
University of Vermont University of Vermont 

UVM ScholarWorks UVM ScholarWorks 

College of Arts and Sciences Faculty 
Publications College of Arts and Sciences 

5-1-2015 

Unveiling the species-rank abundance distribution by generalizing Unveiling the species-rank abundance distribution by generalizing 

the Good-Turing sample coverage theory the Good-Turing sample coverage theory 

Anne Chao 
National Tsing Hua University 

T. C. Hsieh 
National Tsing Hua University 

Robin L. Chazdon 
University of Connecticut 

Robert K. Colwell 
University of Connecticut 

Nicholas J. Gotelli 
University of Vermont 

See next page for additional authors 

Follow this and additional works at: https://scholarworks.uvm.edu/casfac 

 Part of the Climate Commons 

Recommended Citation Recommended Citation 
Chao A, Hsieh TC, Chazdon RL, Colwell RK, Gotelli NJ. Unveiling the species‐rank abundance distribution 
by generalizing the Good‐Turing sample coverage theory. Ecology. 2015 May;96(5):1189-201. 

This Article is brought to you for free and open access by the College of Arts and Sciences at UVM ScholarWorks. It 
has been accepted for inclusion in College of Arts and Sciences Faculty Publications by an authorized 
administrator of UVM ScholarWorks. For more information, please contact scholarworks@uvm.edu. 

https://scholarworks.uvm.edu/
https://scholarworks.uvm.edu/casfac
https://scholarworks.uvm.edu/casfac
https://scholarworks.uvm.edu/cas
https://scholarworks.uvm.edu/casfac?utm_source=scholarworks.uvm.edu%2Fcasfac%2F60&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/188?utm_source=scholarworks.uvm.edu%2Fcasfac%2F60&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@uvm.edu


Authors Authors 
Anne Chao, T. C. Hsieh, Robin L. Chazdon, Robert K. Colwell, Nicholas J. Gotelli, and B. D. Inouye 

This article is available at UVM ScholarWorks: https://scholarworks.uvm.edu/casfac/60 

https://scholarworks.uvm.edu/casfac/60


Ecology, 96(5), 2015, pp. 1189–1201
� 2015 by the Ecological Society of America

Unveiling the species-rank abundance distribution by generalizing
the Good-Turing sample coverage theory
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Abstract. Based on a sample of individuals, we focus on inferring the vector of species
relative abundance of an entire assemblage and propose a novel estimator of the complete
species-rank abundance distribution (RAD). Nearly all previous estimators of the RAD use
the conventional ‘‘plug-in’’ estimator p̂i (sample relative abundance) of the true relative
abundance pi of species i. Because most biodiversity samples are incomplete, the plug-in
estimators are applied only to the subset of species that are detected in the sample. Using the
concept of sample coverage and its generalization, we propose a new statistical framework to
estimate the complete RAD by separately adjusting the sample relative abundances for the set
of species detected in the sample and estimating the relative abundances for the set of species
undetected in the sample but inferred to be present in the assemblage. We first show that p̂i is a
positively biased estimator of pi for species detected in the sample, and that the degree of bias
increases with increasing relative rarity of each species. We next derive a method to adjust the
sample relative abundance to reduce the positive bias inherent in p̂i. The adjustment method
provides a nonparametric resolution to the longstanding challenge of characterizing the
relationship between the true relative abundance in the entire assemblage and the observed
relative abundance in a sample. Finally, we propose a method to estimate the true relative
abundances of the undetected species based on a lower bound of the number of undetected
species. We then combine the adjusted RAD for the detected species and the estimated RAD
for the undetected species to obtain the complete RAD estimator. Simulation results show that
the proposed RAD curve can unveil the true RAD and is more accurate than the empirical
RAD. We also extend our method to incidence data. Our formulas and estimators are
illustrated using empirical data sets from surveys of forest spiders (for abundance data) and
soil ciliates (for incidence data). The proposed RAD estimator is also applicable to estimating
various diversity measures and should be widely useful to analyses of biodiversity and
community structure.

Key words: Good-Turing theory; relative abundance; sample coverage; species abundance distribution
(SAD); species-rank abundance distribution (RAD).

INTRODUCTION

Most plant and animal assemblages are character-

ized by a few common species and many uncommon

or rare species. A major research aim of ecology is to

understand the mechanisms and processes that gener-

ate and shape the differences among species abun-

dances (Whittaker 1965, 1970, 1972; see McGill et al.

2007 for a review). A broad array of conceptual and

methodological frameworks has been proposed to

model and interpret species abundance patterns

among assemblages. These previous approaches en-

compass a wide range of biological and statistical

models, from classic analyses of the log series (Fisher

et al. 1943), log-normal distribution (Preston 1948),

and broken-stick distribution (MacArthur 1957, 1960)

to more recent treatments of mechanistic neutral

(Caswell 1976, Hubbell 2001) and niche-partitioning

(Sugihara 1980, Tokeshi 1990) models; see Magurran

(2004) and Magurran and McGill (2011) for over-

views.

In this study, we mainly focus on inferring the

relative abundance or frequency of every species in an

entire focal assemblage, including species undetected by

sampling. Based on a sample of n individuals,

ecologists often use the conventional ‘‘plug-in’’ estima-

tor ( p̂i¼Xi/n, sample relative abundance/frequency) to

estimate the true relative abundance pi or probability of

species i, where Xi is the number of individuals

observed of species i in the sample. These sample

relative abundances have routinely been used to

compute species diversity and evenness measures
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(Magurran 2004) and to obtain the empirical plots of

the species abundance distribution (SAD) and species-

rank abundance distribution (RAD); see McGill et al.

(2007). The empirical RAD curve depicts a so-called

Whittaker (1965) plot: the sample relative abundance

on the y-axis (often with a log10-transformation to

accommodate several orders of magnitude), with the

species list, ranked from the most abundant species to

the least abundant, on the x-axis. Based on a sample of

species abundances from an assemblage, we propose a

new statistical framework for inferring the SAD/RAD

of the entire assemblage. We focus on the RAD

estimation because the RAD conveys the same infor-

mation as the SAD, and the RAD can be used visually

to demonstrate the advantages of our approach and to

reveal the novelty of our method.

