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Ecological and biogeographic null hypotheses for comparing
rarefaction curves
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Abstract. The statistical framework of rarefaction curves and asymptotic estimators
allows for an effective standardization of biodiversity measures. However, most statistical
analyses still consist of point comparisons of diversity estimators for a particular sampling
level. We introduce new randomization methods that incorporate sampling variability
encompassing the entire length of the rarefaction curve and allow for statistical comparison of
i �2 individual-based, sample-based, or coverage-based rarefaction curves. These methods
distinguish between two distinct null hypotheses: the ecological null hypothesis (H0eco) and the
biogeographical null hypothesis (H0biog).

H0eco states that the i samples were drawn from a single assemblage, and any differences
among them in species richness, composition, or relative abundance reflect only sampling
effects. H0biog states that the i samples were drawn from assemblages that differ in their species
composition but share similar species richness and species abundance distributions. To test
H0eco, we created a composite rarefaction curve by summing the abundances of all species
from the i samples. We then calculated a test statistic Zeco, the (cumulative) summed areas of
difference between each of the i individual curves and the composite curve. For H0biog, the test
statistic Zbiog was calculated by summing the area of difference between all possible pairs of
the i individual curves. Bootstrap sampling from the composite curve (H0eco) or random
sampling from different simulated assemblages using alternative abundance distributions
(H0biog) was used to create the null distribution of Z, and to provide a frequentist test of
Z jH0. Rejection of H0eco does not pinpoint whether the samples differ in species richness,
species composition, and/or relative abundance.

In benchmark comparisons, both tests performed satisfactorily against artificial data sets
randomly drawn from a single assemblage (low Type I error). In benchmark comparisons with
different species abundance distributions and richness, the tests had adequate power to detect
differences among curves (low Type II error), although power diminished at small sample sizes
and for small differences among underlying species rank abundances.

Key words: biogeography; community ecology; Hill numbers; rarefaction; relative abundance; species
composition; species diversity; statistical test.

INTRODUCTION

Quantifying biodiversity and comparing diversity

among samples is a key activity in ecology and

conservation biology (Magurran and McGill 2011), as

well as in emerging ‘‘-omics’’ subdisciplines (i.e.,

genomics, proteomics, metabolomics; Gotelli et al.

2012). Biodiversity metrics typically reflect species

richness and relative abundance, but many indices can

be extended to encompass measures of phylogenetic

(Chao et al. 2010), functional (Villeger et al. 2008), or

trait (Violle et al. 2007) diversity. Most diversity indices

are sensitive to sampling effort, and will continue to

increase, albeit more and more slowly, as more samples

or individuals are collected (Gotelli and Colwell 2001).

Even when standardized sampling protocols are used,

the abundance of organisms per sample can often differ

substantially (Stevens and Carson 1999), which compli-

cates the direct comparison of diversity among samples

(James and Wamer 1982).

In theory, these sampling effects can be overcome by

collecting additional samples or individuals until the

species accumulation curve reaches an asymptote;

additional sampling beyond the asymptote will not add

more species and will not change the relative abundance

distribution (Gotelli and Chao 2013). In practice, most

biodiversity samples lie substantially below the asymp-

tote (Chao et al. 2009), with many rare species in the

underlying assemblage missing from the sample (Cod-

dington et al. 2009). Sampling effects can be controlled

for by randomly subsampling biodiversity data to a

standardized sampling effort (rarefaction; Hurlbert
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1971), or by extrapolating biodiversity metrics toward a

theoretical asymptote (nonparametric extrapolation

[Colwell et al. 2012, Chao et al. 2014] and nonparametric

asymptotic estimators [Colwell and Coddington 1994]).

Other methods, such as curve-fitting to the species

accumulation curve (Soberon and Llorente 1993) or

fitting parametric models to the species abundance

distribution (Connolly et al. 2009), have usually not

performed as well as rarefaction, nonparametric extrap-

olation, or asymptotic estimators (Brose et al. 2003,

Walther and Moore 2005).

Colwell et al. (2012) recently unified the statistical

framework for rarefaction, extrapolation, and asymp-

totic estimators, and showed that a single curve (with an

expectation and an unconditional variance) represents

the statistical expectation of the accumulation curve of

species richness, for both rarefaction and extrapolation.

Chao et al. (2014) extended these results to other

diversity metrics in the family of Hill numbers (Hill

1973). Biodiversity sample data from different assem-

blages can then be effectively compared based on a

standardized number of individuals (Gotelli and Colwell

2001), a standardized number of samples (Colwell et al.

2004), or a standardized coverage level (Chao and Jost

2012).

In spite of these recent advances, most diversity

comparisons are made at a single level of sampling

effort. For rarefaction, curves are typically compared at

the abundance of the smallest sample in the collection,

whereas asymptotic estimators represent, by definition,

the diversity that would be expected at 100% sample

coverage. Point comparisons of rarefaction curves can

be problematic because diversity of all samples dimin-

ishes and converges at small sample sizes (Tipper 1979).

At the other extreme, point comparisons of asymptotic

estimators can be problematic because extrapolated

estimators often have very large variances (Colwell et

al. 2012), especially for species richness and other

metrics that are sensitive to contributions from rare

species (Chao et al. 2014). Moreover, some rarefaction

and extrapolation curves may cross one or more times,

so that the rank order of diversity measured among

samples could change depending on the sampling effort

that is used for standardized comparisons (Chao and

Jost 2012). For these reasons, simple point comparisons

of diversity at particular sample levels, which often use

parametric statistics and assume a symmetric Gaussian

distribution (Payton et al. 2003), may not be satisfac-

tory.

In this study, we develop simple randomization tests

for comparing the overall shape of two or more

individual- or sample-based rarefaction curves. In the

diversity literature, there are actually two distinct null

hypotheses that have not always been clearly distin-

guished. The ecological null hypothesis H0eco is that two

or more samples were drawn randomly from the same

underlying assemblage. If this hypothesis is true, then

heterogeneity among the samples in their composition,

species richness, and relative abundance is no greater

than would be expected by random sampling from a

single assemblage. This null hypothesis is appropriate

for samples collected at a relatively small spatial scale

that should potentially share most species. Deviations

from the ecological null hypothesis might reflect spatial

beta diversity (Anderson et al. 2011), the influence of

species interactions (Chase and Leibold 2003), habitat

filtering (Baldeck et al. 2013), mass effects (Amarasekare

and Nisbet 2001), abiotic gradients (Wilson and Tilman

1991), and other community assembly rules (Weiher and

Keddy 1999) or metacommunity processes (Leibold et

al. 2004). If the ecological null hypothesis is true,

differences among samples in species composition

should be relatively modest, and occur mostly among

the rarer species.

The biogeographical null hypothesis H0biog is that two

or more samples were drawn from assemblages that all

share a common underlying species richness and relative

abundance profile, regardless of their species composi-

tion. Therefore, heterogeneity among the samples in

their species richness or relative abundance (but not in

their species composition) is no greater than would be

expected by random sampling from a single relative

abundance distribution. This null hypothesis is appro-

priate for samples collected at larger spatial scales

(relative to the organisms), from local habitat gradients

or patches with partially shared biotas, to regions or

even whole continents, whose floras and faunas may

have evolved in relative isolation and share few or no

species, but may have been exposed to relatively similar

abiotic conditions. Deviations from the biogeographical

null hypothesis might reflect the influence of distinctive

local conditions (Qian and Ricklefs 2008), or unique

historical events, such as natural or anthropogenic

extinctions (Alroy 2010), adaptive radiation (Losos

2010), or the emergence and breakdown of biogeo-

graphic barriers (Wiens and Donoghue 2004). If the

biogeographical null hypothesis is true, species richness

and relative abundance should be relatively similar

among samples, regardless of differences in species

composition.

