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Enhanced detection of groundwater contamination from a leaking
waste disposal site by microbial community profiles

Paula J. Mouser,1 Donna M. Rizzo,1 Gregory K. Druschel,2 Sergio E. Morales,3

Nancy Hayden,1 Patrick O’Grady,4 and Lori Stevens5

Received 21 April 2010; revised 20 July 2010; accepted 17 August 2010; published 2 December 2010.

[1] Groundwater biogeochemistry is adversely impacted when municipal solid waste
leachate, rich in nutrients and anthropogenic compounds, percolates into the subsurface
from leaking landfills. Detecting leachate contamination using statistical techniques is
challenging because well strategies or analytical techniques may be insufficient for
detecting low levels of groundwater contamination. We sampled profiles of the microbial
community from monitoring wells surrounding a leaking landfill using terminal
restriction fragment length polymorphism (T‐RFLP) targeting the 16S rRNA gene. Results
show in situ monitoring of bacteria, archaea, and the family Geobacteraceae improves
characterization of groundwater quality. Bacterial T‐RFLP profiles showed shifts correlated
to known gradients of leachate and effectively detected changes along plume fringes that
were not detected using hydrochemical data. Experimental sediment microcosms exposed to
leachate‐contaminated groundwater revealed a shift from a b‐Proteobacteria and
Actinobacteria dominated community to one dominated by Firmicutes and d‐Proteobacteria.
This shift is consistent with the transition from oxic conditions to an anoxic, iron‐reducing
environment as a result of landfill leachate‐derived contaminants and associated redox
conditions. We suggest microbial communities are more sensitive than hydrochemistry
data for characterizing low levels of groundwater contamination and thus provide a
novel source of information for optimizing detection and long‐term monitoring strategies
at landfill sites.

Citation: Mouser, P. J., D. M. Rizzo, G. K. Druschel, S. E. Morales, N. Hayden, P. O’Grady, and L. Stevens (2010), Enhanced
detection of groundwater contamination from a leaking waste disposal site by microbial community profiles, Water Resour. Res.,
46, W12506, doi:10.1029/2010WR009459.

1. Introduction

[2] Inadequate waste disposal practices over the past
century have resulted in disposal sites cited as a significant
source of groundwater contamination in both the United
States and Europe [U.S. Environmental Protection Agency
(EPA), 2000; European Environmental Agency, 2003]. As
recently as the 1980s, landfills designated to accept munic-
ipal and commercial solid wastes in the United States could
be unlined and sited without consideration to site hydro-
geology and were often subject to industrial or hazardous
waste dumping. As a result, municipal solid waste landfill
(MSWLF) leachates percolating into the subsurface have
impacted groundwater resources by discoloration, adverse

smell, increased loading of carbon and nitrogen nutrients,
elevated anion and cation species, and the leaching of
various trace metals or anthropogenic organic compounds
that adversely affect public and environmental health (e.g.,
arsenic, benzene, and trichloroethene) [Christensen et al.,
1994; Kjeldsen et al., 2002].
[3] The first line of protection between MSWLFs and the

subsurface environment is groundwater monitoring wells
placed strategically up‐gradient and down‐gradient of dis-
posal activities. Regular sampling of the detection well net-
work and statistical methods are used to track changes in
physiochemical water quality parameters during the land-
fill’s active life and a 30 year postclosure period [EPA, 1993,
2009]. Unfortunately, the variability of leachate composition
and its associated water quality impacts [Gibbons et al.,
1999; Kjeldsen et al., 2002] necessitate the monitoring of
dozens of parameters during this time. In addition, detection
efficiency is lower if numbers of sentinel wells or their
spatial distribution are insufficient relative to site hydro-
geologic characteristics [Hudak, 1999, 2005]. As a result,
contamination may spread over a larger area prior to its
detection or characterization, reducing remediation effi-
ciency and increasing remedial and long‐term monitoring
costs [Massmann and Freeze, 1987].
[4] Methods to improve the detection efficiency of

groundwater‐monitoring networks have primarily focused
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on physical and chemical properties of aquifer systems,
such as better characterization of subsurface heterogeneities
[Meyer et al., 1994], modifications to traditional statistical
methods for water quality trend detection [Gibbons, 1996],
and optimization of well network design using computa-
tional methods [Loaiciga et al., 1992; American Society of
Civil Engineers, 2003; Reed and Minsker, 2004]. One area
that is not well researched is the improvement of detection
sensitivity in existing monitoring well networks through the
incorporation of biological data sources such as microbial
community composition.
[5] Groundwater microbial ecology is strongly influ-

enced by subsurface biogeochemical processes [Anderson
and Lovley, 1997; Chapelle, 2000; Griebler and Lueders,
2009] and, in particular, the presence and concentra-
tion of landfill leachate‐derived nutrients [Beeman and
Suflita, 1987; Barlaz et al., 1989; Ludvigsen et al., 1999;
Cozzarelli et al., 2000; Röling et al., 2001]; therefore, the
relative distribution or patterns of microorganisms associ-
ated with leachate composition should be indicative of its
spatiotemporal impact in the subsurface. Molecular genetic
techniques now allow rapid description of the microbio-
logical community in subsurface environments [Madsen,
2000]. These approaches have been successfully applied to
the broad characterization and biodegradation potential of
the microbial ecology in shallow contaminated groundwater
aquifers [Watanabe et al., 2000; Lovley, 2003; Weiss and
Cozzarelli, 2008; Mouser et al., 2009]. One challenge to
using molecular genetic‐based microbial information for
improving the detection of leachate pollution is the large
amount of multivariate data generated from a discrete
sample and the incorporation of these data into traditional
statistical methodologies.
[6] The objective of this work was to explore the use of

molecular genetic data generated by targeting the 16S rRNA
gene of two broad prokaryote groups, archaea and bacteria,
and the dissimilatory iron‐reducing bacterial family Geo-

bacteraceae [Lovley et al., 1993; Caccavo et al., 1994;
Snoeyenbos‐West et al., 2000; Holmes et al., 2007] for
detecting the onset of landfill leachate contamination using
multivariate statistical methods. At the field scale, ground-
water microbial community profiles provided increased
sensitivity for detecting leachate contamination along a
known plume fringe over hydrochemical information alone.
Experimental sediment microcosms confirmed an association
between leachate composition and the increased abundance
of certain bacterial community members. Our results suggest
that combining molecular genetic data from bacterial com-
munities with a limited set of biogeochemical parameters may
be one way to improve detection sensitivity and efficiency
of groundwater‐monitoring strategies at MSWLF sites.