Beginning with seminal work by R. A. Fisher and

F. W. Preston in the 1940s, ecologists have fit various

statistical models to species or species-rank abundance

data; see Magurran (2004) for a review. These

distribution-fitting approaches to estimating the com-

plete RAD are entirely dependent on the use of the

plug-in estimator for detected species. This approach

seems natural and intuitive, because the sample relative

abundance is considered to be an unbiased estimator of

the true species relative abundance under popular

sampling models (Lehmann and Casella 1998). As we

explain by simple examples and statistical theory,

‘‘unbiasedness’’ can be achieved only by averaging

out all possible species occurrences, including both

nonzero occurrences (which are detected in the sample)

and zero occurrences (which are not). In nearly all

practical applications, however, data consist of the

detected species only. The undetected species cannot be

included in the data because we do not know whether

or not the focal assemblage includes any unobserved

species.

This study first addresses the following questions:

given the detection of a species in a sample, is its sample

relative abundance an unbiased estimator of that

species’ true relative abundance? If not, can the bias

be reduced or eliminated? These questions are related

to a longstanding challenge in community ecology of

characterizing the relationship between the SAD in the

entire assemblage and the observed SAD in a sample.

Most previous approaches (e.g., Dewdney 2000, Green

and Plotkin 2007) are based on a parametric assump-

tion about the SAD of the entire assemblage. In this

study, we provide a simple and transparent nonpara-

metric relationship. For any species detected in the

sample, we demonstrate that the plug-in estimator is a

positively biased estimator of the true relative abun-

dance of the species when the sample is not complete.

We provide a method to reduce this inherent positive

bias.

The next question this study addresses is, without

assuming a particular statistical distribution for the

underlying SAD/RAD, is it feasible to estimate the

relative abundances of the undetected species? In

Preston’s (1948) pioneering work, a log-normal model

was used to estimate the portion of the assemblage

behind a lower limit of observed abundance that he

called the ‘‘veil line.’’ The fitted log-normal distribution

is used to push back the veil line to estimate the number

and relative proportions of the undetected species. But

Preston’s analysis depends on the restrictive assumption

of a known log-normal model. In different contexts,

Gotelli et al. (2010) and Chazdon et al. (2011) addressed

this problem in a nonparametric way, but it has not

previously been applied to the estimation of the

complete RAD.

Here, we describe a general method for estimating

the RAD for both detected and undetected species to

address these questions. Our method is based on the

Good-Turing sample coverage theory and a general-

ization of that theory that is derived for the first time in

this study. The basic theory was originally developed

by A. Turing and I. J. Good for their famous

cryptographic analyses during World War II. Turing

never published this theory, but gave permission to

Good to publish it (Good 1953, 2000). Good and

Turing discovered that the total probabilities (total true

relative abundances) for those species detected in a

sample (sample coverage) can be very accurately

estimated based only on the sample data themselves.

This result implies that the complement of sample

coverage (the total probabilities for those species

undetected in the sample; coverage deficit sensu Chao

and Jost [2012]) can also be very accurately estimated.

However, as we will show, this information, although

essential, is not in itself sufficient to properly adjust for

the biases caused by using the plug-in estimator p̂i of
species relative abundance, nor is it sufficient to

accurately estimate the relative abundances for unde-

tected species. We generalize the Good-Turing sample

coverage theory to show that there are other aspects of

undetected species that we can estimate accurately, and

that these measures of information are required to

construct a complete RAD.

We separately estimate the RAD for species detected

and undetected in a sample. Based on the Good-Turing

sample coverage theory and its generalization, we show

how to adjust the sample relative abundance of each

detected species to better estimate its true relative

abundance. Using an estimate of the number of

undetected species in the sample (the Chao1 estimator;

Chao 1984), we assume that the functional form of the

relative abundances of undetected species follows a

simple geometric series model (although any other

models or distributions could be used instead) and

derive an estimated RAD for undetected species. We

then combine the adjusted relative abundances for

detected species and the estimated part for undetected

species to obtain an estimator of the complete RAD (or

SAD). Using simulations, we compare the empirical

RAD based on p̂i and the proposed, estimated RAD.

ANNE CHAO ET AL.1190 Ecology, Vol. 96, No. 5



Most biological survey data can be classified as

abundance data (in which individuals are randomly

selected) or incidence data (in which sampling units
are randomly selected). For the latter, the sampling

unit is often a trap, net, quadrat, plot, or timed survey.

For incidence data, the abundance of each species is
not recorded; only its detection or non-detection in

each sampling unit. Although our study deals primar-

ily with abundance data, we briefly discuss parallel
derivations that extend our approach to incidence

data.

We illustrate the application of our estimators to an
empirical data set of pitfall trap catches of temperate

forest spiders for abundance data (Sackett et al. 2011),

and a data set of soil ciliates for incidence data based
on soil samples (Foissner et al. 2002). The formulas

for our estimated RAD are relatively simple to

calculate and should improve estimation for a variety
of ecological questions in which an estimator of the

true RAD is desired. We discuss the potential

application of our method to the estimation of various
diversity measures derived from the RAD and the

assessment of sampling errors of complicated estima-

tors.

PROBLEMS WITH SAMPLE RELATIVE ABUNDANCES FOR

DETECTED SPECIES

Assume that there are S species in the assemblage

and that the true species relative abundances or
probabilities are ( p1, p2, . . . , pS),

PS
i¼1 pi ¼ 1. Here, pi

can also be interpreted as the probability that any

individual is classified to the ith species. Assume a
random sample of n individuals is selected with

replacement. Let Xi denote the sample abundance of

the ith species in the sample, i¼ 1, 2, . . . , S. Then (X1,

X2, . . . , Xi, . . . , XS) is a multinomial distribution with

parameters ( p1, p2, . . . , pi, . . . , pS), where
P

Xi�1 Xi ¼ n.

Only those species with abundance X � 1 are detected
in sample; those species with abundance X ¼ 0 are

undetected in sample and are therefore not included in

the data.
We use a simple example to explain the problem with

the familiar plug-in estimator of relative abundances.

Assume that an assemblage consists of 10 species labeled
A, B, . . . , I, J, as in Table 1, with p¼ 0.3, 0.1, 0.4, 0.03,

0.05, 0.065, 0.025, 0.015, 0.010, and 0.005, respectively

(Table 1). Some species are common and some are rare.
Assume we take a random sample of 100 individuals,

with replacement, from this assemblage. The expected

abundances for the 10 species would be 30, 10, 40, 3, 5,
6.5, 2.5, 1.5, 1.0, and 0.5, respectively. However, some of

the species with small expected abundances will likely be

undetected in any particular sample. We generate 10 000
samples, each with sample size 100. Of the 10 000

samples, we illustrate in Table 1 the sample relative
abundances for the first three samples and the last

sample. Note that in each sample, some species are not

detected. For example, in the first sample, species G and
I are not detected (and are thus indicated as blank in

Table 1).