Axiomatic relationships exist between the ecological

and the biogeographical null hypotheses (Fig. 1).

However, the ecological null hypothesis, tested by itself,

only reveals whether samples are more different than

would be expected if they were drawn from a single

underlying assemblage. In order to understand whether

assemblages differ in species richness, species composi-

tion, or relative abundance, it is necessary to test both

the ecological and the biogeographical null hypotheses,

and to carefully compare the results of both tests. If

H0eco is not rejected, the same result should be obtained

with H0biog (Fig. 1a). However, when H0eco is rejected,

the samples from different habitats or regions may (Fig.

1b) or may not (Fig. 1c) exhibit rarefaction curves with

statistically indistinguishable profiles. Similarly, if H0biog

cannot be rejected, we may infer that the compared
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samples are similar regarding richness and relative
abundance, regardless of whether they share most

(Fig. 1a), few, or no (Fig. 1b) species, but samples for

which the biogeographic null hypothesis is rejected will

also, necessarily, appear nonrandom when compared to

the ecological null hypothesis (Fig. 1c). For examples,

biotas from tropical rainforests of Africa and Asia might

differ completely in species composition (few or no
shared species), but might exhibit similar species

richness and species relative abundance because of

constraints imposed by similar climates. If so, samples

from the two continents would reject H0eco, but might

not reject H0biog. If both null hypotheses are rejected,

then the assemblages differ in species composition, as

well as in species richness and relative abundance.

In this study, we developed randomization algorithms

to test both the ecological and the biogeographical null

hypotheses with sample- or individual-based ecological
data. This broadens the scope of rarefaction curves to

test relevant null hypotheses regarding community

structure. If sample sizes are equal, our results may be

similar to those obtained with multivariate approaches,

such as distance-based dissimilarity measurements

(Legendre and Gallagher 2001, Clarke et al. 2006, De

Cáceres et al. 2013). However, it is often the case that
comparisons are desired for data that are unequally

sampled, in which case randomization tests based on

rarefaction may offer some distinct advantages.

To evaluate the performance of these algorithms and

their vulnerability to Type I or Type II statistical error,

we applied them to a series of artificial benchmark data

sets that were either drawn from the same assemblage,

or drawn from multiple assemblages that differed

systematically in their species composition, richness, or

relative abundance distributions. Finally, we illustrated

the use of these methods in an analysis of forest tree data

from six 20–52-ha plots in tropical regions around the

world, and to a smaller-scale transect survey of trees in

montane cloud forests sampled in three regions of

Chiapas, southern Mexico.

METHODS

Notation and organization of biodiversity data

Following Colwell et al. (2012) and Gotelli and Chao

(2013), we use a common set of notation to describe

biodiversity sampling data. Consider a complete assem-

blage for which all species and their relative abundances

are known. In this complete assemblage, there are i¼ 1

to S species and N* total individuals, with Ni individuals

of species i. For individual-based (abundance) data, the

reference sample consists of n individuals drawn at

random from N*, with Sobs species present, each

represented by Xi individuals. Individual-based data

can be represented as a single vector of length Sobs, the

elements of which are the observed abundances Xi.

For sample-based incidence data, the reference sample

consists of a set of T standardized sampling units, such

as traps, plots, transect lines, etc. Within each of these

sampling units, the presence (1) or absence (0) of each

species are the required data, even though abundance

data may have been collected. Sample-based incidence

data can be represented as a single matrix, with i¼ 1 to

Sobs rows and j¼ 1 to T columns, and entries Wij¼ 1 or

Wij¼ 0 to indicate the presence or absence of species i in

sampling unit j.

In this study, we made extensive use of rarefaction

curves for both individual- and sample-based data. In

the past, rarefaction curves have been estimated by

repeated subsampling, but it is no longer necessary.

FIG. 1. Relationships between the ecological (H0eco) and the biogeographical (H0biog) null hypotheses. Note that the H0eco

encompasses three properties of ecological communities: species composition, richness, and relative abundance (outer circle),
whereas the H0biog only comprises two out of these three properties, namely species richness and relative abundance (inner shaded
circle). (a) If two or more samples are drawn from the same assemblage, their species composition, richness, and relative abundance
will be similar, and both the H0eco and the H0biog will be accepted. (b) If samples are drawn from two assemblages with similar
species richness and relative abundance but different species composition, the H0eco will be rejected, whereas the H0biog will not. (c)
If samples are drawn from two assemblages with different species composition and either different species richness, relative
abundance, or both, then both H0eco and the H0biog will be rejected.
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Instead, we used analytical expressions for rarefaction

curves recently consolidated from previous work or

newly derived by Chao et al. (2014). For each reference

sample (or pseudosample), equations from Tables 1 and

2 of Chao et al. (2014) were used to generate,

analytically, the expected diversity and sample coverage

for each level of subsampling (Appendix A).

Rarefaction curves and diversity indices

We present results for standard rarefaction curves, in

which the x-axis is either the abundance (individual-

based) or number of samples (sample-based). In

addition, we also carried out all analyses using the

estimated coverage of either abundance or number of

samples as the x-axis in the sampling curve (Chao and

Jost 2012). Coverage is defined as the proportion of total

individuals or samples from the complete assemblage

that is represented by the species present in the sample

or subset of samples. Rescaling the data to estimated

coverage may provide a more powerful comparison of

rarefaction curves (Chao and Jost 2012). Coverage

analyses were conducted for both individual- and

sample-based rarefaction.

We present results for all tests using species richness as

the diversity index. Although species richness is the most

popular diversity index, it is quite sensitive to sample

size (Gotelli and Colwell 2001), and does not incorpo-

rate information on species abundances. Species rich-

ness, itself, is part of a mathematical series of diversity

indices known as Hill numbers (Hill 1973), which can be

algebraically transformed into familiar diversity indices,

but have better statistical properties (Chao et al. 2014).

The order q of the Hill number determines the weighting

given to more common species, with species richness

defined by q ¼ 0. In the supplementary material

(Appendix B), we present results of parallel tests for

all analyses of Hill numbers q¼ 1 (exponential Shannon

index), and q ¼ 2 (the ‘‘inverse’’ Simpson index).

All of the tests described have been implemented in

the accompanying ‘‘rareNMtests’’ package (Supplement;

Cayuela and Gotelli 2014) for R (R Development Core

Team 2013).

Ecological null hypothesis

In early studies on rarefaction, the original null

hypothesis was that species richness in a small collection

(a subsample of a specified size) could be viewed as a

random subset of a larger collection (the reference

sample; Simberloff 1979). However, the null hypothesis

that ecologists usually want to ask is whether two or

more reference samples (or subsamples of them) could

be viewed as random draws from a single assemblage

(Gotelli and Colwell 2011). This comparison is more

challenging because it requires some estimate of the

unconditional variance associated with sampling from

the true assemblage (Colwell et al. 2004), rather than

just the conditional variance associated with subsam-

pling from the largest sample in the collection.

In this study, the ecological null hypothesis H0eco is

that two (or more) reference samples, represented by

either abundance or incidence data, were both drawn

from the same assemblage of N* individuals and S

species. Therefore, any differences among the samples in

species composition, species richness, or relative abun-

dance reflect only random variation, given the number

of individuals (or sampling units) in each collection. The

alternative hypothesis, in the event that H0eco cannot be

rejected, is that the sample data were drawn from

different assemblages. If H0eco is true, then pooling the

samples should give a composite sample that is also a

(larger) random subset of the complete assemblage. It is

from this pooled composite sample that we make

random draws for comparison with the actual data.