2. Background and Methods

2.1. Study Area Hydrogeology and Plume Delineation

[7] The Schuyler Falls Sanitary Landfill is an unlined,
30 acre waste disposal site in Clinton County, New York
(Figure 1), that received municipal, commercial, and
industrial wastes between 1977 and 1996 [Barton and
Loguidice, Personal Consultants 1996]. The landfill is
located in deltaic sands and silt that are underlain by Pleis-
tocene age till and outwash soils deposited over dolomite
bedrock [Fisher, 1968; Denny, 1974; Barton and Loguidice,
Personal Consultants, 1996]. Surface soil depths range from
15 to 40 m from west to east. Clinton County receives a
mean annual rainfall of about 90 cm. Average rates of
advective groundwater transport in the deltaic unit are on
the order of 25 m/yr northeast toward the Saranac River
(Figure 1b) and eventually to Lake Champlain.
[8] The detection of anthropogenic organic compounds

in down‐gradient monitoring wells prompted hydrogeo-
logic investigations and a detailed EM‐34 electromagnetic
survey that revealed leachate contamination in surficial
soils and groundwater toward the east and south of

Figure 1. (a) Location of Schuyler Falls in northeastern New York. (b) Plan view of Schuyler Falls land-
fill indicating the monitoring well locations, the direction of groundwater flow, and the extent of the land-
fill leachate plume based on electromagnetic surveys. B, background; F, fringe; C, contaminated.
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the landfill (Figure 1b) [Barton and Loguidice, Personal
Consultants, 1996]. We used the apparent conductivity data
from the EM‐34 geophysical survey to characterize the
degree of spatial correlation and to estimate the extent of
subsurface contaminated by leachate. Experimental semi-
variograms were produced for 10 and 20 m horizontal dipole
(HD) and 10 and 20 m vertical dipole (VD) EM surveys
(664 total survey points). Semivariogram models were best
fit to the experimental data using the nonlinear model fitting
function in JMP version 5.1 (SAS Institute Inc., Cary, North
Carolina). Values of apparent conductivity for each of the
four surveys were estimated across a 15 m regularly spaced
grid of the site using the method of ordinary kriging in
MATLAB version 6.1 software (MathWorks Inc., Natick,
Massachusetts) [Journel and Huijbregts, 1978; de Marsily,
1986; Goovaerts, 1997]. A conservative parameter field of
leachate contamination was produced by selecting the max-
imum apparent conductivity for each grid cell from the four
survey estimates. Although geophysical surveys are gener-
ally not conducted at MSWLF sites unless evidence suggests
a leak has occurred or for the purpose of characterizing dump
perimeters (e.g., when historic boundary data are unavail-
able), the high‐resolution geophysical data available at this
site were used to classify groundwater‐monitoring locations
into three management “zones” of interest (background
(labeled B), fringe (labeled F), and contaminated (labeled C)
as shown in Figure 1b) and to validate microbial community
composition results.

2.2. Groundwater Sampling

[9] Groundwater samples were obtained from the 22
monitoring wells shown in Figure 1b using dedicated bail-
ers or bladder pumps. Samples were purged according to
standard practices, and field measurements (temperature,
turbidity, oxidation reduction potential (ORP), pH, and con-
ductance) were assessed. Groundwater samples for hydro-
chemical analysis were placed immediately on ice and
transported to Columbia Analytical Services (Rochester,
New York) for analysis of Appendix IX constituents [EPA,
1993]. Samples for microbial community analysis were col-
lected in 500 mL HDPE bottles, placed on ice, and trans-
ported to the University of Vermont where they were pelleted
by centrifugation at 20,000 rpm, flash frozen, and stored at
−20°C until extraction.

2.3. Experimental Microcosm Construction
and Sampling

[10] Microcosms were constructed with deltaic sand
and silt soils collected from 8 feet below ground surface
and stored on ice [Denny, 1974; Barton and Loguidice,
Personal Consultants, 1996]. Within 12 h, 40 g of soil
was mixed with 50 mL of groundwater that was collected
from a background (B‐1) or a leachate‐contaminated well
(C‐1, Figure 1b). Microcosms were developed in duplicate
with six groundwater mixtures, 0% (all from B‐1), 5%
(2.5 mL from C‐1 combined with 47.5 mL from B‐1
groundwater, etc.), 10%, 25%, 50%, and 100%. After 14 days
of incubation at 25°C, microcosms were sampled as
described below for biogeochemical parameters and micro-
bial community analysis.
[11] Analysis of redox chemistry was conducted using

a mercury drop electrode. Under anaerobic gassing (80%

N2:20% CO2), 10 mL of groundwater was collected and
measured for redox species O2, Mn2+, Fe2+, and FeS(aq)
using methods described previously [Druschel et al., 2008].
Sediments and pore water (approximately 5 g) were sampled
for microbial community analysis using presterilized spa-
tulas, flash frozen, and stored at −20°C. Groundwater (25–
40 mL) was collected for analysis of cations and nitrogen
species (NH4

+, NO3
−, and TIN) at the University of Vermont

Agricultural and Environmental Testing Center as previ-
ously described [Morales et al., 2006].

2.4. Nucleic Acid Extractions, Amplification, and Clone
Library Construction

[12] Nucleic acids for T‐RFLP analysis and clone library
construction were extracted from soils and groundwater
using the MoBio Powersoil DNA Isolation Kit (MoBio
Laboratories, Carlsbad, California). Polymerase chain reac-
tion (PCR) amplification of the 16S rRNA gene for T‐RFLP
analysis was done using three primer pairs targeting archaea
(46F/907R) [Lane et al., 1985; Ovreas et al., 1997], bac-
teria (8F/1392R) [Lane et al., 1985], and Geobacteraceae
(8F/825R) [Snoeyenbos‐West et al., 2000] using PCR
reagents described previously [Anderson et al., 2003].
[13] Archaeal targets were amplified using a denaturing