For each species, we can calculate two types of

averages or expectations for the sample relative abun-
dance: the conditional (on detection) average and the

unconditional average. The unconditional average is
obtained by averaging over all 10 000 samples, including

both detected and undetected species in the calculation:

if a species occurs in a particular sample, the sample
relative abundance is used in computing the average; if a

species does not occur in a particular sample, its

estimated relative abundance is 0. The divisor for this

TABLE 1. A simple simulation to illustrate the problem with the conventional plug-in estimator
(i.e., sample relative abundance) for 10 species (labeled A–J) and their true relative abundances.

Species ID

Sample relative abundances
with sample size n ¼ 100 Average

True relative
abundance1 2 3 10 000 Conditional Unconditional

A 0.3 0.41 0.29 0.32 0.3009 0.3009 0.3
B 0.08 0.11 0.13 0.08 0.0998 0.0998 0.1
C 0.42 0.34 0.38 0.44 0.3998 0.3998 0.4
D 0.02 0.01 0.05 0.02 0.0315 0.0301 0.03
E 0.1 0.02 0.06 0.04 0.0500 0.0498 0.05
F 0.06 0.07 0.07 0.06 0.0649 0.0648 0.065
G 0.01 0.01 0.01 0.0269 0.0248 0.025
H 0.01 0.01 0.01 0.0194 0.0150 0.015
I 0.02 0.01 0.02 0.0157 0.0099 0.01
J 0.01 0.0127 0.0051 0.005

Notes: A total of 10 000 samples of size 100 were generated from the assemblage. Among the
10 000 samples, the species sample relative abundances for the first three samples and the last
sample are shown. A blank cell means that a species was not detected in that sample. For each
particular species, the averages of sample relative abundances over 10 000 samples are shown as the
unconditional average, i.e., those samples in which that species was not detected (as shown by a
blank, for which the species’ sample relative abundance is thus simply 0) are also counted in the
divisor (the number of samples counted) to compute the average. The conditional average was
obtained by averaging only those samples in which the species was detected, i.e., those samples in
which that species was not detected are not included in the divisor. For each species, only the
divisor differs between the two averages.

May 2015 1191SPECIES-RANK ABUNDANCE DISTRIBUTION



unconditional average is always 10 000 for each species.

However, in practice, in a single sample, we can only

obtain sample relative abundances conditional on those

species that are detected in that sample. This conditional

average is obtained by averaging over only those

samples in which that species is detected. Therefore,

the divisor for the conditional average for rare species

may be less than 10 000, because not all samples are

included in the divisor.

Table 1 reveals that, for all species, the unconditional

averages are very close to the true relative abundances.

For abundant species, which are likely to be observed in

nearly all samples (such as species A–F), the conditional

and unconditional averages are almost identical. For

rare species, however, which will be found in few or no

samples, the conditional averages are consistently higher

than the true relative abundances. For rare species G–J

in Table 1, with relative abundances 0.025, 0.015, 0.010,

and 0.005, the corresponding conditional averages are

0.0269, 0.0194, 0.0157, and 0.0127. These results imply

that the sample relative abundance for any detected

species overestimates its true value. The level of

overestimation is not uniform, but scales inversely with

abundance: estimates for rare detected species are more

severely biased than estimates for common detected

species. Sample relative abundances do not need to be

adjusted for abundant species, but sample relative

abundances for rare species have substantial positive

relative biases and should be properly adjusted.

Statistical explanation

The level of overestimation of the sample relative

abundance for any detected species can be seen by

examining the following theoretical conditional average

or statistical expectation (Chazdon et al. 2011: Appendix

C):

Eð p̂i jXi . 0Þ ¼ E
Xi

n
j Xi . 0

� �
¼ pi

1� ð1� piÞn
ð1Þ

which is the expected proportion of individuals in a

sample of size n that represent species i, given that

species i has been detected in sample. The denominator

1 – (1 – pi )
n in Eq. 1 is P(Xi . 0), the probability of

detection of species i in the sample. Because this

denominator is always less than 1, Eq. 1 proves that

the sample relative abundance for any detected species

consistently overestimates the true probability pi.

When pi is relatively large, the denominator 1 – (1 –

pi )
n tends to 1, because the species is sufficiently

abundant that it would be observed in any sample.

Therefore, for relatively common species, the sample

relative abundance Xi/n works well as an estimate of pi,

and almost no adjustment is required. In contrast, when

pi is very small, the denominator 1 – (1 – pi )
n is much less

than 1, which generates a substantial bias. For example,

with a sample size of 100, the probability of detecting the

rarest species in Table 1 is 1 – (1 – pi )
n¼1 – (1 – 0.005)100

¼ 0.394. The conditional average is 0.005/0.394¼ 0.0127,

more than double the correct value (0.005). This

theoretical value of 0.0127 is further confirmed by our

simulation result (Table 1).

Now we can connect the foregoing discussion to the

classic unbiasedness of sample relative abundance in the

following sense. For any species i, it will be detected in

the sample with probability P(Xi . 0)¼ 1 – (1 – pi )
n or it

will be undetected with probability P(Xi¼ 0)¼ (1� pi )
n.

Then on average, we have

E
Xi

n

� �
¼ E

Xi

n
j Xi . 0

� �
PðXi . 0Þ

þE
Xi

n
j Xi ¼ 0

� �
PðXi ¼ 0Þ

¼ pi

1� ð1� piÞn
3½1� ð1� piÞn�

þ 0 3ð1� piÞn

¼ pi:

This (unconditional) expectation, which is valid for all

species in the complete assemblage, considers both

detection and non-detection and implies unbiasedness.

SIMULATION PART I: THE EMPIRICAL RAD

We use a suite of simple simulations to illustrate the

undersampling bias with the empirical RAD when

sample size is not large enough to detect all species.

We simulated data from two theoretical abundance

distributions (the Zipf-Mandelbrot model and the log-

normal model) and treated four large empirical diversity

surveys as the complete assemblages. For the latter

cases, the species-rank abundance distribution from

each survey was assumed to be the ‘‘true’’ complete

distribution; this true RAD was then compared with the

empirical RADs obtained from simulated samples of

several sample sizes. Here we report in detail only the

simulation results for the Zipf-Mandelbrot model for

illustration. See Appendix A for simulation results of

other scenarios.

In the Zipf-Mandelbrot model, we fix the number of

species at 200 and the true relative abundance takes the

form pi ¼ c/(2 þ i ), i ¼ 1, 2, . . . , 200, where c is a

normalized constant such that the sum of the relative

abundances is 1. In Fig. 1a, we compare the true

complete RAD of the entire assemblage (light blue line)

and the empirical RAD based on 200 simulated data

sets of sample sizes 200, 400, and 800 (200 superim-

posed dark blue lines, each line corresponding to an

empirical RAD for each generated data set). When the

sample sizes are not large enough (n¼ 200 and 400) to

detect all species, only about half of the complete RAD

can be revealed empirically from the simulated data.