EcoTest metric

We begin by plotting the expected rarefaction curves

for the individual samples (Fig. 2a) and for the pooled

composite sample (Fig. 2b). Next, for each individual

sample i, we calculate the cumulative area Ai between

the sample rarefaction curve and the pooled rarefaction

curve (Fig. 2c). For a set of i¼ 1 to K samples, we define

the observed difference index

Zobs ¼
XK

i¼1

Ai:

Note that two identically shaped rarefaction curves

may nevertheless differ from the curve for the pooled

sample. This difference can arise because species

identities in the individual samples are retained in the

pooled composite sample, which affects the shape of the

pooled rarefaction curve. See Crist and Veech (2006) for

a similar approach to partitioning b diversity.

EcoTest randomization algorithm

The data are next reshuffled by randomly reassigning

every individual to a reference sample (for abundance

data) or every sampling unit to a reference sample (for

incidence data), and preserving the original sample sizes

(number of individuals for abundance data, and number

of sample units for incidence data). From this random-

ization, we again construct rarefaction curves and

calculate Zsim (Fig. 2d) as the cumulative area between

the rarefaction curves of the randomized samples and

the composite rarefaction curve. This procedure is

repeated many times, leading to a distribution of Zsim

values and a 95% confidence interval (Fig. 1e). The

position of Zobs in the tail of this distribution is used as

an estimate of the probability to randomly obtain this

value given the null distribution of the cumulative area

between the rarefaction curves of the randomized

samples and the composite rarefaction curve, i.e.,

p(Zobs jH0eco). Large values of Zobs relative to the null

distribution imply that observed differences among

samples in species composition, richness, and/or relative

LUIS CAYUELA ET AL.440 Ecological Monographs
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abundance are improbable if the samples were all drawn

from the same assemblage.

Biogeographical null hypothesis

In a discussion of the properties of rarefaction curves,

Simberloff (1979) noted that differences in species

composition can obviously lead to rejection of H0eco,

even if the rarefaction curves have similar profiles: ‘‘But

since rarefaction uses only the species-individuals’

distributions, and not the species’ names, it makes little

sense to rarefy a large sample to compare it to some

smaller sample if the species in the two samples are very

different. If a large sample consists primarily of

butterflies and a smaller one is mostly moths, we do

not need rarefaction to tell us that the smaller could not

reasonably be viewed as a random draw from the

larger . . .’’

For this reason, one of the stated assumptions of

traditional rarefaction was that the species lists being

compared are ‘‘taxonomically similar’’ (Tipper 1979,

Gotelli 2008). But in many biogeographic comparisons,

it is already known that the species composition is

different, yet we wish to assess whether two or more

reference samples differ in richness or other measures of

diversity. The question of interest is not ‘‘were two or

more samples randomly drawn from the same underlying

species assemblage?’’ but ‘‘does species richness (or any

other diversity metric) differ among reference samples

FIG. 2. Schematic representation of the EcoTest metric and algorithm: (a) rarefaction curves for the individual samples; (b)
rarefaction curve of the pooled composite sample; (c) test statistic Zobs is calculated as the cumulative area Ai between each
individual sample rarefaction curve and the pooled rarefaction curve; (d) data are reshuffled by randomly reassigning every
individual to a reference sample (for abundance data) or every sampling unit to a reference sample (for incidence data), while
preserving the original sample sizes (number of individuals for abundance data and number of sample units for incidence data).
From this randomization, we again construct rarefaction curves and calculate Zsim as the cumulative area between the rarefaction
curves of the randomized samples and the composite rarefaction curve; (e) this procedure is repeated many times, leading to a
distribution of Zsim values and 95% confidence intervals. The position of Zobs in the tail of this distribution is used as an estimate of
p(Zobs jH0eco). For the purposes of illustration, the composite curve is portrayed as extending only a small distance beyond the two
reference samples. However, in the actual analyses, the x-axis for the composite sample must be the sum of the sampling effort for
each of the reference samples, so it would extend much further to the right. However, the test statistic is only based on the portion
of the composite curve that overlaps with the rarefaction curves of the individual samples. The tables are included solely as visual
aids; all data presented is completely arbitrary.
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after adjusting for differences in abundance or sampling

effort?’’ The biogeographical null hypothesis (H0biog) is

that, regardless of differences in species composition, the

profiles of two or more rarefaction curves are similar

enough that they might have been drawn from assem-

blages that do not differ significantly in richness or in

underlying species abundance distribution.

BiogTest metric

We were not able to devise a BiogTest based on a

composite sample that was strictly analogous to the

EcoTest. Instead, we constructed both a different metric

and a different algorithm to test H0biog. To do so, we

first calculated as a test statistic the summed area

between all unique pairs ab of the K sample rarefaction

curves (Fig. 3a, b)

Zobs ¼
XK

a¼1;b¼1

Aab:

If H0biog is true, then Zobs should be relatively small

because all of the rarefaction curves should have similar

profiles, regardless of their species composition. In the

limit, if all of the rarefaction curves had an identical

profile, Zobs would equal 0.

BiogTest randomization algorithm

To construct the null distribution, we created random

assemblages by sampling from a presumed underlying

species abundance distribution. Of the many possible

distributions, including the log-series, log-normal, and

broken stick, which distribution should be used? For our

purposes, the log-normal distribution has some advan-

FIG. 3. Schematic representation of the BiogTest metric and algorithm: (a) expected rarefaction curves for the individual
samples; (b) test statistic Zobs is calculated as the cumulative area between all unique pairs ab of K sample rarefaction curves; (c) the
null distribution is constructed by creating random assemblages from a family of log-normal abundance distributions. The
parameters of each of these distributions were set to specify a suite of distributions that might act as a reasonable sampling
universe. Random samples are then drawn from each of the simulated assemblages, and Zsim is calculated as the cumulative area
between all K unique pairs ab of the randomized sample rarefaction curves; (d) this procedure is repeated many times, leading to a
distribution of Zsim values and a 95% confidence interval. The position of Zobs in the tail of this distribution is used as an estimate
of p(Zobs jH0biog). The tables are included solely as visual aids; all data presented is completely arbitrary.
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tages: (1) for some parameter values, the log-normal

generates a typical right-skewed distribution (many rare

species, and a few common species) typical of well-

sampled assemblages (Preston 1962a, b), (2) abundance

and occurrence data collected for many taxa at widely

different spatial scales often conform to an approximate

log-normal distribution (Ulrich et al. 2010), (3) log-

normal distributions approximate the species abundance

distribution of important mechanistic models, including

the neutral model (McGill et al. 2006) and stochastic

versions of some niche partitioning models (Tokeshi

1993), and (4) depending on the underlying parameter

values and the sample sizes, the log-normal can also

generate species abundance profiles that resemble a log

series or geometric series of abundances (Wilson 1993,

McGill et al. 2007). Whether the log-normal distribution

itself is caused by species interactions or reflects neutral

processes or sampling intensity is still open to debate

(McGill 2003, Sugihara et al. 2003), but is immaterial for

our purposes here.

The statistical parameters of the log-normal rank

abundance distribution are the number of species in the

assemblage and the variance of the distribution; the

latter controls the differences in abundance between

common and rare species. If these underlying parame-

ters are known, then sample size effects can be estimated

by random sampling of individuals from the specified

distribution. However, it is very difficult to directly

estimate these parameters from a sample or set of

samples (O’Hara 2005). Instead, we generated a suite of

log-normal distributions that, taken together, might act

as a reasonable sampling universe for comparison with a

set of reference samples to test the biogeographic null

hypothesis. Our strategy was to specify a distribution for

each of the two parameters in the log-normal: species

number and variance. As in a random-effects model

(Zuur et al. 2009), each replicate of the null distribution

reflects a single sample from a log-normal distribution in

which the two model parameters were first determined

by random assignment.