step of 4 min at 94°C followed with 35 cycles of denatur-
ation (30 s, 95°C), primer annealing (1 min, 56°C), and the
primer extension (1 min, 72°C), followed by a final elon-
gation step of 5 min at 72°C. Geobacteraceae targets were
amplified using the same steps as archaea, with the excep-
tion of primer annealing temperature and time (20 s, 55°C).
For amplification of bacterial targets, a denaturing step of
5 min at 95°C was followed with 28 cycles of denaturation
(30 s, 95°C), primer annealing (30 s, 57°C), and primer
extension (3 min, 72°C), followed by a final elongation step
of 7 min at 72°C. The minimum number of cycles for PCR
reactions was determined by visual inspection of the DNA
band in gel electrophoresis using PCR gradient analysis.
Forward primers were labeled with tetrachloro‐6‐carboxy
(archaea) (TET, Sigma‐Genosys, The Woodlands, Texas),
6‐carboxy (bacteria) (6‐FAM, Sigma‐Genosys), and phos-
phoramidite (Geobacteraceae) (NED, Applied Biosystems,
Foster City, California) fluorescein dyes. PCR amplification
was verified on a 2% agarose gel, cleaned using a QIAquick
PCR purification kit (Qiagen, Valencia, California), and
quantified using spectrophotometry (NanoDrop, Wilming-
ton, Delaware).
[14] The 16S rRNA gene libraries were generated using

unlabeled primers 8F/1392R as described above and cloned
into the TOPO TA vector pCR 2.1 and chemically competent
TOP10 cells (Invitrogen, Carlsbad, California) according to
the manufacturer’s instructions. Inserts from 48 clones for
each library were amplified with M13 primer, sequenced,
and aligned using the Lasergene software (DNASTAR, Inc.,
Madison, Wisconsin). Phylogenetic placement for clone
library sequences was assigned by BLAST analysis [Altschul
et al., 1990]. All genetic analyses were done at the Vermont
Cancer Center DNA Analysis Facility.

2.5. T‐RFLP Microbial Community Profiling
and Data Analysis

[15] Restriction digests (10 mL total volume) were per-
formed with enzyme MspI by mixing fluorescently labeled
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and purified PCR product (150 ng, quantified using a
NanoDrop spectrophotometer), enzyme buffer, 5 units (U) of
enzyme, and water as previously described [Morales et al.,
2006]. One microliter of each digest was mixed with
0.4 mL Genscan 500 ROX size standard (Applied Biosys-
tems), brought to 10 mL total volume in deionized form-
amide, and quantified using capillary electrophoresis (ABI
Prism 3100‐Avant Genetic Analyzer, Applied Biosystems).
Negative controls were run for each primer set. T‐RFLP
profiles were analyzed using GeneMapper (Applied Bio-
systems) with parameters set to exclude fragments shorter
than 20 base pairs (bp) or larger than 600 bp and those under
50 fluorescence units [Blackwood et al., 2003]. Several
levels of duplication were used in this study. Capillary
electrophoresis of samples was conducted in triplicate to
assess the consistency of base pair size calling determina-
tions, to quantify the variability in fragment peak heights,
and to establish the minimum fluorescence intensity of
T‐RFLP fragments (T‐RF) to be included in further statis-
tical analysis [Osborn et al., 2000]. Fragments were binned
into T‐RFs at a spacing of 1.0 ± 0.2 bp standard deviation
[Dunbar et al., 2001]. T‐RFs were excluded from the set
if they occurred in less than two of the three triplicate runs or
were below 50 fluorescence units. Bias associated with T‐RF
absence (i.e., similarities caused by double zeros) was min-
imized by requiring T‐RFs to be present in a minimum
of two field samples and in both duplicate microcosms for
inclusion in statistical analysis. Thus, average and standard
deviations for T‐RF peak fluorescence intensity presented
for the six different levels of leachate treatment represent
n = 6 values across the duplicate microcosms.

2.6. Statistical Methods

[16] Principal component analysis (PCA) on correlation
matrices was used to detect correlations within hydro-
chemical data and T‐RFLP microbial community profiles
and to transform data into statistically independent vari-
ables for classifying contamination levels (e.g., background,
fringe, or contaminated). Four separate PCAs were con-
ducted on hydrochemistry, on bacterial community composi-
tion, on all three microbial communities (archaea, bacteria,
and Geobacteraceae), and between hydrochemistry and the
combined microbial community profiles.
[17] For each microcosm treatment, we report the number

of T‐RFs shared across duplicate microcosms and two dif-
ferent diversity indices: the Shannon‐Wiener Index H ′ and
the Jaccard Index J. The Shannon‐Wiener Index is calculated
as H ′ = −

P
� ln �, where p represents the relative abundance

of a T‐RF in a given fingerprint [Hill et al., 2003]. The
Jaccard Index is calculated as J(a, b) = a[b

a\b, where [ is the
number of shared T‐RFs (or union) between two fingerprints
(a, b) and \ is the number of total T‐RFs, or intersection
between fingerprints (a, b) [Chao et al., 2005]. In this
application, the Shannon‐Wiener Index describes the sample
diversity by accounting both for abundance and evenness of
T‐RF phylotypes, while the Jaccard Index measures phylo-
type similarity between any two samples on a scale of 0–1,
with a value of 1 indicating identical phylotype composition.
Jaccard Index values were calculated between the back-
ground treatment and all other treatments. Relevant T‐RFs
were compared to the Ribosomal Database II using Mica and
FragSort [Sciarini and Michel, 2005] as described previously

[Morales et al., 2006]. Significance levels for statistical
analyses, including testing for normality, analysis of variance
(ANOVA), Tukey‐Kramer method, and Spearman’s Rho
correlation analyses, were conducted at the a = 0.05 level in
JMP software.

3. Results

3.1. Statistical Analysis of Hydrochemistry
and Microbial Community Composition

[18] Leachate‐contaminated groundwater‐monitoring loca-
tions (C‐1 through C‐3) had significantly elevated levels
of 14 parameters compared with background wells, while
fringe locations differed from background only by ORP and
iron levels (Table 1). Univariate methods were unable to
detect significant differences for any of the 25 parameters
listed in Table 1 across all three levels of groundwater
quality (background, fringe, and contaminated).
[19] Using multivariate statistical methods, PCA revealed

that a large proportion of the groundwater hydrochemistry
data set variance (∼80%) could be explained in four prin-
cipal components. Consistent with univariate statistical tech-
niques, the first principal component score, PC1, plotted
across the x axis in Figure 2a, showed large differences in
groundwater quality between the three contaminated loca-
tions (C‐1 through C‐3) when compared with all other fringe
and background locations. Differences among fringe and
background wells were not well pronounced, as evidenced
by the overlap in B and F well designations in Figure 2a. PC1
described about 48% of the variance in the groundwater
hydrochemistry data set and was significantly correlated (r >
0.8) to general leachate indicators, including TOC, COD,
TDS, Mg and Na, specific conductance, chloride, hardness,
and alkalinity (see Auxiliary Materials, Table S1).1 PC2,
plotted across the y axis in Figure 2a, described an additional
16% of the data set variance, with significant correlations to
BOD, sources of organic and inorganic nitrogen (TON and
NH3), and phenols, along with Ca and K. The third and
fourth PCs explained about 16% of the total data set variance
and were largely correlated to redox parameters, including
pH, ORP, NO3