Even for a large sample size (n ¼ 800), most of the

empirical RAD curves still cannot unveil the complete

‘‘tail’’ of the true RAD. Although the observed species

(say there are K of them) in a sample may not

correspond to the first K species in the true RAD,

most of the empirical RAD curves lie above the true

ANNE CHAO ET AL.1192 Ecology, Vol. 96, No. 5



RAD, signifying that the positive bias is associated

with the empirical RAD for the detected species, as

predicted from our theory (Eq. 1) and shown by an

example (Table 1).

GOOD-TURING SAMPLE COVERAGE THEORY AND A

GENERALIZATION

Sample coverage and coverage deficit

Let fk be the number of species represented by exactly

k individuals in the sample, k¼ 0, 1, . . . , n; we refer to fk
as the abundance frequency counts. In particular, f1 is

the number of species represented by exactly one

individual (singletons) in the sample, and f2 is the

number of species represented by exactly two individuals

(doubletons). The unobservable frequency f0 denotes the

number of species present in the entire assemblage but

not detected in the sample. Good and Turing discovered

a surprisingly simple estimator for the sample coverage

(C; a measure of sample completeness, as defined in

Introduction) that is a simple function of the number of

singletons and the sample size if f1 . 0

Ĉ ¼ 1� f1
n
: ð2aÞ

When f1, f2 . 0, an improved Turing’s coverage

estimator (Chao and Jost 2012) is

1
Ĉ ¼ 1� f1

n

ðn� 1Þf1
ðn� 1Þf1 þ 2f2

� �
: ð2bÞ

Here, the leading superscript 1 in 1Ĉ refers to the first-

FIG. 1. (a) Comparison of the true species-rank abundance distribution (RAD) of the complete assemblage (light blue line) and
the empirical RAD curves (superimposed dark blue lines with 200 replications). (b) Comparison of the true RAD, empirical RAD,
and adjusted RAD curves for detected species only (superimposed green lines with 200 replications). (c) Comparison of the true
RAD, empirical RAD, and estimated RAD curves for both detected and undetected species (superimposed red lines with 200
replications). For each of the sample sizes 200 (left panels), 400 (middle panels), and 800 (right panels), 200 data sets were generated
from the Zipf-Mandelbrot model; thus there are 200 estimated RADs (200 dark blue lines, 200 green lines, and 200 red lines). Note
that the x-axis is the species list, ranked from most to least abundant, and the y-axis (relative abundance) is displayed on a log10
scale.
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order sample coverage of our generalization (A gener-

alization). This improved coverage estimator incorpo-
rates information about the doubletons. It is improved

in the sense that this coverage estimator generally has
smaller mean squared error than Good-Turing’s esti-

mator. In the following derivation, we will adopt this
more accurate estimator. Subtracting the sample cover-

age estimator from unity gives the estimator of coverage
deficit

1
Ĉdef ¼ 1� 1

Ĉ ¼ f1
n

ðn� 1Þf1
ðn� 1Þf1 þ 2f2

� �
: ð2cÞ

A tiny percentage of coverage can nevertheless

contain a very large number of rare species. The
estimated coverage deficit is not an estimate of the

number or proportion of undetected species, but rather
it is an estimate of the proportion of the total number

of individuals in the assemblage that belong to the
undetected species. For this reason, extremely rare,

undetected species do not make a significant contribu-
tion to that proportion, even if there are many such

species. This distinction intuitively explains why the
estimation of species richness in highly diverse assem-

blages is so statistically challenging, even though
sample coverage for the same data can be accurately

estimated.

The coverage estimator and its complement make it
possible to adjust the sample relative abundance for

detected species and to infer the relative abundance of
undetected species. This approach allows models with

one parameter, which are useful for assessing sampling
variances in some inference problems (Chao et al. 2013:

Appendix S2; Chao et al. 2014: Appendix G). However,
the one-parameter models are not flexible enough to

provide accurate estimators for the complete RAD. For
this reason, in this study we extend the Good-Turing

concept of coverage for the first time, and develop
improved models for estimating species abundances

beyond the veil line.

A generalization

Lande et al. (2000) commented, ‘‘without regard to
the species abundance distribution, the only aspect of

unobserved species that can be accurately extrapolated
is their total frequency in a community [i.e., coverage

deficit], using the number of singletons divided by
sample size.’’ In addition to coverage deficit, however,

there are other aspects of undetected species that we can
measure accurately. To show this, we first generalize the

concept of sample coverage to the rth order sample
coverage rC as

rC ¼

X
i2detected

pr
i

XS

i¼1

pr
i

¼

XS

i¼1

pr
i IðXi . 0Þ

XS

i¼1

pr
i

; r ¼ 1; 2; . . . ;

where indicator function I(A)¼ 1 if event A occurs, and

0 otherwise. The coverage rC is the fraction of the rth

power of the true relative abundances of those species

detected in sample. For r ¼ 1, 1C reduces to Good-

Turing’s sample coverage, and its estimator is given in

Eq. 2b. For r¼ 2, 2C is the fraction of the squared true

relative abundances of the detected species; it quantifies

the sample completeness for very abundant or dominant

species. When f2, f3 . 0, 2C can be accurately estimated

by (see Appendix B for derivation)

2
Ĉ ¼ 1� 2f2X

Xi�2

XiðXi � 1Þ
ðn� 2Þf2

ðn� 2Þf2 þ 3f3

� �2

: ð3aÞ

We define the rth order coverage deficit as rCdef¼ 1�
rC. For r ¼ 1, 1Cdef reduces to the coverage deficit

defined in Chao and Jost (2012), and its estimator is

given in Eq. 2c. For r ¼ 2, 2Cdef can be accurately

estimated by

2
Ĉdef ¼

2f2X
Xi�2

XiðXi � 1Þ
ðn� 2Þf2

ðn� 2Þf2 þ 3f3

� �2

: ð3bÞ

As we will see, the estimators for the first- and second-

order sample coverages and their deficits make possible

two-parameter models for inferring the complete RAD.

As proved in Appendix B, if the abundance frequency

counts up to frþ1 are all nonzero, then 1C, 2C, . . . , rC
and their deficits can be accurately and efficiently

estimated. Thus, in addition to the coverage deficit, we

have more information (i.e., higher orders of coverage

deficits including 2Cdef,
3Cdef, . . . , rCdef ) about the

undetected species. This information can be used to

help estimate the complete RAD.