For the lower boundary of species richness, the

minimum possible value cannot be smaller than the

maximum number of species observed in the richest

single sample among a set of samples. For the upper

boundary of species richness, we calculated the upper

bound of the Chao1 95% confidence interval (Chao

1984) for asymptotic species richness of each sample.

The number of species in each null assemblage was then

set as a random draw from a uniform distribution

bounded at the low end by the maximum observed S and

bounded at the high end by the maximum upper bound

of the Chao1 95% confidence interval.

For the standard deviation of the log-normal, we

sampled a random uniform value between 1.1 and 33

(0.1 and 3.5 on a natural logarithm [henceforth referred

to as ln] scale). For empirical assemblages, standard

deviations typically fall within this range (Limpert et al.

2001). Once the null assemblage was specified by

selection of parameters for species richness and the

standard deviation, we sampled (with replacement) the

specified number of individuals for each sample in an

individual-based data set (Fig. 3c). For incidence data,

we sampled (without replacement) the observed number

of species in each sampling unit (i.e., total number of

incidences), with sample probabilities set proportional

to relative abundances in the log-normal distribution.

For example, if 15 species were observed in one sampling

unit, the equivalent sampling unit in the simulated data

set should also contain 15 species, though not necessar-

ily the same ones. We then used the analytic formulas in

Chao et al. (2014) to construct the rarefaction curves for

each of the pseudosamples. The analysis from this point

forward is the same as for the EcoTest. Namely, we

generated a distribution of Zsim and compared it to Zobs

to estimate p(Zobs jH0biog) (Fig. 3d).

The BiogTest can be used for other species abundance

distributions (other than the log-normal) to construct

the null distribution test, namely the broken stick and

geometric series distributions. We used the broken stick

because it is the most even of all species abundance

distributions, whereas the geometric series can generate

highly uneven distributions (Magurran 2003). For the

broken stick, the number of species in the assemblage

must first be known, then a random partition is made to

define the relative abundance of each species. For the

geometric series, two parameters are needed: the number

of species in the assemblage and a constant ratio D (D ,

1), which determines the abundance of the next species

in the sequence. In the geometric series, D was obtained

by sampling a random uniform value between 0.1 and 1.

In all cases, the number of species (S ), as in the log-

normal distribution, was obtained by randomly drawing

from a uniform distribution that was bounded at the low

end by the maximum observed S and at the high end by

the maximum upper bound of the 95% confidence

interval for Chao1.

To better mimic the sampling process, a negative

binomial random error was added to the abundance

counts every time a sample was randomly drawn from

the simulated assemblage. The negative binomial

distribution was used to generate realistic heterogene-

ity that often results from spatial clustering of

individuals and other small-scale processes (Green

and Plotkin 2007, Bolker 2008). The expectation l of

the negative binomial was represented by the abun-

dance count of each species in the assemblage (see

example in the Supplement). The variance of the

negative binomial is

var ¼ lþ l2

k

where k is the dispersion parameter. For every species,

k was randomly drawn from a uniform distribution

between 0.01 and 25 each time a sample was drawn

from the assemblage.
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Evaluation of the algorithms

Before a new randomization method is applied to

empirical data, its performance needs to be evaluated

with artificial data sets that have specified characteristics

(Gotelli and Ulrich 2012). Two properties are desirable

for our statistical tests of differences in rarefaction

curves. First, when the tests are confronted with samples

that are drawn from the same assemblage, they should

not reject the null hypothesis too frequently; we apply a

traditional Type I error (a) criterion of 5%. Second,

when these tests are confronted with samples drawn

from assemblages that differ in species composition,

richness, or relative abundance, they should not accept

the null hypothesis too frequently, that is, the probabil-

ity of committing a Type II error (b) should be low.

There is no accepted standard for the level of power of a

test (1 � b), but a value of 0.8 (the null hypothesis is

correctly rejected 80% of the time) has been suggested

(Cohen 1992). However, power analysis is rarely

conducted in ecological studies (Toft and Shea 1983),

because in most cases it requires specification of an

alternative hypothesis and an effect size that can be

detected by the test. In this case, the alternative is

specified: samples were drawn from multiple assemblag-

es. We do not explicitly define an effect size, but that size

is determined by the expected area difference (Z ) among

rarefaction curves derived from assemblages that were

defined by random parameter values (as specified earlier)

for the log-normal distribution.

Simulation scenarios and benchmark tests

To study the performance of the proposed EcoTest

and BiogTest, we estimated the frequency of Type I and

Type II statistical errors in four different groups of

scenarios (Fig. 4; Appendix B): (1) drawing random

samples from the same assemblage (Benchmark tests 1,

2, 9), (2) drawing random samples from two assemblages

with different species composition but similar species

richness and relative abundance (Benchmark tests 3, 4,

10), (3) drawing random samples from two assemblages

with different species richness, but similar composition

and relative abundance (Benchmark tests 5, 6, 11), and

(4) drawing random samples from two assemblages with

different relative abundances of species, but similar

composition and species richness (Benchmark tests 7, 8,

12). For each group of scenarios, three benchmark tests

were conducted depending on the sampling scheme: (1)

two individual-based rarefaction curves that were drawn

either from the same assemblage (Benchmark test 1) or

from two different assemblages (Benchmark tests 3, 5, 7)

were compared, (2) more than two individual-based

rarefaction curves that were derived from either the

same assemblage (Benchmark test 2) or from two

different assemblages (Benchmark tests 4, 6, 8) were

compared, and (3) two sample-based rarefaction curves

that were derived from either the same assemblage

(Benchmark test 9) or from two different assemblages

(Benchmark tests 10, 11, 12) were compared.

FIG. 4. Illustration of the four different groups of benchmark tests that were created to study the performance of the EcoTest
and BiogTest methods: (1) samples drawn from the same assemblage; (2) samples drawn from assemblages with different species
composition, but similar species richness and relative abundance; (3) samples drawn from two assemblages with different species
richness, but similar composition and relative abundance; and (4) samples drawn from two assemblages with different relative
abundance of species, but similar composition and species richness. For each group of scenarios, three benchmark tests were
conducted depending on the sampling scheme: two individual-based rarefaction curves were compared (left column); more than
two individual-based rarefaction curves were compared (middle column); and two sample-based rarefaction curves were compared
(right column).
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We created sets of artificial data matrices for each

scenario and sampling scheme, for which carefully

selected, contrasting parameter combinations were used

(Table 1). For those tests in which no rejection of the

null hypothesis was expected, we estimated the proba-

bility of incorrectly rejecting H0 as the proportion of

matrices for which P values were below the standard

0.05 threshold, based on 200 randomizations of each

matrix (i.e., Type I error). For those tests in which

rejection of the null hypothesis was expected, we

estimated the probability of incorrectly failing to reject

H0 as the proportion of matrices for which P values were

above the standard 0.05 threshold, based on 200

randomizations of each matrix (i.e., Type II error).

Although it is common to use 1000 or more random-

izations in null model tests (Manly 2006), we found

consistent results with 200 randomizations.

