT�yi :

ð2bÞ

Here the probability of incidence (occurrence) pi is the

probability that species i is detected in a sampling unit.

In Appendix A, we describe a more general case

(quadrat sampling) to interpret the model and explain

how this model can incorporate spatial aggregation.

Let Qk denote the incidence frequency counts, the

number of species that are detected in exactly k sampling

units, k ¼ 0, 1, . . . , T, i.e., Qk is the number of species

each represented exactly Yi ¼ k times in the incidence

matrix sample. Here Qk is analogous to fk in the

abundance data. The total number of incidences U

recorded in the T sampling units is analogous to n in the

abundance data. Here U is a random variable and can be

expressed as U¼
PT

k¼1 kQk ¼
PS

i¼1 Yi, and the number of

observed species is Sobs ¼
PT

k¼1 Qk. Here, Q1 represents

the number of unique species (those that are each

detected in only one sampling unit), and Q2 represents

the number of duplicate species (those that are each

detected in exactly two sampling units). The unobserv-

able zero frequency count Q0 denotes the number of

species among the S species present in the assemblage

that are not detected in any of the T sampling units.

HILL NUMBERS

Abundance data

Hill (1973) integrated species richness and species

abundances into a class of diversity measures later called

Hill numbers, or effective numbers of species, defined

for q 6¼ 1 as

qD ¼
XS

i¼1

pq
i

 !1=ð1�qÞ

ð3aÞ

in which S is the number of species in the assemblage,

and the ith species has relative abundance pi, i ¼ 1, 2,

. . . , S. The parameter q determines the sensitivity of the

measure to the relative frequencies. When q ¼ 0, the

abundances of individual species do not contribute to

the sum in Eq. 3a. Rather, only presences are counted,

so that 0D is simply species richness. For q¼ 1, Eq. 3a is

undefined, but its limit as q tends to 1 is the exponential

of the familiar Shannon index, referred to here as

Shannon diversity:

1D ¼ lim
q!1

qD ¼ exp �
XS

i¼1

pi log pi

 !
: ð3bÞ

The variable 1D weighs species in proportion to their

frequency. When q¼ 2, Eq. 3a yields Simpson diversity,

the inverse of the Simpson concentration is as follows:

2D ¼ 1=X
S

i¼1

p2
i ð3cÞ
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which places more weight on the frequencies of

abundant species and discounts rare species. Investiga-

tors using Hill numbers should report, at least, the

diversity of all species (q¼0), of ‘‘typical’’ species (q¼1),

and of dominant species (q¼2). For a general order of q,

if qD ¼ x, then the diversity is equivalent to that of an

idealized assemblage with x equally abundant species,

which is why Hill numbers are referred to as effective

numbers of species or as species equivalents.

A complete characterization of the species diversity of

an assemblage with S species, and relative abundances

( p1, p2, . . . , pS) is conveyed by a diversity profile (a plot

of qD vs. q from q ¼ 0 to q ¼ 3 or 4 [beyond this it

changes little]; see Tóthmérész 1995). Although Hill

numbers for q , 0 can be calculated, they are dominated

by the frequencies of rare species and have poor

statistical sampling properties. We thus restricted

ourselves to the case q � 0 throughout the paper. An

example of a diversity profile is shown in Fig. 1a.

Hill numbers can be regarded as the theoretical or

asymptotic diversities at a sample size of infinity for

which the true relative abundances fp1, p2, . . . , pSg of

each of i species are known. When sample size is relevant

for discussion, we use the notation qD(‘) to denote the

(asymptotic) Hill numbers. Throughout the paper, we

use qD and qD(‘) interchangeably; i.e., qD ¼ qD(‘).

Incidence data

As far as we are aware, Hill numbers have been

discussed only for abundance data and have not

previously been defined for sample-based incidence

data. Here, we propose the following Hill numbers for

sample-based incidence data, based on the Bernoulli

product model (Eq. 2a) or equivalently, the binomial

product model (Eq. 2b). With either of these two

models,
PS

i¼1 pi may be greater than 1. So we first

normalize each parameter pi (i.e., divide each pi by the

sum
PS

i¼1 pi) to yield the relative incidence of the ith

species in the assemblage. This relative incidence is

assumed to be the same for any randomly selected

sampling unit. Hill numbers of order q for incidence

data are defined as:

qD ¼
XS

i¼1

piXS

j¼1

pj

2
66664

3
77775

q
0
BBBBB@

1
CCCCCA

1=ð1�qÞ

q � 0 q 6¼ 1:

ð4aÞ

As with abundance data, Hill numbers for incidence

data also represent the theoretical or asymptotic

diversities when the number of sampling units is infinity.

So we also use qD and qD(‘) interchangeably; i.e., qD ¼
qD(‘). Hill numbers qD for abundance data are based on

relative abundances (Eq. 3a), whereas Hill numbers qD
for incidence data are based on relative incidence in the

assemblage (Eq. 4a). The parameter q in Eq. 4a

determines the sensitivity of qD to the relative incidences.

If all the incidence probabilities (p1, p2, . . . , pS) are

identical, then Hill numbers of all orders equal the
species richness of the reference sample. The Hill

number qD for incidence data is interpreted as the

effective number of equally frequent species in the
assemblage from which the sampling units are drawn.

That is, if qD¼ y, then the diversity of the assemblage is

the same as that of an idealized assemblage with y
species all of equal probability of incidence.

Eq. 4a yields species richness for incidence data when

q¼0. As with Eq. 3b, the limit of qD as q tends to 1 exists

and gives

1D ¼ lim
q!1

qD ¼ exp �
XS

i¼1

piXS

j¼1

pj

log
piXS

j¼1

pj

0
BBBB@

1
CCCCA ð4bÞ

which is equal to the Shannon diversity for incidence

data, i.e., the exponential of Shannon entropy based on

the relative incidences in the assemblage. When q ¼ 2,

Eq. 4a becomes

2D ¼ 1=X
S

i¼1 ð piXS

j¼1

pjÞ2

ð4cÞ

which is the Simpson diversity for incidence data, i.e.,

the inverse Simpson concentration based on relative

incidences. By analogy to the case for abundance data, a
plot of qD vs. q completely characterizes the species

diversity of an assemblage with S species and incidence

probabilities (p1, p2, . . . , pS).

Diversity accumulation curve

It is well known that empirical species richness varies
with sampling effort and thus also varies with sample

completeness (as measured by sample coverage; see

Sample-size- and coverage-based rarefaction and extrap-

olation). Therefore, we can plot the expected species
richness as a function of sample size (this plot is the

familiar species accumulation curve) or as a function of

sample coverage. The asymptote of this curve as sample
size tends to infinity is the species richness in the entire

assemblage. We now extend the concept of species

accumulation curve to the concept of a diversity
accumulation curve.

As discussed for abundance data, the Hill number of a

fixed order q defined in Eq. 3a represents the asymptotic

diversity at a sample size of infinity. For non-asymptotic
diversity, we define the expected diversity qD(m) for a

finite sample size m as the Hill numbers based on

expected abundance frequency counts for a sample of

size m, for which data are formed by averaging among
samples of size m taken from the entire assemblage.

Mathematical formulas and statistical estimation are

derived in the next section. See Discussion for the

February 2014 49RAREFACTION/EXTRAPOLATION OF DIVERSITY



advantages of our approach over the alternative

approach that defines the non-asymptotic Hill numbers

as the average Hill numbers over many samples of size m

taken from the entire assemblage. Note that for species

richness and expected sample completeness (see Sample-

size- and coverage-based rarefaction and extrapolation),

these two approaches give identical formulas. Our

definition similarly can be extended to define the

expected diversity qD(m) for m sampling units under

the model for incidence data.

Based on the above definition, our goal is to construct

a diversity accumulation curve as a function of sample

size (the number of individuals for abundance data or

the number of sampling units for incidence data) or

sample completeness. For example, in the model for

abundance data, we considered the following focal

questions: (1) When a sample of finite size m drawn at

random from the entire assemblage, what are the

theoretical formulas for the expected diversity of order

q, qD(m), for this sample? The plot qD(m) as a function

of m is the sample-size-based diversity accumulation

curve. As m tends to infinity, these expected diversities

approach qD¼ qD(‘) as given in Eq. 3a. An example of a

sample-size-based diversity accumulation curve is given

in Fig. 1b. (2) For a sample of size m, what is the

expected sample completeness, C(m), for this sample?

The plot qD(m) as a function of C(m) is the coverage-

based diversity accumulation curve. As C(m) tends to

unity (complete coverage), these expected diversities also

approach qD ¼ qD(‘). An example of a coverage-based

diversity accumulation curve is given in Fig. 1c. (3)

Given the data for a reference sample of size n, what are

the analytic estimators for qD(m) and C(m)? Rarefaction

(interpolation) refers to the case m , n, whereas

prediction (extrapolation) refers to the case m . n.

The integrated sample-size- or coverage-based rarefac-

tion/extrapolation sampling curve represents the esti-

mated diversity accumulation curve based on the

reference sample. (4) When there are multiple assem-

blages, how do we compare their diversities based on the

rarefaction/extrapolation sampling curves?

To answer these questions, we derive the theoretical

formulas of qD(m) for any finite sample size m and the

corresponding analytic estimators, along with their

variances and confidence intervals, in the next section.