−, Fe, Mn, and SO4
2− (Auxiliary Materials,

Table S1).
[20] T‐RFLP analysis revealed a total of 40, 115, and 54

T‐RFs for archaea, bacteria, and Geobacteraceae primers,
respectively, across the 22 monitoring locations. When PCA
was conducted using bacterial community profiles, 12 PCs
were needed to describe the large majority (∼80%) of data
set variance. However, plots of PC1 and PC2, describing
only 11% and 9% of the data set variance, respectively,
indicate that despite data set variability, bacterial profiles
detected differences among the monitoring wells that were
consistent with the monitoring location’s position relative to
the unlined landfill and leachate plume (Figure 2b). Fringe
locations near the up‐gradient landfill perimeter (F‐3 and
F‐4) were separated along PC1 (x axis), while contami-
nated and fringe locations near the leading edge of the
plume (C‐1 through C‐3, F‐1, F‐2, and F‐7) were sepa-
rated from background locations across PC2.
[21] The addition of archaea and Geobacteraceae T‐RFs

created a similar pattern of separation to bacterial community

1Auxiliary materials are available in the HTML. doi:10.1029/
2010WR009459.
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composition used alone (Figure 2c). The combined microbial
PCA required 12 PCs to explain more than 80% of the data
set variance, with fringe wells separating from others across
PC1 (x axis) and contaminated wells separating from back-
ground monitoring locations along PC2 (y axis). Monitor-
ing location F‐6 fell within the background locations in the
bacterial PCA but within the contaminated locations in the
combined microbial PCA (Figures 2b and 2c, respectively).
[22] The largest degree of separation between all three

groups of monitoring locations (background, fringe, and
contaminated) was observed when the microbial community
profiles were combined with the hydrochemistry data in a
fourth PCA analysis (Figure 2d). Twelve components were
again necessary to explain more than 80% of the data set
variance. Yet despite the data set variability, contaminated
locations separate clearly from others across PC1 (12% of the
data set variance), and fringe locations separate from back-
ground locations across PC2 (11% of the variance). PC1
loadings remain strongly correlated to leachate indicators,
including sources of carbon, nitrogen, and ionic concentra-
tions (Ca, Cl, K, Mg, and Na), in addition to significant
loadings from T‐RFs belonging to Geobacteraceae, bacteria,
and archaea (see Auxiliary Materials, Table S2). The second
PC is strongly correlated to ORP, Fe, and NO3

−, along with a
dozen microbial fragments. Parameter loadings on the third
PC include pH and various T‐RFs (see Auxiliary Materials,
Table S2).

3.2. Biogeochemistry in Microcosm Treatments

[23] Microcosms were constructed with site soils and
mixtures of groundwater collected from a background well
(B‐1) or leachate‐impacted well (C‐1) to replicate the
spatiotemporal “fringe” effect (biogeochemical transition

between aerobic, nitrate‐reducing, and iron‐reducing elec-
tron accepting processes) observed in the PCA analyses.
Microcosms with 5% or less C‐1 groundwater exhibited
detectable levels of oxygen and nitrate, while little ammo-
nium, dissolved iron, or iron sulfide concentrations had
accumulated (Table 2). For microcosms treated with 10%–
25% C‐1 groundwater, low levels of oxygen and nitrate (near
equipment/analytical detection limits) are detectable con-
current with reduced electron acceptors: Fe2+, Mn2+, and
FeS(aq). Once C‐1 groundwater concentrations surpass 50%,
oxygen and nitrate levels are depleted, and reduced concen-
trations of iron and manganese species begin to accumulate
at higher levels.
[24] Using univariate and multivariate statistical analysis

of hydrochemistry as a guide for parameters indicative of
leachate contamination, we tested what level of known
leachate (0%–100%) could be detected for nine different
parameters in Table 2. These included iron species (Fe, Fe2+,
and FeS), forms of inorganic and organic nitrogen (NH4

+, TIN,
and TON), and cation species (K, Mg, and Na). Only inor-
ganic nitrogen (NH4

+ and TIN) could be used to detect dif-
ferences across all six treatments (see footnotes in Table 2).
Cationic species, including K and Na, detected four levels
across microcosms, while Mg detected only three. Total Fe
detected only two levels of microcosm treatments, while
reduced iron species (Fe2+ and FeS) detected three. No sta-
tistical differences were observed in organic nitrogen (TON)
(Table 2).

3.3. Bacterial Community Dynamics in Microcosm
Treatments

[25] Bacterial community dynamics in response to bio-
geochemical changes due to leachate were assessed from

Table 1. Summary of Water Quality Parameters for Background, Fringe, and Landfill Leachate–Contaminated Groundwater Monitoring
Locationsa

Parameter Background Wells (B1–B11) Fringe Wells (F1–F8) Contaminated Wells (C1–C3)

Temperature (°C) 8.9 ± 1.2 10 ± 1.1 11.1 ± 2
Oxidation reduction potential (ORP, mV) 48 ± 55 (a) −16 ± 35 (b) −38 ± 13 (b)
pH 7.0 ± 0.4 6.6 ± 0.4 6.8 ± 0.3
Specific conductance (mS/cm) 520 ± 340 (a) 1380 ± 630 (a) 7070 ± 1850 (b)
Turbidity (NTUs) 39 ± 72 17 ± 18 50 ± 10
Alkalinity (as CaCO3) 230 ± 160 (a) 550 ± 245 (a) 3440 ± 900 (b)
Hardness (as CaCO3) 302 ± 179 (a) 427 ± 166 (a) 1420 ± 498 (b)
Total dissolved solids (TDS) 367 ± 214 (a) 592 ± 240 (a) 3547 ± 802 (b)
Chloride (Cl−) 25 ± 37 (a) 49 ± 43 (a) 728 ± 228 (b)
Sulfate (SO4