Parameters of the simulated artificial assemblages

such as the mean species richness or evenness (measured

as the standard deviation of the log-normal) were fixed

in some scenarios, but in others were allowed to vary

randomly among the artificial matrices (Table 1). Fixed

values of richness of 50 and 150 species were used for

Scenarios 5, 6, and 11, which were designed to test for

differences in species richness. Note that these species

richness levels refer to the assemblage from which the

samples were drawn. Differences in species richness

among the sampled matrices (which have fewer individ-

uals or samples than the entire assemblage) were much

smaller, with an average difference between pairs of

samples of 43.7 species and a 95% confidence interval of

3–96 species. In other scenarios, species richness varied

within each matrix, and was selected randomly from

within a uniform range of 10–200 species. A fixed

difference of the standard deviation of one unit on a ln

scale was used for Scenarios 7, 8, and 12, which were

designed to test for differences in the rank abundance

distribution. In all other scenarios, the standard

deviation of the log-normal did not vary among the

assemblages, and was chosen randomly from a uniform

range of 0.1–3.5 on a ln scale (values based on Limpert

et al. [2001]).

The extent of sampling was also allowed to vary

randomly to represent realistic sampling differences that

might be found in typical biodiversity surveys (Table 1).

In individual-based scenarios for which only two sites

TABLE 1. Description of the 12 benchmark tests performed to estimate Type I and II error using simulated communities.

Test

Expected output Parameters of the simulated assemblages Extent of sampling

IterationsEcoTest BiogTest Assemblages Richness SD N S

Individual based

1 H0 H0 1 [10, 200] [0.1, 3.5] 2 [50, 1000] þ ei 750
2 H0 H0 1 100 2.45 [2, 15] 500 þ ei 250
3 H1 H0 2 [10, 200] [0.1, 3.5] 2 [50, 1000] þ ei 750
4 H1 H0 2 100 2.45 [2, 15] 500 þ ei 250
5
1 H1 H1 1 50 [0.1, 3.5] 2 [50, 1000] þ ei 750
2 H1 H1 1 150

6
1 H1 H1 1 50 2.45 [2, 15] 500 þ ei 250
2 H1 H1 1 150

7
1 H1 H1 1 [10, 200] [0.1, 3.5] 2 [50, 1000] þ ei 750
2 H1 H1 1 [0.1, 3.5] 6 1 2

8
1 H1 H1 1 100 [0.1, 3.5] [2, 15] 500 þ ei 250
2 H1 H1 1 100 [0.1, 3.5] 6 1 [2, 15]

Sample based

9 H0 H0 1 100 [0.1, 3.5] [10, 50] 500 þ ei 750
10 H1 H0 2 100 [0.1, 3.5] [10, 50] 500 þ ei 750
11
1 H1 H1 1 50 [0.1, 3.5] [10, 50] 500 þ ei 750
2 H1 H1 1 150 [0.1, 3.5] [10, 50] 500 þ ei 750

12
1 H1 H1 2 100 [0.1, 3.5] [10, 50] 500 þ ei 750
2 H1 H1 2 100 [0.1, 3.5] 6 1 [10, 50] 500 þ ei 750

Notes: For each benchmark test, the required data, the expected output of the two methods, the parameters of the simulated
assemblages (number of assemblages, mean richness and standard deviation [SD; on the natural-log scale] of the underlying
distribution of relative abundances), the extent of sampling from the simulated assemblages (total number of sites, N, number of
individuals per site, S ), and the number of simulated assemblages (iterations) is indicated. Tests 5, 6, 7, 8, 9, 11, and 12 were split
into two different tests for two different assemblages. For assemblages 7, 8, and 12, assemblage 2 showed a fixed difference of the
standard deviation of one unit on a natural-log scale for assemblage compared to assemblage 1. H0, null hypothesis is accepted;H1,
null hypothesis is rejected; ei, random variation in the number of individuals in each sample, taken from a Poisson distribution
where the parameter k was set to sample size. Values in brackets indicate a range of potential values within which we get a random
value for that particular parameter (SD, N, S ).
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were compared (Scenarios 1, 3, 5, 7), the number of

individuals per site was chosen randomly between 50

and 1000 individuals in each artificial matrix. In

individual-based scenarios for which more than two

sites were compared (Scenarios 2, 4, 6, 8) and for

sample-based scenarios (9, 10, 11, 12), the number of

individuals was set constant at 500 per site. To include

some realistic sampling variation, we added a Poisson

error to the number of individuals in each sample, where

the parameter k of the Poisson distribution was set to

sample size. The number of artificial matrices generated

for each benchmark test was set at 250 (Scenarios 2, 4, 6,

8) or 750 (Scenarios 1, 3, 5, 7, 9–12). In all, 24 variations

of benchmark tests (6 for EcoTest and 18 for BiogTest)

were conducted for each artificial matrix to account for

(1) individual- or sample-based vs. coverage-based

rarefaction curves, (2) different Hill numbers (q ¼ 0, q

¼ 1, q¼ 2), (3) the use of the EcoTest and BiogTest, and

(4) different distributions of null assemblages for the

BiogTest (Table 2).

In summary, we set up four different groups of

scenarios, with three sampling schemes each, generated

either 250 or 750 artificial data matrices for each

combination of scenario and sampling scheme, and

applied 24 benchmark tests (Appendix B). All the

analyses were conducted in R (R Development Core

Team 2013) and run at the Bioportal server, a web-based

portal for data analysis that allows for parallel

processing. Computation time for the suite of different

benchmark tests ranged from two days (for comparison

of sample-based rarefaction curves) to four weeks (for

comparison of multiple individual-based rarefaction

curves). Overall, running all benchmark tests on the

different sets of artificial matrices required more than

two months of processing time at the Bioportal server.

However, the analysis of a typical data set on a personal

computer can be completed in reasonable amounts of

time. For example, on a 64-bit Intel Core laptop with 7.8

GB of memory (Intel, Santa Clara, California, USA), a

comparison with 200 iterations of two individual-based

rarefaction curves for tropical trees with ;20 000 and

15 000 individuals, and 226 and 173 species, respectively,

took 30 min for the EcoTest and 19 min for the

BiogTest. The R code used to run all benchmark tests is

available in the Supplement.

Description of case studies

In addition to the benchmark tests with artificial data

sets, we also applied the methods to two empirical data

sets, one with abundance data (i.e., individual-based

rarefaction curves) and one with incidence data (i.e.,

sample-based rarefaction curves). For the individual-

based case study, we used tree data from six 20–52-ha

plots established at several tropical sites around the

world: two plots in South America, two in Africa, and

two in Southeast Asia (Fig. 5a and Table 3). Species lists

and abundances for these plots are available at the

Center for Tropical Forest Sciences (CTFS) website. We

pooled the plot data from each site, and analyzed the

abundance of individual trees exceeding 10 cm in

diameter at breast height (DBH). The CTFS project

uses the taxonomy of the Angiosperm Phylogeny Group

for the orders and families of flowering plants (Angio-

sperm Phylogeny Group 2009). All species names were

additionally cross-checked against The Plant List using

the Taxonstand R package (Cayuela et al. 2012b) to

avoid the use of synonyms and to correct typographical

errors (The Plant List database is available online).6 We

compared individual-based rarefaction curves for Hill

numbers q ¼ 0 (i.e., species richness), q ¼ 1, and q ¼ 2

using either sample size (i.e., number of individuals) or

sample coverage. Continental patterns may reflect

constraints imposed by similar climates as well as

TABLE 2. Variations of the ecological and biogeographical null
model tests run on simulated matrices in each benchmark
test.