Thus, sample-size- and coverage-based diversity accu-

mulation curves can be estimated and compared across

multiple assemblages. For incidence data, similar

questions and the estimation of the diversity accumula-

tion curve can be formulated.

RAREFACTION AND EXTRAPOLATION OF ABUNDANCE

DATA USING HILL NUMBERS

A new perspective

The extension of the now well-understood rarefaction

and extrapolation of species richness (for a refresher, see

Appendix B for abundance data, and Appendix C for

incidence data) to the general case of Hill numbers is not

direct, and it requires a new perspective, based on

abundance frequency counts with a different statistical

framework. We first extend the notation fk (abundance

frequency counts of the reference sample of size n) to a

more general case. We define the abundance frequency

count fk(m) for any m � 1 as the number of species

represented by exactly k individuals in a sample of size

m. The expected value of the abundance frequency count

fk(m) can be expressed as follows (see Appendix D for a

proof ):

FIG. 1. (a) A diversity profile curve, which plots Hill numbers qD(‘) as a function of order q, 0 � q � 3. Hill numbers are
calculated for a Zipf-Mandelbrot model (Magurran 2004) including 100 species with species relative abundance pi¼ c/i, where c is a
constant such that

P100
i¼1 pi ¼ 1. The three solid dots denote Hill numbers for order q¼ 0, 1, and 2. The diversity profile curve is a

nonincreasing function of q. The slope of the curve reflects the unevenness of species relative abundances. The more uneven the
distribution of relative abundances, the more steeply the curve declines. For completely even relative abundances, the curve is a
constant at the level of species richness. (b) Sample-size-based diversity accumulation curve, which plots the expected diversity
qD(m) as a function of size m, q¼ 0, 1, and 2. As sample size m tends to infinity, each curve approaches qD(‘). (c) Coverage-based
diversity accumulation curve, which plots the expected diversity qD(m) as a function of expected coverage, q ¼ 0, 1, and 2. As
sample coverage tends to unity, each curve approaches qD(‘).
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E½ fkðmÞ� ¼
XS

i¼1

m
k

� �
pk

i ð1� piÞm�k k ¼ 0; 1; . . . ; m:

ð5Þ

Note that E[ f0(m)] ¼
PS

i¼1ð1� piÞm is the expected

number of undetected species in a sample of size m. For

the reference sample of size n, the frequency fk(n) is

simply denoted as fk, as we defined in Abundance data.

To derive the theoretical formula of qD(m), we first

describe the frequency counts expected in a sample of

size m. Suppose a random sample of m individuals is

taken from the entire assemblage; we obtain a set of

abundance frequency counts for this sample, f fk(m); k¼
1, . . . , mg. After an infinite number of samples of size m

have been taken, the average of fk(m) for each k¼ 1, 2,

. . . , m tends to E[ fk(m)], as derived in Eq. 5. The

frequency counts expected in a sample of size m are thus

fE[ fk(m)]; k¼ 1, . . . , mg. According to our formulation,

the expected diversity for a sample of size m, qD(m),

is the set of Hill numbers based on these expected

frequencies. Note that, for a sample size of m, the

relative abundances of species are simply 1/m (there are

E[ f1(m)] such species), 2/m (there are E[ f2(m)] such

species), . . . , m/m (there are E[ fm(m)] such species).

Thus, Hill numbers of order q for a sample of size m are

qDðmÞ ¼
Xm

k¼1

k

m

� �q

3 E½ fkðmÞ�
" #1=1�q

m � 1 q 6¼ 1:

ð6Þ

This formula is valid for any sample size m, which can be

either less than the reference sample size n or greater

than n. Therefore, throughout the paper, the theoretical

formulas for rarefaction and extrapolation of Hill

numbers refer to Eq. 6. The second column in Table 1

summarizes the formulas for the special cases of q¼ 0, 1,

2, and in general for q . 2.

Analytic rarefaction and extrapolation estimators

for Hill numbers of order q

Based on a reference sample of size n with sample

frequency Xi for the ith species and the observed

frequency counts fk¼ fk (n), we derive here the analytic

estimators qD̂(m) for qD(m) given in Eq. 6. The notation

‘‘hat’’ on a diversity, e.g., qD̂(m), means an estimator of

that diversity based on the reference sample. The

observed Hill numbers, qDobs, for the reference sample

are simply qD̂(n). That is,

q
D̂ðnÞ ¼ qDobs ¼

X
Xi�1

ðXi=nÞq
" #1=ð1�qÞ

¼
Xn

j¼1

ð j=nÞqfj

" #1=ð1�qÞ

:
ð7Þ

Our approach to deriving rarefaction formulas is

based on statistical estimation theory for the expected

frequency counts. The minimum variance unbiased

estimator for E[ fk(m)] is

f̂ kðmÞ ¼
X
Xi�k

Xi

k

� �
n� Xi

m� k

� �
n
m

� �

¼
X
j�k

j
k

� �
n� j
m� k

� �
n
m

� � fj m , n k � 1: ð8Þ

See Appendix D for a proof. Here,

a
b

� �
[ 0

if a , b. We use this conventional definition throughout

this paper and the appendices. By substitution (from Eq.

6), we can obtain the following analytic estimators of the

expected diversity of an interpolated sample of size m as

follows:

q
D̂ðmÞ ¼

Xm

k¼1

k

m

� �q

3 f̂ kðmÞ
" #1=1�q

m , n: ð9aÞ

Eq. 9a is the general, nearly unbiased, rarefaction

formula for Hill numbers of any order q. (An estimator

is nearly unbiased if its bias tends to zero when the

reference sample size n is large.) The analytic estimator

for the rarefaction of Hill numbers for each of the orders

q ¼ 0, 1, and 2 is thus obtained by replacing E[ fk(m)]

with f̂k(m) in the specific formulas provided in Table 1.

The extrapolation of Hill numbers of any order q is a

prediction of the expected diversity qD(n þ m*) for an

augmented sample of size m ¼ n þ m*. Although the

general formula in Eq. 6 for qD(m) also holds for any

sample size m . n, our estimator f̂k(m) in Eq. 8 is valid

only for m , n. Therefore, we cannot simply replace

E[ fk(m)] by f̂k(m) as we did for rarefaction. For each q,

we need to develop a different approach for extrapola-

tion by means of an estimate of species richness (for q¼
0), Shannon diversity (for q¼ 1), Simpson diversity (for

q ¼ 2), and higher orders (for q . 2).

Species richness (q ¼ 0).—From Eqs. 6 and 9a, the

species richness (q ¼ 0) for a sample of size m , n is

0
D̂ðmÞ ¼

Xm

k¼1

f̂ kðmÞ m , n: ð9bÞ

In Appendix D we show that this estimator is identical
to the traditional individual-based rarefaction estimator

(Hurlbert 1971, Smith and Grassle 1977). Our new

perspective, however, offers a simpler, alternative
approach to traditional individual-based rarefaction of

species richness. Eq. 9b shows that the traditional

rarefaction estimator of the expected species richness

for a sample size of m is simply the sum of the estimated
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frequency counts. This idea can be extended easily to

Hill numbers of any orders, as we next illustrate.

The extrapolated species richness estimator for a

sample of n þ m* used in this paper is reviewed in

Appendix B, and the formula (originally derived by

Shen et al. 2003) is shown in Table 1. This approach

requires an estimated asymptote of species richness. Any

proper species richness estimator can be used. Colwell et

al. (2012) suggested using the Chao1 estimator (Chao

1984) or abundance-based coverage estimator (ACE;

Chao and Lee 1992) and noted that extrapolation gives

reliable estimates only up to approximately double or

triple the reference sample size. This limitation is

primarily a consequence of the fact that the asymptotic

estimator is only a lower bound (Chao 1984).

Shannon diversity (q ¼ 1).—From Eqs. 6 and 9a, we

have the following nearly unbiased interpolation esti-

mator for the Hill number q ¼ 1 (Shannon diversity):

1
D̂ðmÞ ¼ exp

Xm

k¼1

� k

m
log

k

m

� �
f̂ kðmÞ

" #
m , n:

ð10aÞ

For our new extrapolation formula, we need an

estimator for the asymptote of Shannon diversity. Chao

et al. (2013) derived the following nearly unbiased

estimator, Ĥ(‘), of Shannon entropy H ¼ H(‘) ¼
�
PS

i¼1 pi log pi as follows:

Ĥð‘Þ ¼
Xn�1

k¼1

1

k

X
1�Xi�n�k

Xi

n

n� Xi

k

� �
n� 1

k

� �

þ f1
n
ð1� AÞ�nþ1 �logðAÞ �

Xn�1

r¼1

1

r
ð1� AÞr

( )

ð10bÞ

TABLE 1. Theoretical formulas and analytic estimators for rarefaction and extrapolation of abundance-based Hill numbers of
order q ¼ 0, q ¼ 1, q ¼ 2, and any integer order q . 2, given a reference sample� with the observed Hill numbers qDobs and
estimated coverage Ĉind(n).