2−) 52 ± 40 47 ± 41 11 ± 14.7
Nitrate (NO3

−) 1.9 ± 2.0 0.5 ± 0.2 <0.5 ± 0
Ammonia (NH3) 0.14 ± 0.26 (a) 31 ± 29 (a) 347 ± 177 (b)
Total organic nitrogen (TON) 0.31 ± 0.24 0.5 ± 0.7 3.3 ± 5.8
Total organic carbon (TOC) 3.3 ± 2.2 (a) 17.5 ± 8.4 (a) 328 ± 271 (b)
Chemical oxygen demand (COD) 8.9 ± 4.7 (a) 48 ± 20.8 (a) 1056 ± 850 (b)
Biological oxygen demand (BOD) 2.0 ± 0 (a) 17.8 ± 14.5 (a) 230 ± 340 (b)
Total phenols 0.005 ± 0 (a) 0.007 ± 0.005 (a) 0.4 ± 0.7 (b)
Calcium (Ca) 88 ± 57.5 (a) 91 ± 53 (a) 276 ± 230 (b)
Cadmium (Cd) 0.005 ± 0 0.005 ± 0 0.005 ± 0
Iron (Fe) 1.2 ± 1.6 (a) 48 ± 28 (b) 47 ± 37 (b)
Lead (Pb) 0.005 ± 0 0.005 ± 0.001 0.005 ± 0
Magnesium (Mg) 20.1 ± 13.7 (a) 37 ± 20 (a) 178 ± 35 (b)
Manganese (Mn) 1.4 ± 2.7 2.7 ± 2.0 1.3 ± 1.0
Potassium (K) 4.7 ± 3.1 (a) 28.0 ± 30 (a) 233 ± 161 (b)
Sodium (Na) 18 ± 19 (a) 53 ± 38 (a) 692 ± 220 (b)

aValues represent the mean concentration plus standard deviation (in parentheses) for the reported parameters in units of milligrams per liter (mg/L)
unless otherwise denoted. Cations are reported as dissolved species. Letters in parentheses indicate significant differences among locations (P < 0.05;
Tukey‐Kramer test for multiple comparisons among means). If no letters are given, no significant differences were observed among the three groups
of monitoring wells.
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microcosms by analysis of the 16S rRNA gene. A total of
86 bacterial T‐RFs were detected across the gradient of
microcosm treatments in this study, with their frequencies
shown in Figure S1 in the auxiliary material. At a bacterial
ecology level, neither the number of T‐RFs (48 ± 8.2) nor
the Shannon‐Wiener Diversity Index H ′ (3 ± 0.4) were
significantly correlated to the percent leachate (Spearman’s
Rho > −0.77, p > 0.07). In contrast, the Jaccard Index cal-
culated between background (B‐1, 0% leachate) microcosms
and all others decreased significantly as the percent of
leachate increased (Spearman’s Rho > −0.99, p < 0.001)
(Figure 3a).
[26] Analysis of 16S rRNA gene clone libraries indicates

a shift in bacterial community composition from clones with
high similarity to Actinobacteria, a‐ and b‐Proteobacteria,
and Verrucomicrobia under background (B‐1, 0% leachate)
conditions to one with clones with high similarity to
Chloroflexi, Firmicutes, and a‐ and d‐Proteobacteria under
leachate‐contaminated conditions (C‐1, 100% leachate)
(Figure 4). Clone sequences similar to a diversity of a‐

and b‐Proteobacteria (90%–98% similarity) made up the
largest percentage of bacteria in background microcosms
and included species within the Bradyrhizobiaceae, Caulo-
bacteraceae, Methylobacteriaceae, Comamonadaceae, and
Burkholderiaceae families. Background microcosms had a
number of Actinobacteria clones with high similarity to
Actinomycetales (91%–97%) and clones with high similar-
ity to the Opitutus species (91%–95%) within the division
Verrucomicrobia.
[27] The microcosms containing leachate (C‐1, 100%

leachate) were abundant in clones with high similarity to
organisms typically involved in the cycling of both simple
and complex organics under iron‐ and sulfate‐reducing
conditions, such as Chloroflexi, Firmicutes, and a‐ and
d‐Proteobacteria (Figure 4). Within the phylum Firmicutes,
this included clones with sequences similar to Clostridium,
Sporobacter, and Desulfotomaculum species (84%–97%).
Microcosms with C‐1 groundwater were abundant in clones
highly similar to the Desulfuromonadales, including Geo-
bacter and Pelobacter species (87%–97%). Clones with

Figure 2. The first two component scores (PC1 and PC2) for principal component analysis conducted
on (a) groundwater hydrochemistry, (b) 16S rRNA gene bacterial community composition, (c) microbial
community composition (archaea, bacteria, and Geobacteraceae), and (d) combined hydrochemistry and
microbial community composition collected from monitoring wells surrounding an unlined landfill.

MOUSER ET AL.: DELINEATING GROUNDWATER CONTAMINATION USING MICROBES W12506W12506

6 of 12



similarity to several Dehaloccoides species (85%) within the
Chloroflexi phylum were also more abundant in microcosms
containing leachate‐contaminated groundwater.
[28] The mean peak height intensities of nine frag-

ments were positively correlated to the percent leachate
(i.e., fragment intensity increased with increased leachate
(Spearman’s Rho > 0.82, p < 0.05)), while the mean
intensities of 22 other fragments were negatively (inversely)
correlated to leachate (fragment intensity decreased when
percent leachate increased (Spearman’s Rho > −0.82, p <
0.05)). A comparison of observed to in silico predicted
fragments indicated that shifts in T‐RF patterns were con-
sistent with clone library results. T‐RFs that increased in
abundance with percent leachate matched in silico frag-
ments belonging to Bacteroidetes, Firmicutes, and a‐ and
d‐Proteobacteria, while those that decreased in abundance
with percent leachate were related to in silico fragments
matching Actinobacteria, Chloroflexi, Firmicutes, and a‐
and b‐Proteobacteria (Table 3).
[29] Specific examples of T‐RF shifts in response to

increased leachate treatment were plotted for six fragments
found to be significantly correlated to leachate content. In
Figure 3b, fragment 161 (in silico matches to Firmicutes
Bacillales and a‐Proteobacteria, Table 3) was detected
across all treatments, increasing threefold when 50% or
more C‐1 groundwater was added to microcosms. T‐RFs
471 (in silico match to Firmicutes Clostridia) and T‐RF 504
(in silico match to d‐Proteobacteria) were below detection at
25% and 10% leachate, respectively, yet increased in
abundance with leachate composition (Figure 3b). The in
silico matches to T‐RF 504 included Desulfovibrio sp. and
Geobacter sp.
[30] A similar inverse trend was observed for fragments

with significant negative correlations to leachate. T‐RFs 68,
which matched in silico fragments similar to Firmicutes
Lactobacillales, decreased by more than threefold with the
onset of leachate and was not observed at analytical detec-
tion limits when 100% leachate was applied to microcosms.