Test type (x-axis),
Hill number order (y-axis),

and method
Distribution of
null assemblages

Individual- or sample-based

q ¼ 0

EcoTest NA
BiogTest log-normal
BiogTest geometric
BiogTest broken stick

q ¼ 1

EcoTest NA
BiogTest log-normal
BiogTest geometric
BiogTest broken-stick

q ¼ 2

EcoTest NA
BiogTest log-normal
BiogTest geometric
BiogTest broken stick

Coverage-based

q ¼ 0

EcoTest NA
BiogTest log-normal
BiogTest geometric
BiogTest broken stick

q ¼ 1

EcoTest NA
BiogTest log-normal
BiogTest geometric
BiogTest broken stick

q ¼ 2

EcoTest NA
BiogTest log-normal
BiogTest geometric
BiogTest broken stick

Note: NA, not applicable. Hill numbers were given different
orders (q); q ¼ 0, (c, d) q ¼ 1, and (e, f ) q ¼ 2; q of the Hill
number determines the weighting given to more common
species, with species richness defined by q ¼ 0, the exponential
Shannon index shown by q¼ 1, and the inverse Simpson index
shown by q ¼ 2.

6 http://www.theplantlist.org
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differences reflecting unique histories (Ricklefs and

Schluter 1993). We used the individual-based version

of the two proposed methods with 200 iterations each to

test the ecological and biogeographical null hypothesis

within and between continents.

For the sample-based case study, we used a set of 224

circular 0.1-ha plots from tropical montane cloud

forests (see Plate 1) in three regions of the state of

Chiapas, Mexico: El Triunfo Biosphere Reserve in the

Sierra Madre (100 plots), the Highlands (38 plots;

Cayuela et al. 2006), and the Northern Mountains (86

plots; Fig. 5b; see Supplement; Ramı́rez-Marcial et al.

2001). The three regions were dominated mostly by

primary forests on top of the hills, with some chronic

low intensity human disturbances such as selective

logging, but there were also some secondary forests,

particularly in the Highlands. For these plots, incidence

records were based on trees exceeding 5 cm in DBH.

Data were obtained from the BIOTREE-NET website

(Cayuela et al. 2012a). As in the first case study, species

FIG. 5. (a) Location of six Center for Tropical Forest Sciences (CTFS) plots. The distribution of tropical rainforest is indicated
in dark gray within tropical latitudes. BCI stands for Barro Colorado Island. Base map from http://eoimages.gsfc.nasa.gov/images/
news/NasaNews/ReleaseImages/LCC/Images/lcc_global_2048.jpg. (b) Distribution of montane cloud forests and location of study
sites in Chiapas, Mexico, along a vegetation catena running from west to east.

TABLE 3. Attributes of the six Center for Tropical Forest Sciences (CTFS) forest plots.

Location Description Coordinates
Elevation

(m)
Plot size
(ha) Spp. Inds.

Barro Colorado Island, Panama lowland tropical moist forest 9.158 N, 79.858 W 120–160 50 226 21 198
La Planada, Colombia tropical montane cloud forest 1.168 N, 77.998 W 1796–1891 25 173 15 013
Korup, Cameroon evergreen tropical forest 5.078 N, 8.858 E 150–240 50 307 24 591
Edoro, Democratic Republic
of Congo

evergreen tropical moist forest 1.478 N, 28.588 E 700–850 20 207 9 382

Pasoh, Malaysia evergreen tropical moist
(dipterocarp) forest

2.988 N, 102.318 E 70–90 50 671 28 279

Lambir, Malaysia evergreen tropical moist
(dipterocarp) forest

4.198 N, 114.028 E 104–244 52 990 32 611

Notes: Data were retrieved from http://www.ctfs.si.edu. Spp. indicates number of species, Inds. indicates number of individuals
.10 cm diameter at breast height.
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names were standardized and typographical errors were

corrected using The Plant List through the Taxonstand

R package (Cayuela et al. 2012b). Distances between

regions ranged from ;50 km (the Highlands and

Northern Mountains) to ;250 km (Sierra Madre and

Northern Mountains). Despite differences in elevation

among these forests, ;53% of the total species occur in

two or more of the forests. Thus, our null hypothesis

was that the three regions should display similar

patterns of species composition, richness, and relative

abundance of species. We used the sample-based
version of the two proposed methods with 200

iterations each to test the ecological and biogeograph-

ical null hypotheses between regions.

RESULTS

Benchmark performance of EcoTest

For species richness (q ¼ 0), the EcoTest had Type I

errors of ;5% for both individual- (Scenarios 1 and 2)
and sample-based rarefaction (Scenario 9). The EcoTest

also had very low Type II errors (always less than 1%),

so the null hypothesis was almost always rejected when

data were generated from two different assemblages,

and then pooled to generate a null distribution for

testing (Table 4, Benchmark tests 3–8, 10–12).

For Hill numbers q ¼ 1 and q ¼ 2, Type I error rates

were slightly higher (Appendix B: parts a and b), but still

ranged from only 5% to 9%. Type II errors for Hill

numbers q ¼ 1 and q ¼ 2 were very infrequent (always

less than 1%). For coverage-based analyses, Type I error

rates for the EcoTest with Hill numbers q¼ 0, q¼ 1, and

q¼2 were between 4% and 14% (Appendix B: parts c–e),

somewhat higher than the rates for individual- or

sample-based rarefaction curves (Table 4). Type II error

rates for coverage-based analyses were always less than

6% for all Hill numbers.

Benchmark performance of BiogTest

The BiogTest creates null assemblages by drawing

random parameter values (species richness and standard

deviation) to simulate a spectrum of log-normal

distributions of species abundances. It is therefore not
surprising that, for both Type I and Type II error tests

for species richness (q ¼ 0), the BiogTest performs well

when the test matrices (which simulate empirical

reference samples) themselves were also drawn from a

log-normal distribution (Table 4). In such cases, the

error rates in the different scenarios were less than 9%
for Type I error, and less than 12% for Type II error.

Similar values for Type I and Type II error rates were

found when the assemblages were drawn from a broken

stick distribution, and then compared to a null

distribution created from a log-normal (Table 4). When

the test matrices were created from a geometric series
distribution, Type II error rates for species richness

decreased as compared to a null distribution created

from a log-normal. However, Type I error rates for the

geometric series data sets increased to values between

25% and 45% for the various scenarios.

For Hill numbers q¼1 and q¼2 (Appendix B: parts a

and b), the best performance for the BiogTest was also

found for the log-normal and broken stick distributions,

with Type I errors ranging between 0% and 8%. Type II

errors were higher for these distributions and in some

cases exceeded 70%. As with species richness (q¼ 0), the

worst performance for Type I error occurred when

samples were drawn from a geometric series distribution

(Appendix B: parts a and b).

Both Type I and Type II error rates for all three Hill

numbers (Appendix B: parts c–e), were usually higher

for coverage-based analyses compared to sample- or

individual-based analyses (Appendix B: parts c–e vs.

Table 4).

TABLE 4. Percentage of commission of Type I (incorrect rejection of a true null hypothesis) and Type II error (failure to reject a
false null hypothesis) in 12 different benchmark tests (see Table 1 for a description of these tests) for the two proposed methods
(EcoTest, BiogTest).

Benchmark
test

EcoTest

BiogTest

Log-normal Geometric Broken stick

Type I
error

Type II
error

Type I
error

Type II
error

Type I
error

Type II
error

Type I
error

Type II
error

1 6.13 5.87 25.47 6.53
2 7.60 5.20 45.20 5.20
3 0.00 5.20 22.80 7.33
4 0.00 2.93 44.35 4.18
5 0.27 6.67 3.07 6.53
6 0.00 11.30 2.93 10.04
7 0.60 5.71 4.07 4.67
8 0.00 1.67 0.00 1.68
9 4.80 4.00 30.80 3.87
10 0.00 8.67 32.67 10.13
11 0.13 6.93 3.20 7.33
12 0.00 3.47 1.20 4.00

Note: For the BiogTest method, three different underlying distributions of species relative abundances for the benchmark null
model communities were used (log-normal, geometric, broken stick). Cells left blank indicate non-applicable data.
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CASE STUDIES

An individual-based comparison of global tropical

rainforests

For all Hill numbers, there were significant differences

within and between continents by the EcoTest, using

both individual- and coverage-based rarefaction meth-

ods (Table 5). For the BiogTest, individual-based

comparisons for Hill number q ¼ 2 (exponential

Shannon diversity) showed no differences between

samples within Africa (dotted lines in Fig. 6e) and

within Asia (dashed lines in Fig. 6e). However, Asian

samples differed significantly from each other when

plotted as a function of coverage (Table 5; Fig. 6e vs.