Order/coverage Theoretical formula� (for all m . 0) Interpolation estimator§ (for m , n)

q ¼ 0 0DðmÞ ¼ S� E½ f0ðmÞ� ¼
Xm

k¼1

E½ fkðmÞ� 0D̂ðmÞ ¼
Xm

k¼1

f̂ kðmÞ ¼ Sobs �
X
Xi�1

n� Xi

m

� �
n
m

� �
(minimum variance unbiased)

q ¼ 1 1DðmÞ ¼ exp
Xm

k¼1

� k

m
log

k

m

� �
3 E½ fkðmÞ�

" #
1D̂ðmÞ ¼ exp

Xm

k¼1

� k

m
log

k

m

� �
3 f̂ kðmÞ

" #

(nearly unbiased)

q ¼ 2 2DðmÞ ¼ 1Xm

k¼1

k

m

� �2

3 E½ fkðmÞ�

2D̂ðmÞ ¼ 1Xm

k¼1

k

m

� �2

3 f̂ kðmÞ
(nearly unbiased)

q . 2 qDðmÞ ¼
Xm

k¼1

k

m

� �q

3 E½ fkðmÞ�
" #1=1�q

qD̂ðmÞ ¼
Xm

k¼1

k

m

� �q

3 f̂ kðmÞ
" #1=1�n

(nearly unbiased)

Coverage CindðmÞ ¼ 1�
XS

i¼1

pið1� piÞm ĈindðmÞ ¼ 1�
X
Xi�1

Xi

n

n� Xi

m

� �
n� 1

m

� �
(minimum variance unbiased)

Notes: The last row gives equations for sample completeness as a function of sample size. It also gives the corresponding
coverage estimators for rarefied samples and extrapolated samples for coverage-based rarefaction and extrapolation curves.

� For the reference sample, the observed Hill number of order q is qD̂(n) ¼ qDobs ¼ ½
P

Xi�1ðXi=nÞq�1=ð1�qÞ. The coverage of the
reference sample is estimated by Ĉind(n) ¼ 1 � ( f1/n)f[(n � 1)f1]/[(n � 1)f1 þ 2f2]g; see Eq. 12 in the subsection Sample-size- and
coverage-based rarefaction and extrapolation.

� The frequency count fk(m) is defined as the number of species represented by exactly k individuals/times in a sample of size m.
The formula for E[ fk(m)] is given in Eq. 5 in the subsection A new perspective.

§ An unbiased estimator f̂k(m) for E[ fk(m)] exists for m , n and is given in Eq. 8 in the subsection Analytic rarefaction and
extrapolation estimators for Hill numbers of order q.

}When m* tends to infinity, each predictor tends to the estimator of the asymptotic diversity: 0D̂(‘) ¼ Sobs þ f̂0, where f̂0 is a
predictor for f0 (Chao 1984); see Eq. B.5 in Appendix B. 1D̂(‘)¼ exp[Ĥ(‘)], where Ĥ(‘) is an entropy estimator developed by Chao
et al. (2013); see Eq. 10b in the subsection Shannon diversity (q¼1). For an integer q � 2, qD̂(‘)¼½

P
Xi�q X

ðqÞ
i =nðqÞ�1=ð1�qÞ, where x( j)

¼ x(x� 1). . . . (x� jþ 1) denotes the falling factorial; see Gotelli and Chao (2013).
# The Stirling number of the second kind, w(q, j ), is defined by the coefficient in the expansion xq¼

Pq
j¼1 wðq; jÞx( j).
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where A¼ 2f2/[(n�1)f1þ2f2]. As a result, the asymptotic

estimator for Shannon diversity is 1D̂(‘) ¼ exp[Ĥ(‘)].

The extrapolated estimator for Shannon diversity of a

sample of size n þ m* is as follows:

1
D̂ðnþ m*Þ ¼ exp

n

nþ m*

XS

i¼1

�Xi

n
log

Xi

n

� �"

þ m*

nþ m*
Ĥð‘Þ

�
:

ð10cÞ

Details of the derivation are provided in Appendix E.

Extensive simulations (Chao et al. 2013) suggest that the

asymptotic Shannon estimator in Eq. 10b is nearly

unbiased, implying the extrapolation provided by Eq.

10c is valid for a wide prediction range. This extrapo-

lation can be safely extended to the asymptote.

Simpson diversity (q ¼ 2).—The general formula for

the expected Simpson diversity for any sample size m

(for both m , n and m . n) is

2DðmÞ ¼ 1Xm

k¼1

k

m

� �2

3 E½ fkðmÞ�

¼ 1

1

m
þ m� 1

m

XS

i¼1

p2
i

m � 1: ð11aÞ

See Appendix D for proofs. A minimum variance

unbiased estimator of
PS

i¼1 p2
i is

PS
i¼1 XiðXi � 1Þ/[n(n –

1)] (Good 1953), implying that an estimator for the

asymptotic Simpson diversity is 2D̂¼ 2D̂(‘) ¼ n(n – 1)/P
Xi�2 Xi(Xi – 1). An interpolated estimator (m , n)

from Eq. 11a can be expressed in two equivalent

forms:

2
D̂ðmÞ ¼ 1Xm

k¼1

k

m

� �2

f̂kðmÞ
¼ 1

1

m
þ m� 1

m

XS

i¼1

XiðXi � 1Þ
nðn� 1Þ

:

ð11bÞ

We can apply Eq. 11a to an augmented size of n þ m*

and obtain the following extrapolated estimator:

2
D̂ðnþ m*Þ ¼ 1

1

nþ m*
þ nþ m*� 1

nþ m*

XS

i¼1

XiðXi � 1Þ
nðn� 1Þ

:

ð11cÞ

The rarefaction, extrapolation, and asymptotic estima-

tors are all nearly unbiased. This means that for q ¼ 2,

the extrapolation can be safely extended to the

asymptote.

Diversity of integer order q . 2.—For Hill numbers of

integer order q . 2, a nearly unbiased interpolation

estimator is given in Eq. 9a. A general extrapolation

estimator qD̂(nþm*) is quite complicated and is shown

in the last column in Table 1 (see Appendix E for

derivation details). A nearly unbiased estimator of the

true asymptotic value qD¼ qD(‘) for any integer q . 2 is
qD̂(‘)¼ ½

P
Xi�q X

ðqÞ
i =nðqÞ�1=ð1�qÞ (Gotelli and Chao 2013),

where x( j ) denotes the falling factorial x (x – 1) . . . (x – j

þ 1).

Table 1 summarizes, for abundance data, all theoret-

ical formulas and analytic estimators for rarefaction and

extrapolation of Hill numbers of order q ¼ 0, 1, 2 and

any integer order q . 2. (The last row of Table 1 also

gives the formulas for sample-completeness as a function

of sample size; see the next subsection). We tested our

estimators on simulated data generated from several

species abundance models and on data from large

empirical data sets (Appendix F). The results show that

the proposed analytic rarefaction and extrapolation

estimators match perfectly with the corresponding

theoretical values for rarefied and extrapolated samples

up to double the reference sample size. However, when

the extrapolated sample size is more than double the

reference sample size, the performance of our predictors

depends on extrapolated range and the order q (see

Discussion).

There are two kinds of variance associated with an

interpolated or extrapolated estimator. A variance that is

conditional on the reference sample measures only the

variation in diversity that would arise from repeatedly

resampling (without replacement) the given reference

sample. This conditional variance approaches zero as m

approaches n because the diversity of sample size of n is

fixed (i.e., there is only one combination of all individuals

TABLE 1. Extended.

Extrapolation estimator} (for a sample of size n þ m*)

0D̂ðnþ m*Þ ¼ Sobs þ f̂ 0 1� 1� f1

nf̂ 0 þ f1

 !m*
2
4

3
5

(reliable if m* , n)

1D̂ðnþ m*Þ ¼ exp
n

nþ m*

XS

i¼1

�Xi

n
log

Xi

n

� �
þ m*

nþ m*
Ĥð‘Þ

#"

(nearly unbiased)

2D̂ðnþ m*Þ ¼ 1

1

nþ m*
þ nþ m*� 1

nþ m*

XS

i¼1

XiðXi � 1Þ
nðn� 1Þ

(nearly unbiased)#

qD̂ðnþ m*Þ ¼
Xq

j¼1

wðq; jÞðnþ m*Þð jÞ

ðnþ m*Þq
X
Xi�j

X
ð jÞ
i

nð jÞ

" #1=1�q

(nearly unbiased)

Ĉindðnþ m*Þ ¼ 1� f1
n

ðn� 1Þf1
ðn� 1Þf1 þ 2f2

� �m*þ1

(reliable for m* , n)
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or all sampling units). An unconditional variance mea-

sures the variation in diversity that would arise if another

new sample of size m were taken from the entire

assemblage (rather than from the original reference

sample). Therefore, the unconditional variance does not

approach 0 when sample size tends to n, and all associated

confidence intervals are symmetric, which reflects the

uncertainty of the new sample. In deriving an ‘‘uncondi-

tional’’ variance, the number of undetected species must

be estimated because those undetected species also affect

the variation of a new sample. In most applications,

unconditional variance is more useful because inferences

are not restricted to the reference sample.