T‐RF 136 (in silico match to b‐Proteobacteria Burkholder-
iales) decreased only slightly with 25% or less leachate but
was reduced to below detection limits at 50% or higher
leachate levels (Table 3 and Figure 3c). Fragments matching
Actinobacteridae and b‐ and g‐Proteobacteria were found
as in silico matches to T‐RF 143. The peak fluorescence of
T‐RF 143 decreased by more than fourfold from 0% to 25%
leachate, then remained below detection limits with larger
percentages of leachate. The in silico matches to T‐RF 143
included Burkholderia sp. and Pseudomonas sp.

4. Discussion

4.1. Statistical Characterization of a Groundwater
Fringe

[31] Multivariate analyses have been used to link specific
microbial community changes in response to ecosystem
changes [Dollhopf et al., 2001; Fields et al., 2006; Morales
et al., 2006; Brielmann et al., 2009; Feris et al., 2009].
Specifically, PCA has previously been used for assessing
correlations between hydrochemistry and microbial com-
position in leachate‐contaminated groundwater [Ludvigsen
et al., 1997; Röling et al., 2001] and to produce indepen-
dent variables for estimating the spatial correlation of
microbial communities in leachate‐contaminated ground-
water [Mouser et al., 2005]. While the degree of autocorre-
lation for microbial communities in pristine and contaminated
sediments is estimated at less than 1 m [Mummey and Stahl,
2003; Brad et al., 2008], the spatiotemporal dynamics of
microbial populations in groundwater is not well established
and should be considered in monitoring strategies. Multi-
variate statistical analyses performed here confirm that for
one snapshot in time, profiles of bacteria, archaea, and
Geobacteraceae more distinctly identified fringe monitoring
locations, while hydrochemistry data were more efficient
in separating contaminated locations. This is consistent
with observations by others [Fields et al., 2006] suggesting
that microbial phylogeny and functionality in intermediate

Table 2. Summary of Biogeochemical Parameters Sampled From Groundwater and Sediment Microcosms Incubated Over a 14 Day
Perioda

Parameter 0% 5% 10% 25% 50% 100%

O2 (mg/L) 2.3 ± 0.6 3.2 ± 0.2 1.7 ± 0.3 2.4 ± 0.4 <1 ± 0.1 <1 ± 0.5
NO3

− (mg/L) 2.0 ± 1.1 <0.9 ± 0 0.9 ± 0 1.0 ± 0.1 <0.9 ± 0 <0.9 ± 0
Mn (mM) 4.4 ± 0.01 5.1 ± 0.03 5.3 ± 0.31 5.3 ± 0.7 4.9 ± 0.8 5.7 ± 0.2
Mn2+ (mM) 280 ± 19 233 ± 2 262 ± 32 174 ± 6 283 ± 13 346 ± 5
Fe (mM) <0.8 ± 0.2 (a) <0.8 ± 0.1 (a) 1.7 ± 0.8 (a) 1.1 ± 0 (a) 5 ± 2 (a, b) 7.4 ± 0.7 (b)
Fe2+ (mM) <5 ± 3 (a) <5 ± 0 (a) 54 ± 32 (a, b) 21 ± 9 (a, b) 187 ± 61 (b, c) 252 ± 31 (c)
FeS (mA) <5 ± 2 (a) <5 ± 0 (a) 35 ± 21 (a, b) 13 ± 5 (a, b) 120 ± 39 (b, c) 162 ± 20 (c)
SO4

2− (mM) 199 ± 28 262 ± 13 263 ± 10 243 ± 21 244 ± 31 215 ± 23
NH4

+ (mM) 0.1 ± 0.02 (a) 0.4 ± 0.03 (b) 0.7 ± 0.02 (c) 1.5 ± 0.04 (d) 2.2 ± 0.03 (e) 6.4 ± 0.04 (f)
TIN (mg/L) 2 ± 0 (a) 6 ± 0 (b) 10 ± 0 (c) 21 ± 1 (d) 31 ± 0 (e) 90 ± 1 (f)
TON (mg/L) 61 ± 16 (a) 23 ± 13 (a) 10 ± 0 (a) 9 ± 3 (a) 20 ± 8 (a) 9 ± 6 (a)
Ca (mg/L) 78 ± 2 104 ± 4 103 ± 6 112 ± 17 104 ± 26 130 ± 1
K (mg/L) 26 ± 2 (a) 32 ± 1 (a, b) 35 ± 1 (a, b) 45 ± 3 (b) 61 ± 4 (c) 110 ± 3 (d)
Mg (mg/L) 12 ± 0.5 (a) 16 ± 0.5 (a, b) 17 ± 0.5 (a, b) 22 ± 2.2 (a, b) 25 ± 4.9 (b) 41 ± 1.4 (c)
Na (mg/L) 33 ± 1.3 (a) 35 ± 0.8 (a) 37 ± 0.1 (a) 48 ± 0.5 (b) 61 ± 0.8 (c) 99 ± 1.9 (d)
B (mg/L) 0.1 ± 0.05 0.1 ± 0.04 0.1 ± 0.04 0.3 ± 0.05 0.5 ± 0.05 1 ± 0.05
Cu (mg/L) 0.1 ± 0.004 0.1 ± 0.01 0.05 ± 0.002 0.1 ± 0.01 0.03 ± 0.01 0.01 ± 0.001
Zn (mg/L) 1 ± 0.01 1 ± 0.04 1 ± 0.11 1 ± 0.13 1 ± 0.09 1 ± 0.09

aValues represent the median concentration plus range (in parentheses) for the reported parameters in units of milligrams per liter (mg/L), milimolar
(mM), micromolar (uM), or microamp (uA). Percentages shown in the column heads represent the ratio of background groundwater from monitoring
location B‐1 relative to leachate‐contaminated groundwater from monitoring location C‐1, with 100% representing all C‐1 groundwater. Letters in
parentheses denote parameters tested for significant differences (P < 0.05; Tukey‐Kramer test for multiple comparisons among means). Where
differences among treatments were observed, letters vary across experimental treatments.
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monitoring locations are different from background and
contaminated locations. An improved characterization of
groundwater quality was achieved when microbial com-
munity profiles were combined with the hydrochemistry
information. The combined PCA separated background,
fringe, and contaminated locations across PC1 and PC2 in
loading patterns that are related to the primary electron
accepting processes and dominant microbial community in