6f ). All other comparisons revealed differences in species

richness and/or relative abundance.

A sample-based comparison of three montane cloud forest

regions of Chiapas

Based on the EcoTest, all three tree assemblages

(Sierra Madre, Highlands, and Northern Mountains)

are significantly different from one another (Table 6).

However, based on the BiogTest, the rarefaction profiles

of the Highlands and Northern Mountains did not differ

from each other for sample-based rarefaction of all Hill

numbers (Table 6, Fig. 7). For the coverage-based

analysis, differences were detected for species richness (q

¼ 0), but not for the higher-order Hill numbers (q¼ 1, q

¼ 2).

DISCUSSION

Limitations of classical rarefaction methods

Originally, statistical comparisons of rarefaction

curves were made by rarefying the larger of two

samples and determining whether or not the species

richness for the smaller sample fell within the 95%

confidence interval for the rarefaction curve (Hurlbert

1971). For comparisons of multiple samples, this

approach is unsatisfying because it means that all

samples must be rarefied down to the most poorly

sampled collection (Chao and Jost 2012). Moreover,

the original rarefaction algorithm (Hurlbert 1971,

Simberloff 1972) is based on subsampling without

replacement from a reference sample, which follows a

hypergeometric distribution. The hypergeometric dis-

tribution generates a variance that is conditional on the

observed sample, which causes the confidence interval

to shrink to zero at the largest sample size (i.e., the

reference sample). More recent extensions have provid-

ed an estimator of the unconditional variance for both

sample- (Colwell et al. 2004) and individual-based

rarefaction curves (Colwell et al. 2012), allowing for

improved tests at any sampling level.

Colwell et al. (2012) recently showed that rarefaction

curves can be smoothly joined with nonparametric

extrapolation curves and extended out toward the

species asymptote. But the question still arises, exactly

what sampling level should be used for comparing

rarefied or extrapolated diversity curves? Comparisons

at very small sample sizes are problematic because all

individual-based rarefaction curves of species richness

contain less information as they converge to the point

1,1 (one individual always yields one species). Compar-

isons at the asymptote are also problematic because the

variance, especially for species richness estimators, may

be very large (but see Chao et al. [2014] for some useful

guidelines for rarefying and extrapolating rarefaction

curves over a ‘‘safe’’ range for statistically valid

comparisons).

New methods to compare rarefaction curves

Our methods do not require an estimator of the

unconditional variance, but they do incorporate sam-

pling variability that encompasses the entire length of

the interpolated rarefaction curve. Additionally, the

proposed EcoTest and BiogTest allow for two distinct

kinds of comparisons of rarefaction curves.

TABLE 5. Comparison of tropical floras within (South America, Africa, Asia) and between regions with null model tests using
individual-based and coverage-based rarefaction curves for Hill number orders q¼ 0, q ¼ 1, and q¼ 2.

Null hypothesis

Individual-based Coverage-based

q ¼ 0 q ¼ 1 q ¼ 2 q ¼ 0 q ¼ 1 q ¼ 2

Eco Biog Eco Biog Eco Biog Eco Biog Eco Biog Eco Biog

Within continents

South America ,0.01 ,0.01 ,0.01 ,0.01 ,0.01 ,0.01 ,0.01 ,0.01 ,0.01 ,0.01 ,0.01 ,0.01
Africa ,0.01 ,0.01 ,0.01 ,0.01 ,0.01 0.130 ,0.01 ,0.01 ,0.01 ,0.01 ,0.01 0.030
Asia ,0.01 ,0.01 ,0.01 ,0.01 ,0.01 0.570 ,0.01 ,0.01 ,0.01 ,0.01 ,0.01 ,0.01

Between continents

South America vs. Africa ,0.01 ,0.01 ,0.01 ,0.01 ,0.01 ,0.01 ,0.01 ,0.01 ,0.01 ,0.01 ,0.01 ,0.01
South America vs. Asia ,0.01 ,0.01 ,0.01 ,0.01 ,0.01 ,0.01 ,0.01 ,0.01 ,0.01 ,0.01 ,0.01 ,0.01
Africa vs. Asia ,0.01 ,0.01 ,0.01 ,0.01 ,0.01 ,0.01 ,0.01 ,0.01 ,0.01 ,0.01 ,0.01 ,0.01

Notes: Entries in the table represent P values for EcoTest (Eco) and BiogTest (Biog). The corresponding null hypothesis is
rejected if P , 0.05. Number of iterations for each test was 200. Null communities for the BiogTest were simulated using a log-
normal distribution for relative species abundance.
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The EcoTest addresses the simplest null hypothesis,

which is that two samples were drawn from the same

underlying assemblage, so that any differences in species

richness, relative abundance, and species composition

reflect only sampling effects. The EcoTest is a ‘‘distri-

bution free’’ test that is based on a pooling of sample

data to generate a null distribution. This test performed

very well in all benchmark comparisons, consistently

distinguishing samples that were created from distribu-

tions that differed in their underlying species richness

(Scenarios 5, 6, and 11), relative abundance (Scenarios 7,

8, and 12), or species composition (Scenarios 3, 4, and

10; Table 4). The test also had a low Type I error rate

when data were randomly sampled from a single

underlying assemblage (Scenarios 1, 2, and 9)

The EcoTest successfully discriminates among sam-

ples that differ only in species composition, as expected

according to Simberloff (1979). However, it is more

often the case that multiple samples will contain some

shared and some distinct species, as well as undetected

species that may also be shared among samples (Chao et

al. 2005). Regardless of the similarity of the rarefaction

FIG. 6. Individual- (a, c, e) and coverage-based (b, d, f ) rarefaction curves for the six CTFS forest plots using Hill numbers with
weightings (a, b) q¼ 0, (c, d) q¼ 1, and (e, f ) q¼ 2; order q of the Hill number determines the weighting given to more common
species, with species richness defined by q¼0, the exponential Shannon index shown by q¼1, and the inverse Simpson index shown
by q ¼ 2. Plots from different continents are displayed with different line types: South America with solid lines (Barro Colorado
Island [black], La Planada [gray]), Africa with dotted lines (Korup [black], Edoro [gray]), and Asia with dashed lines (Lambir
[black], Pasoh [gray]). Two hundred iterations were used for each test. Null communities for the BiogTest were simulated using a
log-normal distribution for relative species abundance.
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FIG. 7. Sample- (a, c, e) and coverage-based (b, d, f ) rarefaction curves for three montane cloud forest regions in Chiapas,
Mexico (El Triunfo [solid line], Northern Mountains [dotted line], and Highlands [dashed line]) using Hill numbers (a, b) q ¼ 0,
(c, d) q ¼ 1, and (e, f ) q ¼ 2. Two hundred iterations were used for each test. Null communities for the BiogTest were simulated
using a log-normal distribution for relative species abundance.

TABLE 6. Comparison of tree communities from tropical montane forests in Chiapas, Mexico, using incidence sample-based and
coverage-based rarefaction curves for Hill number orders q ¼ 0, q ¼ 1, and q ¼ 2.