Colwell et al. (2012) obtained an unconditional analytic

variance estimator for rarefied and extrapolated species

richness estimators. However, extending this analytic

approach for variance estimators to a general order of q

becomes mathematically intractable. Therefore, we sug-

gest a simpler, bootstrap method (Appendix G), to obtain

unconditional variances and confidence intervals for all

rarefied and extrapolated estimators. In the proposed

procedure, we follow Colwell et al. (2012) and use the

Chao1 (for abundance data) or Chao2 (for incidence

data) to estimate the number of undetected species in the

reference sample (Chao 1984, 1987), although any other

proper estimators can also be used. The examples in

Worked examples: comparison of assemblages illustrate

our proposed sampling curves and the associated

confidence intervals based on the unconditional variance

from our proposed bootstrap method.

Sample-size- and coverage-based rarefaction

and extrapolation

In comparing diversities among multiple assemblages,

samples can be standardized by sample size or by sample

completeness. Our proposed sample-size-based sampling

curve for Hill numbers of each specific order q includes

the rarefaction part (which plots qD̂(m) as a function of

m, where m , n; see Table 1) and the extrapolation part

(which plots qD̂(nþm*) as a function of nþm* for m* .

0; see Table 1) and yields a smooth sampling curve, the

two parts of which join smoothly at the point of the

reference sample (n, qDobs). To fully incorporate the

effect of relative abundance on diversity estimation, we

suggest plotting curves for at least the first three Hill

numbers (q ¼ 0, 1, 2).

When there are many ‘‘invisible’’ species (species with

extremely small relative abundance that are almost

undetectable in normal sampling schemes) our intuition

is that the number of undetected species in samples (or

equivalently, species richness in the entire assemblage) is

very hard to estimate; see Colwell et al. (2012) and

Gotelli and Chao (2013) for a review. On the other

hand, and contrary to intuition, the notion of sample

completeness can be accurately and efficiently estimated

using only information contained in the reference

sample itself. Sample completeness can be measured by

sample coverage (or simply coverage), a concept origi-

nally developed by the founder of modern computer

science, Alan Turing, and I. J. Good (Good 1953, 2000,

Good and Toulmin 1956; according to Good [2000],

Turing never published this work, but gave permission
to Good to publish it). Coverage is defined as the total

relative abundances of the observed species, or equiva-

lently, the proportion of the total number of individuals

in an assemblage that belong to species represented in
the sample. Turing and Good (Good 1953, 2000,

Robbins 1968, Esty 1983, 1986) derived a simple

coverage estimator (of the reference sample of size n)

as one minus the proportion of singletons. Robbins
(1968) showed that the average squared error of this

estimator ’ 1/n. A tiny percentage of coverage can

contain an infinite number of rare species. The estimated

complement of coverage is not an estimate of the

number of unseen species, but rather it estimates the
proportion of the total individuals in the assemblage

that belong to undetected species. For this reason,

extremely rare, undetected species do not make a

significant contribution to that proportion, even if there
are many such species. This intuitively explains why the

estimation of species richness in highly diverse assem-

blages is a statistically difficult issue, whereas sample

coverage can be accurately estimated.

Alroy (2010) and Jost (2010) independently proposed

that samples be standardized to a common level of
sample completeness (as measured by sample coverage),

and developed algorithmic approaches for comparing

rarefied samples. For species richness, Chao and Jost

(2012) were the first to derive an analytic method for
seamless coverage-based rarefaction and extrapolation.

Chao and Jost (2012) suggested plotting rarefaction and

extrapolation curves with respect to sample coverage

rather than with respect to sample size because the

expected species richness for equal sample coverage
satisfies a replication principle or doubling property,

which the expected species richness for equal sample size

does not obey. Similar conclusions are valid for the

expected diversity of any order q; see Appendix D for
details. This property makes it possible to quantify ratio

comparisons or any other comparisons between the

magnitudes of the diversities of the assemblages.

For individual-based abundance data, Chao and Jost

(2012) used a more accurate sample coverage estimate

for the reference sample, as follows:

ĈindðnÞ ¼ 1� f1
n

ðn� 1Þf1
ðn� 1Þf1 þ 2f2

� �
: ð12Þ

They also derived an interpolated coverage estimator

Ĉind(m) for any rarefied sample of size m , n and

extrapolated coverage estimator Ĉind(n þ m*) for any
augmented sample of size nþm*; see Table 1 (last row)

for their formulas. The extrapolated coverage estimator

is reliable if m* , n.

As with sample-size-based curves, for any specific

order q, the coverage-based interpolation [which plots
qD̂(m) with respect to Ĉind(m)] and extrapolation (which
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plots qD̂(n þ m*) with respect to Ĉind(n þ m*)) join

smoothly at the reference point (Ĉind(n),
qDobs). The

confidence intervals of expected diversity based on the

bootstrap method also join smoothly.

Bridging sample-size- and coverage-based approaches

The sample-size-based approach plots the estimated

diversity as a function of sample size, whereas the

corresponding coverage-based approach plots the same

diversity with respect to sample coverage. Therefore,

these two approaches can be bridged by the relationship

between coverage and sample size. Using the coverage

estimators in Tables 1 and 2 (the last row in each table),

we can construct a sample completeness curve, which

reveals sample completeness for a given sample size.

From the original reference sample, this curve estimates

sample completeness for smaller rarified samples, as well

as for larger extrapolated samples. This curve also

provides an estimate of the sample size needed to achieve

a fixed degree of completeness.

An optimal stopping theory derived by Rasmussen

and Starr (1979) specifies that sampling stops when

sample coverage reaches a predetermined value. The

sample completeness curve thus provides information

about whether we should continue or stop sampling. If

multiple assemblages are to be sampled and compared,

Chao and Jost (2012) suggested that ecologists should

sample each assemblage to the same degree of com-

pleteness. Such equally complete samples from different

assemblages can be compared directly, without any need

for rarefaction or extrapolation. See Worked examples

for illustration.

RAREFACTION AND EXTRAPOLATION OF INCIDENCE

DATA USING HILL NUMBERS

For incidence data, parallel derivations to those for

abundance data yield equations for the theoretical

expected diversities for any sample size t (the second

column in Table 2). Here, ‘‘sample size’’ for incidence

data means ‘‘number of sampling units.’’ The analytic

estimators for rarefied samples and analytic estimators

for extrapolated samples are also given in Table 2. The

asymptotic estimator for each order q of Hill numbers (q

¼ 0, 1, 2) is provided in the footnotes of Table 2. Full

derivation details along with a replication principle

appear in Appendix H; here we highlight the following

differences from the models and estimators for abun-

dance data.

First, for abundance data, our derivation was based

on a model in which the species frequency Xi follows a

binomial distribution characterized by n and the true

relative abundance pi. In contrast, for incidence data, we

assume the species incidence-based frequency Yi follows

a binomial distribution characterized by T (the total

number of sampling units) and incidence probability pi.

With abundance data,
PS

i¼1 pi ¼ 1, but with incidence

data,
PS

i¼1 pi can exceed 1.

Second, the total number of individuals n in a

reference sample of abundance data is fixed by design.
In contrast, total number of incidences in a reference

sample of T sampling units is a random variable U, with
expectation E(U)¼ T

PS
i¼1 pi. Therefore,

PS
i¼1 pi can be

accurately estimated by U/T. For abundance data, the
number of individuals in any rarefied or extrapolated
sample size is fixed, whereas for incidence data, the

number of incidences in any t sampling units is random
with expectation E(Ut)¼ t

PS
i¼1 pi, which is estimated by

Ût ¼ tU/T.
Third, for abundance data, the primary derivations of

our estimators are based on frequency counts fk(m), the
number of species represented by exactly k individuals

(or observed k times) in a sample of size m. The
corresponding incidence frequency count is Qk(t), the

number of species recorded in exactly k sampling units
in a sample of t sampling units.

The sample completeness curve as a function of
abundance, developed by Chao and Jost (2012), is

reviewed in Appendix B, and the formulas appear in the
last row of Table 1. In Appendix C we derive, for the

first time, the corresponding sample completeness curve
as a function of sampling units for incidence data. With

such a curve, ecologists can objectively quantify the
sample completeness for any incomplete abundance or

incidence data sets. These curves help determine a
sample size needed in a designing a survey. All formulas

are summarized in the last row of Table 2.
Based on the formulas in Table 2, for each order q of

the Hill numbers qD for incidence data, we can obtain an
integrated rarefaction/extrapolation sampling curve
with confidence intervals. Statistical inference theory

implies that the proposed interpolated estimator for
diversity is unbiased for q¼ 0 and nearly unbiased for q

¼ 1 and 2. We support these claims with simulation tests
(Appendix F). As with the abundance data, the

performance of our extrapolated estimators depends
on the order of Hill numbers and the prediction range of

extrapolation. Simulation tests provide some general
usage guidelines (see Discussion). In Tables 1 and 2, we

summarize the properties and performance of each index
based on theory and analyses of empirical and simulated

data sets.

WORKED EXAMPLES: COMPARISON OF ASSEMBLAGES

Example 1: Abundance data—comparing spider species

diversity in two treatments

Sackett et al. (2011) provided species abundance data

for samples of spiders from four experimental forest
canopy-manipulation treatments at the Harvard Forest.