the subsurface. Background locations remained clustered
together; fringe locations dominated by nitrate and low‐
level iron reduction were separated across PC2, while other
fringe locations and contaminated locations undergoing iron
and sulfate reduction were separated across PC1. The multi-
variate separation of discrete monitoring locations is con-
sistent, in general, with classification of plume zones based
on high‐resolution data collected using geophysical meth-
ods and interpolated using geostatistics and highlights the
value of biological information for an improved sensitiv-
ity in the monitoring network in the absence of a detailed
geophysical survey.
[32] This improved classification is important not only

from a detection standpoint but also for long‐termmonitoring
of leachate‐contaminated plumes. It allows for a more sen-
sitive measure of groundwater quality impacts from landfills
and provides a gauge of natural attenuation processes along a
site‐specific “subtle” to “gross” contamination spectrum.
Gross changes, such as those separating microbial commu-
nities present in the plume center of mass (C‐1 through C‐3)
or directly down‐gradient of the landfill (F‐1 and F‐5), would
probably be associated with statistically detectable differ-
ences in hydrochemistry, including increased ionic content,
organic carbon demand, or the presence of anthropogenic
compounds not typically observed in groundwater aquifers.
Subtle changes, as evidenced in differences observed in
fringe wells along the up‐gradient landfill perimeter (F‐3
and F‐4) and down‐gradient plume fringe (F‐2, F‐5, F‐7,
and F‐8), were related to decreased redox potentials,
increased available inorganic nitrogen, and increased iron
species across groundwater‐monitoring wells and in micro-
cosm treatments. Reduced iron is mobile; therefore, a shift
from oxic to anoxic conditions would be expected to pro-
duce increased levels of iron groundwater‐monitoring wells
down‐gradient from the leachate source. While these bio-
geochemical trends may be difficult to detect at relatively
low leachate content through statistical means, changes were
distinctly observable using microbial community profiles
and PCA statistical analysis.

4.2. Challenges in Using Hydrochemical Data
for Detecting Contamination

[33] Microcosm treatments replicated the spatiotemporal
biogeochemical gradient between oxic (aerobic and nitrate
reduction) and anoxic (iron and sulfate reduction) electron‐
accepting processes that have been described in other leach-
ate‐contaminated subsurface environments [Christensen
et al., 1994]. However, even across a known gradient
of leachate, statistically significant differences in hydro-
chemistry were difficult to detect in microcosms without a
larger percentage (what would be considered 50% or greater)
of leachate present. Cation species (Fe, K, Mg, and Na) tested
in microcosms separated into two to four statistical groups,
while redox‐sensitive iron species (Fe2+ and FeS(aq)) and
inorganic forms of nitrogen (NH4

+ and TIN) separated into
three and six groups, respectively. Thus, iron species and
inorganic nitrogen may be two of the better hydrogeo-
chemical parameters for detecting the onset of leachate in
the groundwater.
[34] At the field scale, we detected differences between

two distinct groups of water quality for a similar listing of
cation and nitrogen species to those noted in microcosm

Figure 3. (a) Ecological indices for duplicate microcosms,
including the number of T‐RFs, Shannon‐Wiener Index H ′,
and Jaccard Index J. (b) Change in fragment intensity for
three T‐RFs positively correlated to landfill leachate in
microcosm treatments. (c) Change in fragment intensity
for three T‐RFs inversely correlated to leachate treatment.
T‐RF peak fluorescence values represent triplicate fragment
height readings for duplicate microcosms (n = 6), with
means (bars) and standard deviations (whiskers).
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treatment; however, none of the 25 hydrochemical param-
eters analyzed at the site could differentiate fringe loca-
tions from either contaminated or background groundwater
quality. This demonstrates the difficulty in comparing
physiochemical trends using a traditional up‐gradient versus
down‐gradient monitoring strategy at landfills, specifically
if background water quality conditions are not character-
ized prior to the onset of waste disposal activities. Of the
14 parameters listed in Table 1 with statistical differences,
ORP levels and iron concentrations in fringe wells were
more similar to contaminated locations, while other noted
statistical differences grouped fringe wells with background
locations. ORP and iron were also two of the key hydro-
chemical drivers in the separation of fringe from background
locations once microbial community profiles were added to
hydrochemistry data in the combined PCA. Unfortunately,
while ORP and iron‐related biogeochemical changes may
be related to the onset of landfill leachate in this aqui-
fer example, it may also result from changes in surface
hydrology, groundwater recharge, or loading of organic
materials not related to landfill leachate [Chapelle et al.,
1995; Anderson and Lovley, 1997]. Thus, statistical dif-
ferences in plume biogeochemistry alone are not sufficient
for detecting or classifying landfill leachate contamination
in this example.
[35] Microbial community profiles provided an alternative

measure of groundwater quality information that compli-
mented hydrochemistry data and was related to the contam-
ination source. Overall biodiversity of sediment microcosms
was consistent with or slightly lower than numbers observed
in other shallow aquifers [Brielmann et al., 2009; Stein
et al., 2010]. At a broad level, the Jaccard Index showed

a divergence away from the background bacterial com-
munity composition as a larger percentage of leachate‐
contaminated groundwater was added to the microcosms.
Significant decreases in 25% of community members (22/86
of detected T‐RFs) due to the onset of contaminants is
consistent with a reduction in bacterial population com-
plexity and diversity observed in other studies [Griebler and
Lueders, 2009]. While its possible that shifts in T‐RF
community composition in the field and at the lab scale are
related solely to changes in cation species alone [Brielmann
et al., 2009], it is more likely that fringe‐observed differ-
ences in the microbial community are related to carbon and
nitrogen nutrient materials driving redox conditions, in par-
ticular, nitrate, iron, or sulfate‐reducing TEAPs and associ-
ated microbial biota. Community characterization derived
through T‐RF in silico analysis and the sequencing of the
16S rRNA gene indicate this shift is from a community
dominated by b‐Proteobacteria and Actinobacteria typical of
a pristine aquifer to one with a larger proportion of Firmi-
cutes and d‐Proteobacteria [Griebler and Lueders, 2009].
Certain Clostridia, such as clones with high similarity to
Sporobacter termitidis and Clostridium spp. observed here,
have been associated with the degradation of complex
organic materials derived from landfill leachates [Van Dyke
and McCarthy, 2002; Burrell et al., 2004] and may be
involved in similar decay processes at this site. Dissimilatory
metal‐reducing bacteria such as clones with high similarity
to Geobacter spp., Pelobacter spp., and Desulfovibrio sp.
observed here are capable of coupling the oxidation of
simple organics to the reduction sediment‐derived iron
[Snoeyenbos‐West et al., 2000; Anderson et al., 2003;
Cummings et al., 2003; Lin et al., 2005; Holmes et al., 2007].