UNVEILING THE COMPLETE RAD

Adjusting the sample relative abundances for

detected species

Based on Eq. 1, we have

pi ¼ E
Xi

n
j Xi . 0

� �
½1� ð1� piÞn�:

If we replace the expected value in this equation with the

observed data, then for Xi . 0 (i.e., a detected species),

we have the following approximation:

pi ’
Xi

n
½1� ð1� piÞn�’

Xi

n
½1� expð�npiÞ� : ð4aÞ

This formula shows that the approximate adjustment

factor for the sample relative abundance would be [1 – (1

– pi )
n] ’ [1 � exp(�npi )], which depends mainly on the

product of n and pi. Note that the (unconditional)

expected abundance of species i in the sample is npi, i.e.,

E(Xi ) ¼ npi. However, as we have already argued, the

adjustment factor [1 � (1 � pi )
n] cannot be estimated

simply by substituting the sample relative abundance Xi/

n for pi, because the sample relative abundance does not

estimate pi well for rare species. Similarly, replacing npi
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in the adjustment factor [1� exp(�npi )] by the observed

abundance Xi for each individual species i does not

provide a good estimate. Instead, we introduce two

parameters, k and h, to the adjustment factor. From Eq.

4a, we assume that parameter k . 0 and parameter 0 ,

h � 1, so that for Xi . 0, pi ’ (Xi/n)(1� ke�h Xi ). Here,

parameter h is restricted to be in [0, 1] because Xi for a

detected species overestimates npi. The special case of h
¼ 1 reduces to the one-parameter approach discussed in

Chao et al. (2013: Appendix S2) and Chao et al. (2014:

Appendix G). Here, we adopt a more flexible two-

parameter model which performs better for estimating

the complete RAD in benchmark simulations. Next, we

obtain parameters k and h from the estimated first-order

(Eq. 2b) and second-order (Eq. 3a) sample coverage by

the following equations:

X
i2detected

pi ’
X
Xi�1

Xi

n
ð1� ke�h XiÞ ¼ 1

Ĉ ð4bÞ

X
i2detected

p2
i ’

X
Xi�1

Xi

n
ð1� ke�h XiÞ

� �2

¼ 2
Ĉ 3

X
Xi�2

XiðXi � 1Þ

nðn� 1Þ : ð4cÞ

The rightmost term in Eq. 4c is an unbiased estimator ofPS
i¼1 p2

i (i.e., the denominator of 2C ). Let k̂ and ĥ
denote the solution of k and h, respectively, in this

system of nonlinear equations. If the solution ĥ is out of

the range of [0, 1], then we replace it by 1 so that the

model reduces to the one-parameter case. The proposed

adjusted relative abundance of species i (with Xi . 0) is

p̃i ¼
Xi

n
ð1� k̂e� ĥ XiÞ: ð4dÞ

This is a unified adjustment formula that is valid for all

species abundance distributions. In Appendix A, we

show by simulations that the adjusted estimator reduces

substantial bias inherent in the plug-in estimator and has

a smaller root mean squared error. The proposed

adjustment scales inversely with the sample abundance

in the following sense: for abundant species, with

correspondingly large sample abundance Xi, the adjust-

ment factor 1 � k̂exp(�ĥXi ) approaches unity. Thus,

virtually no adjustment is needed for abundant species,

whereas for rare species, the adjustment factor can be

much less than 1. The smaller the abundance Xi, the

smaller the adjustment factor and the larger its effect.

Our adjustment formula (Eq. 4d) also provides a

simple nonparametric relationship between the plug-in

estimator (Xi /n) calculated for a species in a sample and

its estimated true relative abundance in the entire

assemblage. Note that the formula is a function of

sample abundances of all detected species, not merely

the sample abundance of species i. This is because, given

the sample coverage estimates (1Ĉ, 2Ĉ), other species also

carry information about species i via k̂ and ĥ, which are

functions of all sample frequencies (by Eqs. 4b and 4c).

Thus, our adjustment formula ‘‘borrows strength’’ from
the observed abundances of other species. We will

discuss how to assess the sampling error of the adjusted

estimator after we obtain an estimator for the complete
RAD.

Estimating the relative abundances of undetected species

As discussed, it is difficult to accurately estimate the

number of undetected species in an incomplete sample if

there are many, almost-undetectable species in a hyper-

diverse assemblage. Practically, an accurate lower bound
for species richness is preferable to an inaccurate point

estimator. A widely used nonparametric lower bound

developed by Chao (1984) uses only the information on
rare species (numbers of singletons and doubletons) to

estimate the number of undetected species in samples, as

rare, detected species contain nearly all information
about the number of undetected species. This lower

bound for the number of undetected is universally valid

for any species abundance distribution and has the
following form:

f̂0 ¼

ðn� 1Þ
n

f 2
1

2f2
if f2 . 0

ðn� 1Þ
n

f1ðf1 � 1Þ
2

if f2 ¼ 0:

8>>>><
>>>>:

ð5aÞ

See Chao and Chiu (2012) for a recent review. Because

the number of species must be an integer in later
derivations, we define f̂0 hereafter to be the smallest

integer that is greater than or equal to the value

computed from Eq. 5a. The empirical RAD ignores
the tail, which includes at least f̂0 species. Although this

is a lower bound, when sample size is large enough, this

lower bound approaches the true number of undetected
species. Based on Eq. 5a, we propose a robust method to

estimate the species RAD for the undetected species.

We must assume a functional form for the rank

abundances of the undetected tail. There are many
options for a functional form, and our method is

applicable to any functional form. Here, we adopt more

flexible, two-parameter models. Because the method is
applied to only the undetected tail part of the true RAD,

where all relative abundances are low, a simple

functional form with estimable parameters is preferable.

A natural assumption is that the abundance distribution
of the undetected species is a two-parameter geometric

series

pi ¼ abi; i ¼ 1; 2; . . .; f̂0 ð5bÞ

where a is a normalized constant (see Eq. 6a) and b is a

positive decay factor. If all relative abundances for
undetected species are approximately equal, then the

parameter b is close to 1.

Based on the coverage deficits of the first- and second-

order (Eqs. 2c and 3b), we have the following two
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equations in terms of parameters a and b for the

undetected species:

X
i2undetected

pi ’
Xf̂0

i¼1

abi ¼ 1
Ĉdef ð6aÞ

X
i2undetected

p2
i ’

Xf̂0

i¼1

ðabiÞ2 ¼ 2
Ĉdef 3

X
Xi�2

XiðXi � 1Þ

nðn� 1Þ :

ð6bÞ

Let â and b̂ be the solution of this system of nonlinear

equations. The proposed estimated relative abundances

for the undetected species are

p̃i ¼ âb̂
i
; i ¼ 1; 2; . . .; f̂0: ð6cÞ

Combining the adjustment method for detected species

(Eq. 4d) and the estimated relative abundances for

undetected species (Eq. 6c), we can construct a complete

RAD based on a sample. See Discussion for other

possible parametric assumptions about the functional

form of the relative abundances of undetected species.