The treatments were established to study the long-term
consequences of loss of the dominant forest tree, eastern

hemlock (Tsuga canadensis), caused by a nonnative
insect, the hemlock woolly adelgid (Adelges tsugae;

Ellison et al. 2010). Data from two treatments are used
here for illustration: (1) the hemlock-girdled treatment,

in which bark and cambium of hemlock trees were cut
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and the trees left in place to die to mimic tree mortality

by adelgid infestation; and (2) the hemlock-logged

treatment, in which hemlock trees were cut and removed

from the plots (Ellison et al. 2010). The abundance

frequency data for the two treatments (summed over

two plots per treatment) are tabulated in Table 3, and

the rank–abundance distributions are shown in Fig. 2.

We used the data from these two treatments to illustrate

the construction of two types (sample-size- and cover-

age-based) of rarefaction and extrapolation curves of

Hill numbers. The constructed sampling curves were

then used to compare spider species diversities between

the two treatments.

The reference sample size (number of individual

spiders) for the girdled treatment was 168, and the

observed species richness, Shannon diversity, and

Simpson diversity (i.e., Hill numbers for q ¼ 0, 1, 2)

for this reference sample size were, respectively, 26,

12.06, and 7.84 (solid points in Fig. 3a and b). The

sample size for the logged treatment was 252, and the

corresponding observed Hill numbers for q¼0, 1, 2 were

37, 14.42, and 6.76, respectively. Thus, judging from the

unstandardized raw data (the reference samples), the

logged treatment appears to have higher observed

species richness and Shannon diversity, but lower

Simpson diversity than the girdled treatment.

Step 1: Compare sample-size-based sampling curves up

to a base sample size (Fig. 3).—We first constructed, for

each of the two treatments, the integrated sample-size-

based rarefaction and extrapolation curves for Hill

TABLE 2. The theoretical formulas and analytic estimators for rarefaction and extrapolation of Hill numbers based on incidence
data for q ¼ 0, q ¼ 1, q ¼ 2, and any integer order q . 2, given a reference sample with the observed Hill numbers qDobs and
estimated coverage Ĉsample(T).�

Order/coverage Theoretical formula for all t . 0� Interpolation estimator (t , T)§

q ¼ 0 0DðtÞ ¼ S� E½Q0ðtÞ� ¼
Xt

k¼1

E½QkðtÞ� 0D̂ðtÞ ¼ Sobs �
X
Yi�1

T � Yi

t

� �
T
t

� �
(minimum variance unbiased)

q ¼ 1 1DðtÞ ¼ exp
Xt

k¼1

� k

Ut
log

k

Ut

� �
3 E½QkðtÞ�

" #
1D̂ðtÞ ¼ exp

Xt

k¼1

� k

Ût

log
k

Ût

� �
3 Q̂kðtÞ

" #

(nearly unbiased)

q ¼ 2 2DðtÞ ¼ 1Xt

k¼1

k

Ut

� �2

3 E½QkðtÞ�

2D̂ðtÞ ¼ 1Xt

k¼1

k

Ût

� �2

3 Q̂kðtÞ
(nearly unbiased)

q . 2 qDðtÞ ¼
Xt

k¼1

k

Ut

� �q

3 E½QkðtÞ�
" #1=1�q

qD̂ðtÞ ¼
Xt

k¼1

k

Ût

� �q

3 Q̂kðtÞ
" #1=1�q

(nearly unbiased)

Coverage CsampleðtÞ ¼ 1�

XS

i¼1

pið1� piÞt

XS

i¼1

pi

ĈsampleðtÞ ¼ 1�
X
Yi�1

Yi

U

T � Yi

t

� �
T � 1

t

� � (nearly unbiased)

Notes: The last row gives equations for sample completeness as a function of sample size, and the corresponding coverage
estimators for rarefied samples and extrapolated samples. See Appendix C (for q¼ 0) and Appendix H (for q . 0) for notation and
all derivation details.

� For the reference sample, the observed Hill number of order q is qDobs¼ ½
PT

k¼1ðk=UÞqQk�1=ð1�qÞ. The coverage of the reference
sample is estimated by Ĉsample(T)¼1 – (Q1/U)f[(T� 1)Q1]/[(T� 1)Q1þ2Q2]g. U¼

P
Yi . 0 Yi¼

PT
j¼1 jQj denotes the total number of

incidences in T samples.
� For any sample size of t, Qk(t) is defined as the number of species detected in exactly k sampling units. Ut is defined as the

expected total number of incidences in t sampling units: Ut ¼
Pt

j¼1 jE½QjðtÞ� ¼ t
PS

i¼1 pi.

§ An unbiased estimator Q̂k(t) for E[Qk(t)] exists for t , T and is given in Eq. H.5 in Appendix H. An unbiased estimator for Ut

is Ût ¼
Pt

j¼1 jQ̂jðtÞ ¼ tU/T.

}When t* tends to infinity, each predictor tends to the estimator of the asymptotic diversity: 0D̂(‘)¼ Sobsþ Q̂0, where Q̂0 is a

predictor for Q0 (Chao 1987); see Eq. C.5 in Appendix C. 1D̂(‘) ¼ exp[Ĥsample(‘)], where Ĥsample(‘) is an entropy estimator for

incidence data; see Eq. H.7 in Appendix H. For an integer q � 2, qD̂(‘)¼ ½
P

Yi�q TqY
ðqÞ
i =ðUqTðqÞÞ�1=ð1�qÞ, where x( j )¼ x(x� 1). . . .

(x� jþ 1). See Table 1 for the definition of the Stirling number of the second kind: w(q, j).
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numbers of q¼ 0, 1, 2. In Fig. 3a, we show these sample-

size-based curves with 95% confidence intervals based on

a bootstrap method. We extrapolated up to double the

reference sample size (i.e., up to size 336 for the girdled

treatment and size 504 for the logged treatment). In each

plot, except for initial, small sample sizes, none of the

confidence intervals for the three curves intersect, and

the rank order of diversity is species richness . Shannon

diversity . Simpson diversity. For any fixed sample size

or completeness in the comparison range, if the 95%
confidence intervals do not overlap, then significant

differences at a level of 5% among the expected

diversities (whether interpolated or extrapolated) are

guaranteed. However, partially overlapping intervals do

not guarantee nonsignificance (Schenker and Gentleman

2001). The curve for species richness (q ¼ 0) increases

steeply with sample size in both treatments, but the

curves for Shannon and Simpson diversity (q¼1 and q¼
2) level off beyond the reference sample, illustrating that

higher order Hill numbers are increasingly dominated by

the frequencies of the more common species and are,

therefore, less sensitive to sampling effects.

To compare diversities between the girdled and logged

treatments, we show in Fig. 3b, for each fixed value of q

(q ¼ 0, 1, and 2), the sample-size-based rarefaction and

extrapolation of these two plots with 95% confidence

intervals up to a base sample size. We suggest the base

sample size to be double the smallest reference sample

size or the maximum reference sample size, whichever is

larger (the reason for our suggestion will become clearer

in the second example). See Box 1 for systematic steps to

determine a base sample size. In this example, the base

sample size is 336 (double the smaller reference sample

size). The estimated Hill numbers can then be compared

across assemblages for any sample size less than the base

size. In a traditional rarefaction, the data from the

logged treatment would be rarefied to a sample size of

168 individuals to match the abundance in the girdled

treatment. For this rarefied sample, the Hill numbers of

q ¼ 0, 1, 2 are estimated to be 31.71, 13.83, and 6.68,

respectively. The proposed integrated sampling curve

allows reliable comparisons for any sample size up to an

abundance of 336. Across this range of abundance, Fig.

3b reveals that the logged treatment is more diverse for

all but the smallest sample sizes for species richness (q¼
0) and Shannon diversity (q ¼ 1), although the

confidence intervals overlap. In contrast, for Simpson

diversity (q ¼ 2), the girdled treatment is more diverse,

although again the two confidence intervals overlap.

Step 2: Construct a sample completeness curve to link

sample-size- and coverage-based sampling curves (Fig.

4).—Based on Eq. 12, the coverage for the girdled

treatment is estimated as 93% for the reference sample of

size 168 individuals, and the coverage for the logged

treatment is 94% for the reference sample of 252

individuals. It is informative to examine how the sample

completeness varies with sample size (see the formulas in

the last row in Table 1). In Fig. 4, we plot the sample

completeness curve as a function of sample size for each

of the two treatments, up to double the reference sample

size. For any sample size less than 168, the curve shows

that the sample completeness for the girdled treatment is

estimated to be higher than that in logged treatment,

although the confidence intervals overlap. When sample

size is larger than 168, the estimates of sample coverages

TABLE 2. Extended.

Extrapolation estimator (for T þ t* sampling units)}

0D̂ðT þ t*Þ ¼ Sobs þ Q̂0 3 1� 1� Q1

TQ̂0 þ Q1

 !t*
2
4

3
5

(reliable if t* , T )

1D̂ðT þ t*Þ ¼ exp

"
T

T þ t*

XS

i¼1

�Yi

U
log

Yi

U

� �
þ t*

T þ t*
Ĥsampleð‘Þ

#

(nearly unbiased)

2D̂ðT þ t*Þ ¼ 1

1

T þ t*
3

1

U=T
þ T þ t*� 1

T þ t*

X
Yi . 0

YiðYi � 1Þ
U2ð1� 1=TÞ

(nearly unbiased)

qD̂ðT þ t*Þ ¼
"

1

ðU=TÞq
Xq

j¼1

wðq; jÞðT þ t*ÞðjÞ

ðT þ t*Þq
X
Yi� j

Y
ðjÞ
i

TðjÞ

#1=1�q

(nearly unbiased)

ĈsampleðT þ t*Þ ¼ 1� Q1

U

ðT � 1ÞQ1

ðT � 1ÞQ1 þ 2Q2

� �t*þ1

(reliable for t* , T )

TABLE 3. Spider species abundance frequency counts in two
canopy manipulation treatments (Ellison et al. 2010, Sackett
et al. 2011).