Null hypothesis

Sample-based Coverage-based

q ¼ 0 q ¼ 1 q ¼ 2 q ¼ 0 q ¼ 1 q ¼ 2

Eco Biog Eco Biog Eco Biog Eco Biog Eco Biog Eco Biog

Sierra Madre vs. Highlands ,0.01 ,0.01 ,0.01 ,0.01 ,0.01 ,0.01 ,0.01 ,0.01 ,0.01 ,0.01 ,0.01 ,0.01
Sierra Madre vs. Northern
Mountains

,0.01 ,0.01 ,0.01 ,0.01 ,0.01 ,0.01 ,0.01 ,0.01 ,0.01 ,0.01 ,0.01 ,0.01

Highlands vs. Northern
Mountains

,0.01 0.855 ,0.01 0.970 ,0.01 0.995 ,0.01 0.005 ,0.01 0.190 ,0.01 0.570

Notes: Entries in the table represent P values. The corresponding null hypothesis is rejected if P , 0.05. Number of iterations for
each test was 200. Null communities for the BiogTest were simulated using a log-normal distribution for relative species abundance.
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curves, differences in species composition can lead to a

strong rejection of the null hypothesis for the EcoTest

(Scenarios 3, 4, and 10). Therefore, it is not surprising

that, for every empirical comparison of global tropical

rainforests (Fig. 6) and regional montane forests (Fig.

7), the EcoTest was always strongly rejected (Tables 5,

6).

Deviations from the null hypothesis for the EcoTest

can reflect everything from small-scale species interac-

tions (which can alter relative abundances among

sample plots; Chase and Leibold 2003) to regional

differences in beta diversity (which can reflect turnover

in species composition; Wilson and Tilman 1991,

Baldeck et al. 2013) to large-scale differences in species

richness (which can reflect differences in evolutionary

rates; Qian and Ricklefs 2008). The sampling null

hypothesis that is made explicit with the EcoTest is the

starting point for comparing rarefaction curves. How-

ever, so many forces can affect this test that it is perhaps

not surprising that it will be reliably rejected for well-

sampled empirical assemblages such as those in Figs. 6

and 7.

The EcoTest makes use only of the expected diversity

from the rarefaction curve. For species richness, Li and

Mao (2012) derived a simultaneous confidence band for

a species accumulation curve that can be used to

evaluate differences between two accumulation curves,

similar to what we have done with the cumulative area

of difference between each rarefaction curve and the

composite curve (Fig. 2c). The randomization algorithm

for the EcoTest is identical to the method of Solow

(1993), in which all partitions of the data among

different samples are equally likely, and is similar to

the method developed by Collins et al. (2009) to

compare rank occupancy–abundance profiles (ROAPs).

In that sense, the EcoTest belongs to a growing class of

tests for differences in b diversity among samples (Crist

and Veech 2006, Anderson et al. 2011).

In the biogeographic realm, the comparison of interest

is the profile of the rarefaction curve, without regard to

the underlying species composition. In biogeographic

comparisons among distinct regions or continents, it is

known at the outset that there are strong differences in

species composition, so the EcoTest is not assessing the

appropriate null hypothesis. For this question, we were

not able to devise an appropriate algorithm based on

pooling of samples to generate a composite distribution

for random subsampling. Because the species names in

the individual samples are not retained, there does not

seem to be a reliable way to determine the rank order of

each species in the full, pooled assemblage. For this

reason, we used a family of log-normal distributions, in

which the null assemblages were determined from

randomly chosen parameters for species richness and

the standard deviation, the two underlying parameters

of the log-normal.

It has long been recognized that both parameter

estimation and the goodness of fit of empirical rank

PLATE 1. Tropical montane forests represent one of the world’s richest repositories of plant biodiversity, and play an important
role in the provision of regulatory services such as water interception. Photo credit: L. Cayuela.
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abundance data are very sensitive to the choice of the

underlying statistical distribution that is used (O’Hara

2005, McGill et al. 2007). For this reason, we created

null distribution data sets using log-normal, geometric

series, and broken stick distributions. The BiogTest had

satisfactory performance in most cases, although error

rates were unacceptably high when the samples were

drawn from a geometric series (Table 4). In retrospect,

the poor fit with the geometric series arises because the

dominance fraction D was chosen from a uniform range

of 0 to 1. For most of this range, the resulting rank

abundance distributions fall off very steeply, which does

not fit well with most log-normal distributions or with

most empirical data sets. In contrast, the rank abun-

dance profile of a broken stick series is more even, and

the BiogTest with broken stick and log-normal samples

performs much better than with geometric series

samples.

Application to case studies

As we anticipated, the same empirical data set can

give different answers when tested with EcoTest vs.

BiogTest. For example, with Hill number q¼ 2, the two

Malaysian forest samples (Pasoh and Lambir; dashed

lines in Fig. 6) and the two African forest samples

(Edoro and Korup; dotted lines in Fig. 6) differ by

EcoTest, but not by BiogTest (Table 5). Visually, these

pairs of curves are nearly coincident in the sample-based

rarefaction plots of Fig. 6e, so it is a sensible result that

the null hypothesis was not rejected by BiogTest in these

cases. These results are reassuring because the sample

sizes underlying these comparisons were very large (9382

to 32 611 individuals). In such cases, there is a danger

that H0 might always be rejected when the sample is

large enough, even when effect sizes are very small.

When plotted against coverage, however, the Biog-

Test for these same comparisons is statistically signif-

icant (Table 5). Coverage-based analyses do not

necessarily give the same results as traditional

sample- or individual-based rarefaction (Chao and Jost

2012), as the shapes of species accumulation curves are

very different when plotted against coverage rather

than sample size. We note that the coverage-based

rarefaction curves for these data did not overlap as did

the individual-based curves (Fig. 6e vs. 6f ), which

corresponds to the different outcomes of the statistical

tests.

For the smaller-scale comparisons of three mountain

assemblages, the sample-based rarefaction curves for the

Northern Mountains and the Highlands overlapped

closely (Fig. 7a, c, e), and did not differ by the BiogTest

for any of the Hill numbers (Table 6). For the coverage-

based analyses, the rarefaction curves again diverged,

although only the curves for species richness (Hill

number q ¼ 0) were statistically significant (Fig.

7b, d, f; Table 6). This result is not entirely unexpected

because the Sierra Madre and the Chiapas Massif

(which includes the Highlands and Northern Moun-

tains) have a different geological history, and were

isolated altitudinally by the Central Depression (Fig. 7b)

from the Late Jurassic to the Late Cretaceous (Padilla y

Sánchez 2007). In addition, the two areas have different

histories of land use, with the Highlands and Northern

Mountains experiencing stronger human impacts from

hunting, logging, and agriculture (Ramı́rez-Marcial et

al. 2001, Cayuela et al. 2006) than the Sierra Madre (N.

Ramı́rez-Marcial, personal communication).

Further prospects

We have presented these analyses in terms of familiar

diversity metrics of species richness and higher-order Hill

numbers. However, the same approach could be used

with any other diversity metric, including univariate

measures of trait, functional, and phylogenetic diversity.

The Chao et al. (2014) procedures could also be used to

improve our tests, but they require asymptotic estima-

tors of the diversity metric and its variance, and those are

so far available only for Hill numbers (including species

richness). Our tests can be applied to any diversity metric

that can be calculated for a reference sample and for

bootstrapped random subsamples.

In spite of a long history of use of rarefaction methods

in ecology and evolution, new statistical developments

continue to improve the estimation of biodiversity

patterns and statistical inference from sample data.

The distinction between the ecological and biogeograph-

ic null hypotheses may prove useful in pinpointing how

differences in species composition, relative abundance,

and species richness contribute to biodiversity patterns.
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