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RESEARCH ARTICLE
10.1002/2017WR021353

Evaluating Spatial Variability in Sediment and Phosphorus
Concentration-Discharge Relationships Using Bayesian
Inference and Self-Organizing Maps
Kristen L. Underwood1 , Donna M. Rizzo1, Andrew W. Schroth2 , and Mandar M. Dewoolkar1

1Civil & Environmental Engineering, University of Vermont, Burlington, VT, USA, 2Department of Geology, University of
Vermont, Burlington, VT, USA

Abstract Given the variable biogeochemical, physical, and hydrological processes driving fluvial
sediment and nutrient export, the water science and management communities need data-driven methods
to identify regions prone to production and transport under variable hydrometeorological conditions. We
use Bayesian analysis to segment concentration-discharge linear regression models for total suspended
solids (TSS) and particulate and dissolved phosphorus (PP, DP) using 22 years of monitoring data from 18
Lake Champlain watersheds. Bayesian inference was leveraged to estimate segmented regression model
parameters and identify threshold position. The identified threshold positions demonstrated a considerable
range below and above the median discharge—which has been used previously as the default breakpoint
in segmented regression models to discern differences between pre and post-threshold export regimes. We
then applied a Self-Organizing Map (SOM), which partitioned the watersheds into clusters of TSS, PP, and
DP export regimes using watershed characteristics, as well as Bayesian regression intercepts and slopes.
A SOM defined two clusters of high-flux basins, one where PP flux was predominantly episodic and
hydrologically driven; and another in which the sediment and nutrient sourcing and mobilization were
more bimodal, resulting from both hydrologic processes at post-threshold discharges and reactive
processes (e.g., nutrient cycling or lateral/vertical exchanges of fine sediment) at prethreshold discharges.
A separate DP SOM defined two high-flux clusters exhibiting a bimodal concentration-discharge response,
but driven by differing land use. Our novel framework shows promise as a tool with broad management
application that provides insights into landscape drivers of riverine solute and sediment export.

1. Introduction

The river network is an integrator of spatiotemporal variability in catchment properties. Stakeholders face
significant challenges to model the export of sediment and nutrients based on concentration-discharge
relationships measured at a catchment outlet, and to prioritize the allocation of limited resources to achieve
reductions in sediment and pollutant loading. Given the regulatory context of Total Maximum Daily Loads
(TMDLs) in the United States and the Water Framework Directive in the European Union, there has been a
recent focus on quantifying loads of solutes and sediment. Yet as research becomes increasingly interdisci-
plinary in nature, a more holistic approach to investigating catchment dynamics has returned emphasis to
concentration-discharge relationships and what they may reveal about biogeochemical filtering processes
at multiple spatiotemporal scales (Basu et al., 2011; Gall et al., 2013). Better understanding of concentration-
discharge dynamics will help identify critical catchment locations and time periods (‘‘hot spots’’ and ‘‘hot
moments’’) responsible for disproportionate fluxes of solutes and sediment, inform best management prac-
tices, and thereby optimize overall reductions in loading at broader temporal and spatial scales (Heathwaite
et al., 2000; McClain et al., 2003).

Practitioners need models that predict spatiotemporal variability in concentration-discharge relationships
and their linkage to catchment characteristics and processes—and at the same time deal with large
amounts of data that vary in type and spatial-temporal resolution. Physically based, distributed models are
able to forecast constituent concentration and flux, but accuracy and calibration are resource-intensive,
making such models typically less transferable among watersheds or regions (Todini, 2007). On the other
hand, data-driven models can be more readily implemented and have the appeal of representing system
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complexity in simple ways (McDonnell et al., 2007), although they are more limited in their prediction capa-
bilities. Ideally, stakeholders are guided by a combination of model types. With the advent of automated
samplers and in situ sensors, an increasing number of studies have leveraged high-frequency monitoring
data to develop conceptual models that further refine our understanding of temporal and spatial patterns
in concentration-discharge dynamics (e.g., Bende-Michl et al., 2013; Lloyd et al., 2016).

Parametric statistical techniques have been applied to infer relationships between water quality and various
biogeochemical characteristics of catchments using concentration (C) –discharge (Q) or load-discharge rela-
tionships. The parsimonious sediment (and nutrient) rating curve—i.e., log(C) 5 log(b0) 1 b1 log(Q)—has
been used to examine between-watershed differences in sediment and solute production (e.g., Vogel et al.,
2005; Walling, 1977). Sediment and nutrient regression parameters have been interpreted to suggest drivers
of underlying processes (Asselman, 2000; Basu et al., 2011; Godsey et al., 2009; Syvitski et al., 2000). While
prediction does not necessarily suggest causation, the coefficient (log b0) and exponent (b1) in this linear
model can be interpreted to suggest something about the system properties (Asselman, 2000; Syvitski
et al., 2000) and encapsulate the ‘‘biogeochemical filtering’’ of the watershed in question (Gall et al., 2013).
The intercept of the linear regression model represents the background sediment (or solute) concentration
delivered from the catchment source regions and explained by variables other than changing discharge
proximal to the gaging location. In the context of sediment transport modeling, the regression intercept
reflects the capacity of the watershed to produce and transport fine sediment (Asselman, 2000). It has
been characterized as an ‘‘index of sediment supply’’ (Wang et al., 2008) or a ‘‘baseline supply parameter’’
(Krishnaswamy et al., 2000), and may be a function of particle size and weathering intensity in the source
catchment, as moderated by vegetative controls or human disturbances.