Girdled Logged

i fi i fi

1 12 1 14
2 4 2 4
4 1 3 4
6 2 4 3
8 1 5 1
9 1 7 3

15 2 8 2
17 1 10 1
22 1 13 1
46 1 15 1

16 1
22 1
88 1

Note: The data include pairs of (i, fi ) where fi refers to the
number of species represented by exactly i individuals. For the
girdled treatment, Sobs¼ 26 species, n¼ 168 individuals; for the
logged treatment, Sobs¼ 37 species, n ¼ 252 individuals.
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for the two treatments differ little. If we apply a

traditional rarefaction approach to standardize sample

coverage, a sample size of ;168 individuals in the logged

treatment gives a sample coverage of 93%. Thus, the

diversity ordering of the two treatments for 93% of the

assemblage individuals is the same as that for a

standardized sample of 168 individuals. The sample

completeness curve figure provides a bridge between

sample-size- and coverage-based sampling curves, as will

be explained in the next step.

Step 3: Compare coverage-based sampling curves up to

a ‘‘base coverage’’ (Fig. 5).—From the sample com-

pleteness curve (Fig. 4), when sample size in the girdled

treatment is doubled from 168 to 336 individuals, the

sample coverage is increased from 93% to 96%. In the

logged treatment, when sample size is doubled from 252

to 504 individuals, the coverage is increased from 94% to

97%. In Fig. 5a, we present, for each treatment, the

corresponding coverage-based rarefaction and extrapo-

lation curves with 95% confidence intervals for diversity

of q ¼ 0, 1, 2 when the coverage is extrapolated to the

value for a doubling of each reference sample size.

In Fig. 5b, we compare the coverage-based diversities

of the two treatments for q¼ 0 (left panel), q¼ 1 (middle

panel), and q¼2 (right panel) up to the coverage of 96%.

This is our ‘‘base coverage’’ (the lowest coverage for

doubled reference sample sizes or the maximum

coverage for reference samples, whichever is larger).

See Box 1 for suggestions on the choice of base coverage.

Because the increase in coverage for the extrapolation is

small, and the estimated diversity for q¼ 1 and 2 hardly

change beyond the reference samples, the extrapolation

parts in Fig. 5b are nearly invisible for these two orders

of q. Since the two confidence bands do not intersect for

species richness (q¼ 0) if coverage exceeds 50% (Fig. 5b,

left panel), species richness in the logged treatment is

significantly higher than in the girdled treatment for any

standardized sample coverage between 50% and 96%.

For Shannon diversity (q ¼ 1), the logged treatment is

more diverse, but the confidence bands overlap. For

Simpson diversity (q ¼ 2), when coverage is less than

70%, both treatments have almost the same diversity,

but when coverage is greater than 70%, the Simpson

diversity for the girdled treatment is slightly higher.

Comparing Figs. 3b and 5b, we see that the sample-

size- and coverage-based curves for q ¼ 0 and q ¼ 1

exhibit consistent diversity orderings between the two

treatments. However, for q ¼ 2, the sample-size-based

curves do not intersect (Fig. 3b), but the coverage-based

curves have two crossing points (Fig. 5b). See Discussion

for more comparisons of the two types of curves.

Example 2: Incidence data—comparing species diversity

of tropical ants among five sites

We used the tropical ant species data collected by

Longino and Colwell (2011) from five elevations on the

Barva Transect, a 30-km continuous gradient of wet

forest on Costa Rica’s Atlantic slope. The five sites are,

respectively, at elevations of 50 m, 500 m, 1070 m, 1500

m, and 2000 m. Species presence or absence was

recorded in each sampling unit, which consisted of all

worker ants extracted from a 1-m2 forest floor plot. See

Longino and Colwell (2011) for sampling and data

details. A sample-by-species incidence matrix was

produced for each of the five sites. The incidence

frequency counts are given in Colwell et al. (2012: Table

6). The plots for rank–frequency distributions of the five

sites are shown by Longino and Colwell (2011: Fig. 3).

An integrated rarefaction and extrapolation curve for

species richness was presented by Colwell et al. (2012:

Fig. 4b). They concluded that species richness among

the five sites was significantly different (none of the

confidence intervals intersect, except for very small

sizes), and that richness has the ordering: 500 . 50 .

1070 . 1500 . 2000 m.

Step 1: Compare sample-size-based sampling curves up

to a base sample size (Fig. 6).—For each of the five sites,

Fig. 6a shows the observed Hill numbers and sample-

size-based rarefaction and extrapolation plots with 95%
confidence intervals for three sampling curves (Hill

numbers of q¼0, 1, 2) up to double the reference sample

size. To compare diversity among the five elevations, we

first determined the base sample size. The reference

sample sizes T (number of sampling units) for each

elevation (50, 500, 1070, 1500, and 2000 m) are,

respectively, 599, 230, 150, 200, and 200. The base

sample size would be 599 (which is larger than 23 150¼
300, double the smallest reference sample); see Box 1 for

the choice of this base sample size. An advantage of this

FIG. 2. Rank–abundance distributions for spider data from
the girdled and logged treatments of eastern hemlock (Tsuga
canadensis) at a study from the Harvard Forest, Petersham,
Massachusetts, USA. In the girdled treatment, bark and
cambium of hemlock trees were cut and the trees left in place
to die to mimic tree mortality by adelgid infestation, and in the
logged treatment, hemlock trees were cut and removed from the
plots. The proportional abundance on the y-axis (on a
logarithmic scale) is calculated as the proportion of the
maximum abundance.
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choice of base sample size is that no data are excluded

from our analysis. However, a drawback is that the

extrapolation range for some samples could exceed their

doubled reference sample sizes. For Shannon and

Simpson diversities, the prediction biases are minimal

beyond the double reference sample sizes, but for species

richness in such cases we should be cautious about the

prediction bias. See Discussion for suggestions on

extrapolation range.

Next for each specific order of q, we plot the sample-

size-based interpolation and extrapolation curves with

95% confidence bands for these five elevations together

in the same figure, as illustrated in Fig. 6b. Extrapola-

tions are extended to the base sample size of 599 for all

sites. Our plot of q¼ 0 corresponds to Fig. 4b in Colwell

et al. (2012). We here extend their approach to include

curves for q ¼ 1 and q ¼ 2, and also include coverage-

based plots. For the three orders of q, diversity of the

sites is consistently ordered as 500 . 50 . 1070 . 1500

. 2000 m (Fig. 6b). All confidence intervals are

nonoverlapping (except for very small sizes), implying

the diversity of any order q ¼ 0, 1, 2 is significantly

different among the five elevations for any fixed sample

size up to 599 sampling units.

Step 2: Construct a sample completeness curve to link

sample-size- and coverage-based sampling curves (Fig.

7).—The sample coverages for the five sites (50, 500,

1070, 1500, and 2000 m) were estimated as 99.18%,

97.60%, 98.39%, 98.89%, and 99.64%, respectively,

indicating that sampling is nearly complete for all sites.

A summary of coverage estimators for incidence data

appear in Table 2. See Appendix C for estimation

details. For any fixed sample size ,300 sampling units,

the sample coverage for the two lower elevations (50 and

500 m) is significantly lower than coverage at higher

elevations (1070, 1500, 2000 m). When sample size is

greater than 300, the pattern persists, but the 95%

confidence bands begin to overlap.

FIG. 3. (a) Sample-size-based rarefaction (solid lines) and extrapolation (dashed lines, up to double the reference sample size) of
spider species diversity based on the Hill numbers (q¼0, 1, 2) for the hemlock girdled treatment and the logged treatment. The 95%
confidence intervals (gray-shaded regions) were obtained by a bootstrap method based on 200 replications. Reference samples are
denoted by solid dots. The numbers in parentheses are the sample size and the observed Hill numbers for each reference sample. (b)
Comparison of sample-size-based rarefaction (solid lines) and extrapolation (dashed curves), up to the base sample size of 336
individuals (i.e., double the smaller reference sample size) of spider species diversity for Hill numbers of order q¼ 0 (left panel), q¼
1 (middle panel), and q ¼ 2 (right panel). Reference samples in each treatment are denoted by solid dots. The numbers in
parentheses are the sample size and the observed Hill numbers for each reference sample.
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Step 3: Compare coverage-based sampling curves up to

a base coverage (Fig. 8).—Fig. 8a shows, for each plot,

the corresponding coverage-based rarefaction and ex-

trapolation curves for Hill numbers of q ¼ 0, 1, 2 when

the coverage is extrapolated to the value for a doubling

of each reference sample size. From the sample

completeness curve (Fig. 7), when the sample size in

each site is doubled, the sample coverage increases very

slightly for all sites. There is little change in ant diversity

for q ¼ 1 and 2. Thus, the extrapolated portions of the

curves in Fig. 8a are nearly invisible, as we also noted in

Fig. 5.