To examine the performance of the estimated RAD

based on simulations, we first illustrate the estimation

procedure step-by-step for an example so that the

simulation plots can be better understood.

EXAMPLE (ABUNDANCE DATA)

Sackett et al. (2011) collected species abundance data

for samples of spiders from four experimental forest-

canopy-manipulation treatments at the Harvard Forest

(Massachusetts, USA). The treatments were established

to study the long-term consequences of loss of the

dominant forest tree, eastern hemlock (Tsuga canaden-

sis), caused by a nonnative insect, the hemlock woolly

adelgid (Adelges tsugae; Ellison et al. 2010). To illustrate

our method, we use the data of the Hemlock Girdled

treatment, in which bark and cambium of hemlock trees

were cut and the trees left in place to die, to mimic tree

mortality by adelgid infestation. In this experimental

treatment, 26 spider species were represented by a total

of 168 individuals. The nonzero abundance frequency

counts are f1¼ 12, f2¼ 4, f4¼ 1, f6¼ 2, f8¼ f9¼ 1, f15¼ 2,

and f17¼ f22¼ f46¼1. The first- and second-order sample

coverage estimates are respectively 92.89% and 99.77%;

the corresponding coverage deficits are thus respectively

7.11% and 0.23%. Our estimation procedure includes the

following four steps (see Fig. 2): (1) Construct the

adjusted RAD for the detected species. For the 26

detected species, first plot the empirical RAD, as shown

in Fig. 2a (white plus gray bars). Then use Eqs. 4b and c

to obtain k̂¼ 0.2980 and ĥ¼ 0.1267, and substitute these

estimates into Eq. 4d to adjust the sample relative

abundances for each detected species downward, as

shown in Fig. 2a (white bars). (2) Estimate the RAD for

undetected species: based on the Chao1 estimator, which

uses the observed numbers of singletons and doubletons,

estimate the number of undetected species as f̂0 ¼ 18

species (SE ¼ 13.4). The undetected species are labeled

Undetected.1 to Undetected.18 in Fig. 2b. For the 18

undetected species, use Eqs. 6a and 6b to obtain â ¼
0.0045 and b̂ ¼ 0.9865, then substitute these two

estimates into Eq. 6c to estimate their relative abun-

dances, as shown in Fig. 2b. (3) Combine the adjusted

RAD for the detected species in (1) and the estimated

RAD for the undetected species in (2) to obtain a

complete RAD, as shown in Fig. 2c. A full list of the

estimated species relative abundances for the complete

RAD is given in Appendix C. (4) In (1) through (3), we

use bar plots for clearer illustration. Conventionally,

only line plots as those plotted in Fig. 1 are sufficient for

comparison. In Fig. 2d, we provide the line plots for the

empirical RAD and the proposed RAD estimator.

In (1), notice from Fig. 2 that, for abundant species,

virtually no adjustment is needed, whereas the adjust-

ment for rare species is substantial and that scales

inversely with the sample abundance. In (2), our

estimated number of undetected species is only a lower

bound, implying that there may have been additional

undetected species, but they cannot be statistically

estimated from our inference, so they are treated as

having negligible abundances. See Discussion for further

explanation. In this example (Fig. 2c), the estimated

relative abundance for the most abundant of the

undetected species is slightly larger than the adjusted

species relative abundances of the least-abundant

detected species (i.e., singletons). Our analysis shows

that the empirical RAD curve differs greatly from the

proposed RAD curve in the tail distribution. When there

are undetected species, as will be confirmed by

simulations in Simulation II: The complete estimated

RAD, our proposed approach unveils the tail distribu-

tion and provides a more complete picture of the true

RAD. In Appendix C, as alternatives to the geometric

series, we present a Poisson log-normal and a broken-

stick model for the relative abundances of the undetect-

ed species. See Discussion for more details.

SAMPLING VARIANCES OF OUR ESTIMATORS

In the estimated complete RAD, there are Sobs þ f̂0
species, where Sobs denotes the number of observed

species in the sample. This estimated RAD mimics the

profile of the complete assemblage. We can thus assess

the sampling error of any estimator of a parameter by

bootstrapping or resampling the estimated RAD. For

example, we can approximate the sampling variance of

the adjusted estimator p̃i (Eq. 4d) for any particular

detected species i. For each bootstrap replication, we

generate a random sample of n individuals from the

estimated RAD, with replacement, yielding a new set of

species sample abundances (here we retain only those

sets in which species i is detected, because the estimating

target is the relative abundance of a detected species).

Based on this new set, we then calculate (1Ĉ, 2Ĉ) to

obtain new estimates (k̂, ĥ). All these new statistics are
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then substituted into Eq. 4d to obtain a bootstrap

estimate p̃�i , based on the generated sample. The

procedure is replicated to obtain B bootstrap estimates

fp̃�1
i , p̃�2

i , . . . , p̃�B
i g (B¼ 1000 is suggested in confidence

interval construction). The bootstrap variance estimator

of our estimator in Eq. 4d is the sample variance of these

B estimates. Moreover, the 2.5% and 97.5% percentiles

of these B bootstrap estimates can be used to construct a

95% confidence interval. See Appendix C: Table C1 for

the bootstrap SE of the adjusted estimator p̃i for each

detected species in the spider example.

Similar procedures can be used to derive variance

estimators for any other estimators (e.g., estimators of

sample coverages and their deficits) and to construct the

FIG. 2. Combining the adjusted RAD for detected species and the estimated RAD for undetected species based on the
abundance data of forest spiders (Sackett et al. 2011). All y-axes are on a log10 scale. (a) The bar plot for the empirical RAD (white
plus gray bar) and adjusted RAD (white bars) for detected species (Sobs). (b) The bar plot of the estimated RAD for undetected
species, where the estimator of undetected species is f̂0¼ 18. The undetected species are indexed by Undetected.1 to Undetected.18.
(c) Combining the two bar plots in (a) and (b) to construct a complete RAD. (d) The empirical RAD curve is compared with the
proposed RAD curve in conventional line plots.
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associated confidence intervals. For our proposed

estimator p̃i for undetected species (Eq. 6c), however,
sampling variance cannot be assessed because the

estimated number of undetected species varies with
bootstrap samples and the identities of those undetected

species are unknown and thus there is no pre-specified
target species.