Figure 4. Bacterial community composition based on 16S rRNA clone sequences extracted from micro-
cosms treated with background groundwater (B‐1) or leachate‐contaminated groundwater (C‐1).
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Thus, the increased abundance of these d‐Proteobacteria
driving the separation of fringe samples and in microcosms
containing a larger proportions of leachate is consistent
with their described role in other contaminated subsurface
environments.

4.3. Implications for Incorporating Microbial
Information in Monitoring Strategies

[36] Changes in key T‐RFs from microcosm treatments
showed that certain bacteria believed to belong to Bacter-
oidetes, Firmicutes, and a‐ and d‐Proteobacteria increase in
abundance with higher leachate composition. These bacteria
could be present in the subsurface prior to contamination
or advectively transported via leachate‐derived colloids
in the subsurface. In the latter case, bacteria may represent
an indicator organism or tracer tying the contaminated
groundwater to its leachate source, while in both cases,
bacteria may represent an increased sensitivity to landfill
leachate–related biogeochemical changes when analytical
methods are unable to quantify low levels of contaminants.
Fecal bacteria and molecular ribotyping methods have been
used for determining sources of surface water pollution in
watershed systems [Meays et al., 2004]; however, these
same tracking methods do not appear as efficient in the
subsurface owing to the rates of groundwater transport and
source specificity in porous media systems [Cimenti et al.,
2005]. Nevertheless, while this study was not designed to
link specific T‐RFs to leachate contamination, our results
suggest that microbial communities may potentially be used
for both purposes and that further research is warranted.
[37] This work provides a basis for improving detec-

tion methods through the incorporation of molecular‐based
microbial composition data and multivariate statistical anal-
yses. Tracking changes in the abundance of specific bacterial
species in the groundwater may prove to be infeasible for the
purpose of detection or long‐term monitoring strategies at
landfill sites because of the variability of leachate composi-
tion and site‐specific hydrogeologic characteristics. How-
ever, we show here that tracking shifts in T‐RF patterns
appear to be a sensitive means for detecting low levels of
leachate in groundwater from leaking MSWLFs, particularly
along plume fringes. It also suggests the possibility of opti-
mizing detection strategies using microbial information and
a limited set of hydrochemical parameters to lower long‐
term monitoring costs at landfills.
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sampling and monitoring well access; Dale Becker with the New York
Department of Environmental Conservation for providing access to public
data resources and hydrogeology technical insight on the site; and the

Table 3. Comparison of T‐RFs Observed in This Study to T‐RFs
Predicted From the Ribosomal Database II in Silico Digest
Analysisa

Observed
T‐RF (bp) Correlation

Predicted
T‐RF (bp)

Bacterial Phylum, Order, and Family
(Based on in Silico Digest Analysis)

Positive Correlation
92 0.82 92 Bacteroidetes Candidatus Cardinium
125 0.83 126 Unidentified/uncultured bacteria

127 Proteobacteria a‐Proteobacteria
Rhizobiales

158 0.89 158 Actinobacteria Actinobacteridae
Actinomycetales

161 0.89 161 Firmicutes Bacillales Bacillaceae
161 Proteobacteria a‐Proteobacteria

Rhizobiales
204 0.89 204 Actinobacteria Actinobacteridae

Actinomycetales
269 0.94 268 Fusobacteria Fusobacteriales

Fusobacteriaceae
471 0.94 473 Firmicutes Clostridia Clostridiales
504 0.93 505 Proteobacteria d‐Proteobacteria

Desulfovibrionales
506 Proteobacteria d‐Proteobacteria

Desulfuromonadales
517 0.93 517 Chloroflexi uncultured bacterium

Negative (Inverse) Correlation
61 −0.94 63 Proteobacteria d‐Proteobacteria

uncultured bacterium
62 −0.83 63 Proteobacteria d‐Proteobacteria

uncultured bacterium
65 −0.94 67 Actinobacteria Actinobacteridae

Actinomycetales
68 −0.99 69 Firmicutes Lactobacillales

Carnobacteriaceae
72 −0.89 72 Proteobacteria g‐Proteobacteria

Thiotrichales
89 −0.89 89 Bacteroidetes uncultured bacterium
91 −0.84 91 Bacteroidetes Flavobacteria

Flavobacteriales
110 −0.87 109 Unidentified/uncultured bacteria
115 −0.94 116 Unidentified/uncultured bacteria
117 −0.93 117 Chloroflexi Chloroflexales

Chloroflexaceae
127 −0.89 127 Proteobacteria a‐Proteobacteria

Rhizobiales
136 −0.93 135 Proteobacteria b‐Proteobacteria

Burkholderiales
136 Unidentified/uncultured bacteria

143 −0.94 143 Actinobacteria Actinobacteridae
Actinomycetales

143 Proteobacteria b‐Proteobacteria
Burkholderiales

143 Proteobacteria g‐Proteobacteria
Pseudomonadales

148 −0.83 148 Firmicutes Bacillales Bacillaceae
154 −0.93 154 Proteobacteria a‐Proteobacteria

Rhizobiales
167 −0.94 167 Firmicutes Bacillales Salinicoccus
175 −0.94 174 Actinobacteria Actinobacteridae

Actinomycetales
175 Proteobacteria a‐Proteobacteria

environmental samples
178 −0.94 179 Firmicutes Bacillales Bacillaceae
180 −0.87 180 Firmicutes Bacillales Bacillaceae

180 Firmicutes Clostridia Halanaerobiales
192 −0.99 192 Planctomycetes Planctomycetacia

Planctomycetales
192 Proteobacteria g‐Proteobacteria

environmental samples
227 −0.93 227 Proteobacteria g‐Proteobacteria

Oceanospirillales
227 Planctomycetes Planctomycetacia

Planctomycetales

Table 3. (continued)

Observed
T‐RF (bp) Correlation

Predicted
T‐RF (bp)

Bacterial Phylum, Order, and Family
(Based on in Silico Digest Analysis)

267 −0.87 266 Unidentified/uncultured bacteria
268 Fusobacteria Fusobacteriales

Fusobacteriaceae

aFragments reported in Table 3 were significantly correlated (Spearman’s
Rho > ±0.82, p < 0.05) to landfill leachate–contaminated groundwater in
microcosm treatments.
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