When all sample sizes are doubled, the minimum

value of the coverage values of these doubled sample

sizes among the five sites is 99.08% (for 500 m elevation).

However, it is less than the coverage 99.64% of the

reference sample for 2000 m elevation. In order to use all

data, we select our base coverage to be 99.64% (Box 1).

Fig. 8b compares coverage-based rarefaction and

extrapolation curves up to the base coverage of

99.64%. All three coverage-based diversities show the

same ordering by elevation as in the sample-size-based

comparison. None of the confidence intervals overlap

except at very small coverage values, implying significant

differences in ant diversity among the five elevational

transects at comparable coverage.

FIG. 4. Plot of sample coverage for rarefied samples (solid
line) and extrapolated samples (dashed line) as a function of
sample size for spider samples from the hemlock girdled and
logged treatments. The 95% confidence intervals were obtained
by a bootstrap method based on 200 replications. Reference
samples are denoted by solid dots. Each of the two curves was
extrapolated up to double its reference sample size. The
numbers in parentheses are the sample size and the estimated
sample coverage for each reference sample.

BOX 1. Systematic steps to determine base sample size for the sample-size-based rarefaction and
extrapolation, and base coverage for the coverage-based rarefaction/extrapolation.

Example 2 is used to illustrate each step. The reference sample size for the ith sample is denoted by ni, i ¼
1, 2, . . . , k, and the corresponding sample coverage estimate is denoted by C(ni ). For abundance data,
sample size refers to the number of individuals; for incidence data, sample size refers to the number of

sampling units.
Step 0. Set the maximum extrapolated ratio r, equal to the ratio of the extrapolated sample size and the

reference sample size. For making inferences about species richness (q ¼ 0), we suggest the
maximum extrapolated size should be double the reference sample size, that is, r ¼ 2. For

inferences for diversity of q � 1, r can be any positive number, i.e., it is statistically safe to
extrapolate to the asymptote.

a) Sample-size-based rarefaction/extrapolation

Step 1. Compute the maximum reference sample size, na ¼maxfn1, n2, . . . , nkg. (In Example 2, na ¼
maxf599, 230, 150, 200, 200g ¼ 599.)

Step 2. Compute the minimum r times reference sample sizes, nb¼minfrn1, rn2, . . . , rnk g. (In Example 2
for r ¼ 2, nb ¼minf1198, 460, 300, 400, 400g ¼ 300.)

Step 3. The suggested base sample size is the maximum of na and nb, nbase¼maxfna, nbg. (In Example 2

for r ¼ 2, nbase ¼maxf599, 300g ¼ 599.)

b) Coverage-based rarefaction/extrapolation

Step 1. Compute the maximum coverage of reference sample sizes, Ca¼maxfC(n1), C(n2), . . . , C(nk)g.
(In Example 2, Ca ¼maxf0.9918, 0.976, 0.9839, 0.9889, 0.9964g ¼ 0.9964.)

Step 2. Compute the minimum coverage of r times reference sample sizes, Cb¼minfC(rn1), C(rn2), . . . ,
C(rnk)g. (In Example 2 for r ¼ 2, Cb ¼minf0.9968, 0.9908, 0.9949, 0.9940, 0.9999g ¼ 0.9908.)

Step 3. The suggested base coverage is the maximum of Ca and Cb, Cbase¼maxfCa, Cbg. (In Example 2

for r ¼ 2, Cbase ¼maxf0.9964, 0.9908g ¼ 0.9964.)
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DISCUSSION

We have developed a new, comprehensive statistical

framework for the analysis of biodiversity data based on

Hill numbers. We also advocate the use of sample

coverage (or simply coverage), developed by Turing and

Good (Good 1953) to quantify sample completeness. To

characterize the species diversity of an assemblage, we

propose constructing two types of integrated rarefaction

and extrapolation curves (sample-size- and coverage-

based) as illustrated in Figs. 3a and 5a for Example 1,

and Figs. 6a and 8a for Example 2. For each type of

curve, we suggest plotting three rarefaction/extrapola-

tion curves (with confidence intervals) corresponding to

three orders (q ¼ 0, 1, 2) of Hill numbers. These curves

are then used to compare multiple assemblages, as

illustrated in Figs. 3b and 5b of Example 1 and 6b and

8b of Example 2. The sample-size- and coverage-based

curves are linked by a sample completeness curve (Figs.

4 and 7), which reveals the relationship between sample

size (number of individuals or number of sampling units)

and sample completeness. This curve illustrates how

much sampling effort is needed to achieve a pre-

determined level of sample completeness.

The proposed estimators work well for rarefaction

and short-range extrapolation in which the extrapolated

sample size is up to twice the reference sample size. For

rarefaction, our proposed estimator is unbiased for q¼ 0

and nearly unbiased for q ¼ 1 and 2. For short-range

extrapolation, the prediction bias with respect to the

expected diversity is often limited. When the extrapo-

lated sample size is more than double the reference

sample size, the prediction bias depends on the

extrapolated range and the order q. The magnitude of

the prediction bias generally increases with the predic-

FIG. 5. (a) Coverage-based rarefaction (solid line) and extrapolation (dashed line) plots with 95% confidence intervals for spider
species diversity based on Hill numbers (q¼ 0, 1, 2) for the hemlock girdled and logged treatments. Reference samples are denoted
by solid dots. In the girdled treatment, the coverage was extrapolated to 96%, and in the logged treatment, the coverage was
extrapolated to 97% (i.e., the coverage value for a doubling of each reference sample size). The numbers in parentheses are the
sample coverage and the observed Hill numbers for each reference sample. (b) Comparison of the coverage-based rarefaction (solid
lines) and extrapolation (dashed lines), up to the base coverage 96% (i.e., lower coverage of the doubled reference sample sizes) of
spider diversity using Hill numbers of order q¼ 0 (left panel), q¼ 1 (middle panel), and q¼ 2 (right panel). Reference samples in
each treatment are denoted by solid dots. Note that species richness (left panel) in the two treatments is significantly different when
sample coverage is between 50% and 96%, as the two confidence bands do not intersect in this range of coverage values. The
numbers in parentheses are the sample coverage and the observed Hill numbers for each reference sample.
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tion range. For q � 1, the extrapolated estimator is

nearly unbiased for all extrapolated sample sizes, so the

extrapolation can be safely extended to the asymptote.

However, for q ¼ 0, extrapolation is reliable up to no

more than double the reference sample size. Beyond

that, the predictor for q¼ 0 may be subject to some bias

because our asymptotic estimator for species richness

(Chao1 for abundance data and Chao2 for incidence

data) is a lower bound only (Chao 1984, 1987).

To compare the diversities of multiple assemblages,

Box 1 gives guidelines for choosing a base sample size

and base coverage for comparing sample-size- and

coverage-based curves. With the suggested base sample

size and base coverage, all data are used for compari-

sons. Based on the integrated sample-size- and coverage-

based rarefaction and extrapolation curves, ecologists

can efficiently use all available data to make more robust

and detailed inferences about the sampled assemblages

for any standardized samples with sample size less than

the base sample size, and for any equally complete

samples with coverage less than the base coverage.

However, Example 2 provides an example in which we

extrapolate a sample beyond a doubling of its reference

sample size, based on the suggested base sample size.

For those samples, we should be cautious in estimating

quantitative differences in species richness (q¼ 0) among

assemblages, although inferences about diversities of q �
1 are reliable.

FIG. 6. (a) Sample-size-based rarefaction (solid lines) and extrapolation (dashed lines, up to double the reference sample size) of
tropical ant diversity from Costa Rica for Hill numbers (q¼ 0, 1, 2) for each of the five elevations. The 95% confidence intervals
were obtained by a bootstrap method based on 200 replications. Reference samples are denoted by solid dots. The numbers in
parentheses are the sample size and the observed Hill numbers for each reference sample. (b) Comparison of sample-size-based
rarefaction (solid line) and extrapolation (dashed line) curves with 95% confidence intervals for Hill numbers q¼0 (left panel), q¼1
(middle panel), and q ¼ 2 (right panel). All curves were extrapolated up to the base sample size of 599. Reference samples are
denoted by solid dots. The numbers in parentheses are the sample size and the observed Hill numbers for each reference sample.
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In our formulation of a diversity accumulation curve,

we define the expected diversity of a finite sample of size

m as the Hill numbers based on the expected abundance

frequency counts fE [ fk(m)]; k ¼ 1, . . . , mg. Our
proposed theoretical formula is given in Eq. 6. An

alternative definition would be the average Hill numbers

over many samples of size m taken from the entire

assemblage. Although the two approaches generally

yield very close numerical values, our approach has two
main advantages. We have shown (see summaries in

Tables 1 and 2) that accurate estimators via estimation

of frequency counts can be obtained for our approach.

However, it is difficult to accurately estimate the

alternative formula of the expected Hill numbers;

usually algorithmic methods are needed. Another
advantage is that all transformations between diversity

measures are valid for any size m under our formulation.