SIMULATION PART II: THE ESTIMATED RAD

The adjusted RAD for detected species (Fig. 1b)

For the scenario considered in Fig. 1a, in addition to

the true RAD curve (light blue line) and the empirical
RADs (dark blue lines), we now superimpose in Fig. 1b

the estimated RADs (green lines) for detected species
based on 200 data sets of sample sizes 200, 400, and 800.

Thus, there are 200 additional superimposed green lines
for each sample size. Most of the green lines are below

the empirical RAD, showing the reduction of the
positive biases associated with sample relative frequen-
cies for detected species.

The complete estimated RAD (Fig. 1c)

In Fig. 1c, we compare the true RAD curve (light blue
line), the empirical RADs (dark blue lines), and the

estimated complete RADs including both detected and
undetected species (red lines) based on 200 data sets of

sample sizes 200, 400, and 800. For sample sizes 200 and
400, the improvement with the estimated RAD is clearly

seen: the tail of the true RAD can be revealed, although
our estimated tail of RADs for a sample size of 200

unavoidably overestimates the true lines to some extent
(i.e., data do not provide sufficient information to

accurately infer very small relative abundances; see
Appendix A: Fig. A2). When sample size is increased to

400, the proposed RAD curves closely trace the RAD of
the complete assemblage; for a sample size of n¼ 800, all
the proposed RAD curves match closely with the true

RAD curve.

EXTENSION TO INCIDENCE DATA

Our statistical framework for abundance data can be

extended to incidence data by parallel derivations. Here
we only outline the extension; all details are provided in

Appendix D. Following the notation and terminology
used in Colwell et al. (2012) and Chao et al. (2014), we

assume that in the focal assemblage there are S species
indexed by 1, 2, . . . , S. For any sampling unit, assume

that the ith species has its own unique incidence (or
occurrence) probability pi that is constant for any

randomly selected sampling unit. The incidence proba-
bility pi is the probability that species i is detected in a

sampling unit. This incidence probability pi is analogous
to pi, but

PS
i¼1 pi may be greater than unity.

As with abundance data, we can similarly define the
species incidence distribution (SID) and the correspond-
ing species-rank incidence distribution (RID) for the set

(p1, p2, . . . , pS) of the S species. Our goal here is to
estimate the RID based on incidence data of a set of

sampling units. Assume that a set of T sampling units

are randomly selected from the study area, with

replacement. The underlying data consist of a species-

by-sampling-unit incidence matrix fWij; i¼ 1, 2, . . . , S, j
¼1, 2, . . . , Tg with S rows and T columns; hereWij¼1 if

species i is detected in sampling unit j, and Wij ¼ 0

otherwise. Under our assumption that the probability of

detecting species i in any sampling unit is a constant pi, i
¼1, 2, . . . , S, the variableWij for all j follows a Bernoulli

distribution with parameter pi ¼ P(Wij ¼ 1), i ¼ 1,

2, . . . , S. Let Yi be the number of sampling units in

which species i is detected, Yi ¼
PT

j¼1 Wij; here Yi is

referred to as the sample species incidence frequency and

is analogous to Xi in the abundance data. Species

present in the assemblage but not detected in any

sampling unit yield Yi ¼ 0.

Denote the incidence frequency counts by (Q0,

Q1, . . . , QT, where Qk is the number of species that are

detected in exactly k sampling units in the data, k ¼ 0,

1, . . . , T. Here Qk is analogous to fk in the abundance

data. The unobservable zero frequency count Q0 denotes

the number of species among the S species present in the

assemblage that are not detected in any of the T

sampling units. Also, Q1 represents the number of

unique species (those that are detected in only one

sampling unit), and Q2 represents the number of

duplicate species (those that are detected in only two

sampling units).

Define the sample incidence probability of species i

as p̂i¼ Yi/T (the plug-in estimator); the empirical RID

is based on p̂i. Since Yi, i ¼ 1, 2, . . . , S follows a

binomial distribution with the total number T and the

detection probability pi, a formula parallel to Eq. 1 can

be derived

Eðp̂i j Yi . 0Þ ¼ E
Yi

T
j Yi . 0

� �
¼ pi

1� ð1� piÞT
: ð7Þ

We can similarly define the general rth sample

coverage and its deficits for the incidence probabilities

(p1, p2, . . . , pS) based on the sample species incidence

frequencies (Y1, Y2, . . . , YS). Then, derivation steps

parallel to those for abundance data lead to the

following adjusted incidence probability for a detected

species: p̃i¼ (Yi/T )(1� k̂e� ĥ Yi ) for Yi . 0, where k̂ and

ĥ are solved from two nonlinear equations involving the

estimated sample coverage of the first two orders (see

Appendix D).

To estimate the RID for undetected species, we first

apply the Chao2 estimator (Chao 1987) to obtain an

estimated lower bound on the number of undetected

species in T sampling units

Q̂0 ¼

ðT � 1Þ
T

Q2
1

2Q2

if Q2 . 0

ðT � 1Þ
T

Q1ðQ1 � 1Þ
2

if Q2 ¼ 0:

8>>>><
>>>>:

ð8Þ
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Assuming a geometric series for the incidence

probabilities for the undetected species, we can obtain

the proposed incidence probabilities for the undetected

species: p̃i¼ âb̂i, i¼1, 2, . . . , Q̂0. Here â and b̂ are solved

from two nonlinear equations involving the estimated

sample coverage deficits of the first two orders (see

Appendix D). Combining the adjusted incidence prob-

abilities for detected species and the estimated incidence

probabilities for undetected species, we can construct a

complete RID based on incidence data.

EXAMPLE (INCIDENCE DATA)

We use soil ciliate data collected by Foissner et al.

(2002) to illustrate our approach for incidence data. A

total of 51 soil samples were collected in Namibia and the

detection or non-detection of soil ciliate species was

recorded in each sample. Detailed sampling locations,

procedures, and species identifications are described in

Foissner et al. (2002). In total, 331 species were detected

in 51 soil samples. The first 14 incidence frequency counts

(Q1–Q14)¼ (150, 53, 42, 18, 12, 9, 10, 7, 6, 1, 0, 2, 3, 2),

and a full list of the data are given in Appendix D. The

first- and second-order sample coverage estimates are

88.45% and 99.38%, respectively; the corresponding

coverage deficits are 11.55% and 0.62%, respectively.

Foissner et al. (2002) conjectured that there were still

many species present in the study area that were not

detected in the 51 soil samples. The Chao2 estimator of

the number of undetected species (Eq. 8) gives an estimate

of 209 (SE ¼ 43.5) for the minimum number of

undetected species.

All estimation procedures are parallel to the corre-

sponding steps for abundance data in Fig. 2. However, it

is not feasible to present the detailed bar plot for the

empirical and adjusted RID for all 331 detected species

(Fig. 2a), nor the bar plot of the estimated RID for 209

undetected species (Fig. 2b). Therefore, we simply show

the empirical RID and the proposed complete RID by

bar and line plots in Fig. 3. It is striking that our

proposed RID has a very long tail compared with the

empirical RID. This is due to a relatively high proportion

of undetected species in the estimated RAD. The Chao2

estimator is a universal lower bound, implying that the

complete RID may have an even longer tail, but the

incidence probabilities are close to zero and invisible in

our plot of the estimated RID; see Discussion.

DISCUSSION

We have shown that the empirical RAD using species

sample abundances works only when all species are

detected in a sample. For an undersampled data set with

undetected species, the empirical RAD ignores the set of

undetected species, and therefore overestimates the true

relative abundances of the set of the detected species

(Fig. 1a). We have proposed a general framework to

estimate the complete RAD from sample data. Our

proposed RAD estimator combines the adjusted RAD

(Eq. 4d) for the detected species in samples and the

estimated RAD (Eq. 6c) for the undetected species. Both

parts are based on Good-Turing’s sample coverage

theory and its generalization. For any detected species,

we have proposed a novel method to adjust its sample

relative abundance to reduce its positive bias (Fig. 1b

and Appendix A). For the undetected species (which are

assumed to have very low relative abundances), we

estimate their relative abundances using an estimator of

FIG. 3. The empirical and estimated species-rank incidence distribution (RID) for incidence data of soil ciliates (Foissner et al.
2002) in 51 soil samples. The RID is depicted by a simple bar plot (upper panel) and by a line plot (lower panel). All y-axes are on a
log10 scale. These two plots correspond to Fig. 2c and d, respectively. The plots corresponding to Fig. 2a and b are not shown due
to large numbers of detected species (331) and undetected species (209).
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the number of undetected species. See Fig. 2 for an

illustrative example to describe our procedures. With

our approach, the complete RAD is unveiled if sample

size is large enough (Fig. 1c; Appendix A: Fig. A1).

In our inference procedure for undetected species in

samples, we use a universal lower bound, i.e., the Chao1

estimator for abundance data and the Chao2 estimator

for incidence data; see Chao (1984, 1987). Thus, we

essentially assume that there might be additional

extremely rare species in the assemblage, but they cannot

be statistically estimated, so their relative abundances are

estimated to be zero. Our estimator of the number of

undetected species could also be replaced by any other

reasonable estimator. We also assume that the relative

abundances for the set of undetected species follow a

simple geometric series model. Nevertheless, our method

is not restricted to this distribution. The assumption of a

geometric series can be replaced by any other appropriate

distribution. There are many other choices, including the

commonly used broken-stick model and the Poisson log-

normal model, among others. Appendix C provides

estimation procedures for these two additional models.

For illustration, we also fitted these two models to the

data analyzed in Example (abundance data). The Poisson

log-normal model and the geometric model yield almost-

identical RAD curves. We emphasize that we use these

models only for modeling the undetected tail distribution;

unless the assemblage is poorly sampled, the relative

abundances of those undetected species (i.e., in the tail of

the estimated RAD) are typically very small. Thus, the

choice of the model for estimating the relative abundanc-

es of undetected species is a minor issue in our approach.

Ecologists have recognized that, although an accurate

species richness estimator remains beyond our reach,

one aspect of undetected species (the coverage deficit)

can be accurately estimated; see Eq. 2c. We show that

there are other aspects of undetected species (e.g., the

deficits of the second- and higher-order sample cover-

age) that we can also accurately estimate using the

information on frequency counts. In this study, we used

the first- and second-order sample coverage and their

deficits to construct two-parameter models for inferring

RAD. In theory, we could have used higher-order (.2)

sample coverages and their deficits to build models with

more than two parameters. However, the parameter

estimates from such models may be too uncertain to be

useful, and may be too unstable to estimate properly.

The concept of the SAD/RAD has been also extended

in this study to the corresponding SID/RID for

incidence data comprising species detection/non-detec-

tion records in each sampling unit; a non-detection of a

species in a sampling unit may be due to a true absence

or an undetected presence, so this model can be applied

not only to surveys of sessile plants but also to surveys

of mobile animals in which detection probabilities are

less than 1.0. If we consider the special case in which a

species can always be detected if it is present in a

sampling unit, then the detection/non-detection records

become presence/absence data and our model can be

connected to a special case of occupancy estimation and

modeling (e.g., MacKenzie et al. 2006). In this special

case, the incidence probability pi can be interpreted as
occupancy rate of species i in the study area. Our

proposed formula p̃i ¼ (Yi/T )(1 � k̂e�ĥYi ) for detected

species provides a nonparametric adjustment to the

sample occupancy rate (i.e.,Yi/T ) and thus can provide a
better estimator of the true occupancy rate in the study

area.

Our proposed estimator for the RAD/RID is also

potentially useful in other inference problems. For

example, the proposed RAD can be used for estimating

any diversity measure that is a function of species
relative abundances ( p1, p2, . . . , pS). An enormous

number of diversity measures have been proposed, not

only in ecology but also in other disciplines, e.g.,

genetics, economics, information sciences, physics, and
social sciences, among others; see Magurran and McGill

(2011). Hill numbers (including the Shannon diversity

and Simpson diversity), originally proposed by Hill

(1973) have been increasingly used to quantify species

diversity. We specifically discuss (in Appendix E) the use
of our estimated RAD in the estimation of diversity

profiles based on Hill numbers. The resulting profiles

significantly improve over the empirical diversity mea-

sures mainly because the relative abundances of
undetected species can be incorporated.

In another important application, when diversity
measures are complicated functions of species sample

abundances, and their variances are therefore difficult to

estimate analytically, our proposed RAD estimator can

be bootstrapped to assess their sampling variances and
to construct the associated confidence intervals. This

approach was applied to obtain the variances of the

estimator given in Eq. 4d (see Sampling variances of our

estimators) and the diversity estimators (see Appendix

E). It has many potential applications in the analyses of
beta diversity and related similarity (or differentiation)

measures based on species relative abundances.

All the estimation procedures and estimators pro-

posed in this study are featured in the freeware

application JADE ( joint species-rank abundance distri-
bution/estimation; available online).7 The R scripts for

JADE are available in the Supplement.
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