For example, Hill number of order 2 for any sample size

m is exactly the inverse of the Simpson concentrations

for the same size when all are based on the same
expected frequencies. This is important because all

diversity measures give consistent comparisons. If we

use the alternative approach, then such transformations

will not be exactly valid, and different measures may

produce different comparative results. As proved in

Propositions D1 in Appendix D, the two approaches are
identical for species richness, and the same conclusion is

valid for expected sample coverage.

Rarefaction and extrapolation aim to make fair

comparisons among incomplete samples. Sample-size-

based rarefaction and extrapolation, in which the

samples are all standardized to an equal size, provide

useful sampling information for a range of sizes.

Coverage-based rarefaction and extrapolation, in which

all samples are standardized to an equal coverage,

ensure that we are comparing samples of equal
completeness over a range of coverages. Taken together,

these two types of curves allow us to make more robust

and detailed inferences about the sampled assemblages.

Our approach provides a unifying sampling framework

for species diversity studies and allows for objective
comparisons of multiple assemblages.

For species richness (q¼ 0), if the expected sample-size-
based species accumulation curves of two assemblages do

not cross for any finite sample size .1, then the expected

coverage-based species accumulation curves for these two

assemblages also do not cross at any finite coverage ,1

beyond the base point (Chao and Jost 2012). The reverse
is also true. Thus, the two types of curves for species

richness always give the same qualitative ordering of

species richness. If crossing occurs, then the sample-size-

and coverage-based curves have exactly the same number

of crossing points. However, for species richness, the

coverage-based method is always more efficient (requiring
smaller sample sizes in each assemblage) than the

traditional method for detecting any specific crossing

point (Chao and Jost 2012). The two types of curves can

exhibit different patterns and yield different diversity

ordering for q¼1 (Shannon diversity) and q¼2 (Simpson
diversity). An example of the case of q¼ 2 is illustrated in

Figs. 3b and 5b. The sample-size-based curves for q¼2 in

Fig. 3b do not intersect, but the coverage-based curves for

q¼ 2 in Fig. 5b cross twice. Appendix J gives an example

for the case of q¼ 1. There is another difference between

FIG. 7. Plot of sample coverage for rarefied samples (solid lines) and extrapolated samples (dashed line) with 95% confidence
intervals for tropical ants sampled from five sites (data from Longino and Colwell [2011]). Each curve was extrapolated up to a
doubling of its reference sample size (the extrapolated curve for the 500-m site was cut off at 700 and, thus, is not completely
shown). Reference samples are denoted by solid dots.
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the sample-size- and coverage-based standardization

methods. As proved in Appendix D, the expected

diversity of any order obeys a replication principle only

when coverage is standardized.

In biodiversity studies, ecologists are interested in

measuring not only diversity, but also evenness and

inequality (Ricotta 2003). Jost (2010) used partitioning

theory to derive Hill’s (1973) useful class of evenness

measures, the ratios of Hill numbers qD and species

richness, qD/S for q . 0, and he showed that the ratio of

the logarithms of Hill numbers and logarithm of richness,

log(qD)/log(S), including Pielou’s (1975) J0 ¼ log(1D)/

log(S ), express the corresponding relative evenness. These

two classes of measures have been difficult to accurately

estimate statistically from samples due to their strong

dependence on species richness, and thus on sample size.

Jost (2010) suggested estimating both S and Hill numbers

at fixed coverage to obtain meaningful estimates of

evenness and inequality indices. Based on the theory

developed in this paper, we are now able to analytically

estimate evenness and inequality indices at fixed sample

size or sample coverage. This will be an important

application of our proposed theory; see Tables 1 and 2 for

a summary of our analytic formulas.

FIG. 8. (a) Coverage-based rarefaction (solid lines) and extrapolation (dashed lines) plots with 95% confidence intervals for
tropical ant diversity based on Hill numbers (q ¼ 0, 1, 2) for five elevations. Reference samples are denoted by solid dots. The
extrapolation is extended to the coverage value for a doubling of the size of each reference sample. The numbers in parentheses are
the sample coverage and the observed Hill numbers for each reference sample. (b) Comparison of the coverage-based rarefaction
(solid lines) and extrapolation (dashed lines), up to a base coverage of 99.64% for tropical ant diversity samples using Hill numbers
of order q ¼ 0 (left panel), q ¼ 1 (middle panel), and q ¼ 2 (right panel), with 95% confidence intervals based on 200 bootstrap
replications. Reference samples in each plot are denoted by solid dots. The numbers in parentheses are the sample coverage and the
observed Hill numbers for each reference sample. Note that some confidence intervals in panels (a) and (b) are very narrow so that
they are almost invisible.
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In addition to Hill numbers, there are two other

widely used classes of measures: Renyi and Tsallis

generalized entropies (Patil and Taillie 1979, 1982).

These measures are simple transformations of Hill

numbers; see Jost (2007). Hurlbert (1971) suggested

another unified class of species diversity indices, defined

as the expected number of species in a sample of m

individuals selected at random from an assemblage. The

relationship between Hill numbers and Hurlbert’s

indices has not been clear to ecologists (Dauby and

Hardy 2011). In Appendix I, we show that these two

classes of infinity orders are mathematically equivalent,

in the sense that they contain the same information

about biodiversity. Moreover, given a reference sample,

sample-size-based rarefaction and extrapolation formu-

las (Colwell et al. 2012) for species richness provide

estimates of Hurlbert’s indices. Thus, our proposed

sample-size- and coverage-based rarefaction/extrapola-

tion sampling framework for Hill numbers includes the

information and estimators of all Hurlbert’s indices and

provides a unified approach to quantifying species

diversity.

The slope of a sample-size-based expected species

accumulation curve or a rarefaction/extrapolation curve

also provides important information. The slope at the

base point in the species accumulation curve or

rarefaction curve is closely related to the Simpson

diversity and to Hurlbert’s (1971) Probability of an

Interspecific Encounter (PIE) measure (Olszewski 2004).

The slope at any other point is closely related to the

complement of coverage (Chao and Jost 2012). For

coverage-based curves, see Appendix I for similar

findings. In Appendix K, we consider different sampling

schemes and discuss the relationship between the

expected species accumulation curve, Simpson diversity,

and PIE.

For Hill numbers, only species relative abundances

are involved. Species absolute abundances play no role

in traditional diversities. From the perspective of

measuring ecosystem function, Ricotta (2003) argued

that if two assemblages have the same relative abun-

dances, the one with larger absolute abundances should

be considered more diverse. We are currently working

on extending Hill numbers to include absolute abun-

dances of species. The associated rarefaction and

extrapolation functions for absolute-abundance Hill

numbers also merit further research. Finally, this paper

has focused on traditional Hill numbers, which do not

take species evolutionary history into account. Chao et

al. (2010) generalized Hill numbers to a class of

measures that incorporate phylogenetic distances be-

tween species. It is worthwhile to extend this work to

rarefaction and extrapolation of phylogenetic and

functional diversity measures (Walker et al. 2008,

Ricotta et al. 2012).

All the rarefaction and extrapolation estimators

proposed in this paper are featured in the online

freeware application iNEXT (iNterpolation/EXTrapo-

lation; personal communication). The R scripts for

iNEXT have been posted in the Supplement, and will

also be available in the R CRAN packages (available

online).9 Sample-size-based rarefaction and extrapola-

tion estimators for richness (q¼ 0, in Tables 1 and 2) are

computed by EstimateS Version 9 (R. Colwell, available

online, see footnote 8).
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SUPPLEMENTAL MATERIAL

Appendix A

A binomial product model can incorporate spatial aggregation for quadrat sampling (Ecological Archives M084-003-A1).

Appendix B

Rarefaction and extrapolation for species richness (abundance data) (Ecological Archives M084-003-A2).

Appendix C

Rarefaction and extrapolation for species richness (incidence data) (Ecological Archives M084-003-A3).

Appendix D

Proof details for some formulas (Eqs. 5, 8, 9b, 11a, and 11b of the main text) and a replication principle (Ecological Archives
M084-003-A4).

Appendix E

Extrapolation formulas for Hill numbers of q ¼ 1 and q � 2 based on abundance data (Ecological Archives M084-003-A5).

Appendix F

Using simulation to test the proposed analytic estimators (Ecological Archives M084-003-A6).

Appendix G

A bootstrap method to construct an unconditional variance estimator for any interpolated or extrapolated estimator (Ecological
Archives M084-003-A7).

Appendix H

Rarefaction and extrapolation of Hill numbers for incidence data (Ecological Archives M084-003-A8).

Appendix I

Hill numbers and Hurlbert’s indices (Ecological Archives M084-003-A9).

Appendix J

An example: sample-size- and coverage-based Shannon diversity curves may exhibit inconsistent patterns (Ecological Archives
M084-003-A10).

Appendix K

Probability of an Interspecific Encounter (PIE) and rarefaction (Ecological Archives M084-003-A11).

Supplement

R code for the analysis of individual-based (abundance) and sample-based (incidence) species diversity data (Ecological Archives
M084-003-S1).

Data Availability

Data associated with the spider worked example in this paper are available in the Harvard Fotrest LTER archive: http://
havardforest.fas.harvard.edu:8080/exist/xquery/data.xq?id=hf177
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