On the other hand, the regression slope parameter reflects the rate at which the energy of flowing water is
transferred to its physical surroundings to entrain and transport sediment (or sediment-bound constituents)
and to accomplish geomorphic change (Krishnaswamy et al., 2000; Wang et al., 2008). The regression slope
can be thought of as an index of the river’s erosive power, with higher values (i.e., steeper slopes) indicating
greater sediment transport capacity, and may also reflect the degree to which additional sources of sedi-
ment (or sediment-related constituents) become available to the river at higher flow stages (Asselman,
2000). Flatter regression slopes can be characteristic of rivers where sediment continues to be transported
even under lower discharge conditions—as a function of either ample supply or easily entrained particle
size in the source areas, or both (Asselman, 2000). Previous studies have used the slope value from a
concentration-discharge regression to classify catchments on a continuum between accretionary (> 0) and
dilutionary (< 0) (Basu et al., 2010; Gall et al., 2013). Godsey et al. (2009) proposed that chemostatic water-
shed responses (i.e., constant concentration with increasing discharge) could be defined by an absolute
value less than 0.2 (i.e., near-zero regression slope). Subsequent work (Basu et al., 2010; Thompson et al.,
2011), however, clarified that at low slope values, constituent concentrations can still exhibit considerable
variance around a central tendency (i.e., chemodynamic response). Moreover, as the slope value approaches
zero, concentration becomes decoupled from discharge as an explanatory variable; the coefficient of deter-
mination (r2) value becomes nonsignificant, and the linear regression slope loses importance in the inter-
pretation of the concentration-discharge relationship.

Instead, the coefficient of variation (CV) ratio (i.e., CV of concentration versus CV of discharge) has been pro-
moted to characterize the concentration-discharge relationship on a continuum from episodic (chemody-
namic) to chemostatic (Thompson et al., 2011). Thompson et al. (2011) classified North American
catchments with varying hydrologic, geologic, topographic, and land use settings based on a bivariate plot
of CV ratio and normalized constituent export for total phosphorus and total suspended solids (among
other constituents). Those watersheds with higher normalized export exhibited chemostasis (low CV ratios),
which can be attributed to legacy stores of nutrients with an anthropogenic source (Basu et al., 2011) or
geogenic constituents (Godsey et al., 2009). Building on this approach, Musolff et al. (2015) used a bivariate
plot of CV ratios and regression slope to cluster humid temperate catchments into five constituent export
regimes. Categories ranged from strongly chemodynamic responses, termed ‘‘threshold-driven’’ (with
strongly positive regression slopes) or ‘‘reactive’’ (with smaller absolute values of the regression slope, either
positive or negative), to less chemodynamic responses with a concentration-discharge correlation that is
either weak (‘‘chemostatic’’) or strong, ranging from accretionary (termed ‘‘mobilization’’) to ‘‘dilution’’
driven.
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These studies employed slope and intercept parameters developed
from simple linear regression models. Often, however, concentration-
discharge (C-Q) relationships show variability across the discharge dis-
tribution (Zhang et al., 2016) or exhibit threshold effects (Meybeck &
Moatar, 2012) that would be better modeled with a segmented
regression. Segmented linear C-Q responses may result from temporal
or spatial discontinuities in sediment and solute transport—either
from natural conditions (e.g., bedrock nickpoints, or sudden reduction
in gradient) or human modifications (e.g., dams) (Toone et al., 2014;
Wang et al., 2008; Williams & Wolman, 1984). A segmented linear pat-
tern may also result from sudden depletion of sediment/solute supply
relative to discharge, or dilution effects (Meybeck & Moatar, 2012;
Shanley et al., 2011).

Solute-export plots developed on slope and intercept parameters
from simple regression models in the style of Musolff et al. (2015)
or Thompson et al. (2011) may not adequately characterize solute
export conditions for basins that exhibit significant threshold effects
(Figure 1). Segments before and after a threshold will have different
slope and intercept values, suggesting different sediment/solute
export regimes (or functional stages) for pre and post-threshold flow

conditions. Application of a segmented regression method will not only improve model fit, it can provide
greater insight into landscape drivers of the C-Q response, and suggest management strategies appropriate
to different functional stages (Bende-Michl et al., 2013).

However, it can be difficult to determine the optimal discharge value for the onset of threshold effects, and
to identify the nature of the transition as either stepped, transitional, or continuous (Qian & Cuffney, 2012).
Moatar et al. (2017) have presented a review of nine, single-threshold, C-Q patterns based on fixed segmen-
tation at the median discharge value on a log-log plot (Meybeck & Moatar, 2012), although they acknowl-
edge the actual inflection point in the slope of the C-Q relationship may vary from the median Q value.
Methods have been developed to define a threshold using both parametric (Ryan et al., 2002—bootstrap-
ping) and Bayesian techniques (Alameddine et al., 2011; Qian & Cuffney, 2012; Qian & Richardson, 1997);
but relatively few studies have focused on determining the hydrologic, hydraulic, and biogeochemical pro-
cesses that may account for these threshold effects, or dominate during pre and post-threshold phases
(Moatar et al., 2017; Ryan et al., 2002; Wang et al., 2008).

We use a Bayesian regression method in this work to facilitate selection of the threshold position, and quan-
tify the uncertainty on the estimated threshold, as well as other regression parameters. Generation of a pos-
terior joint distribution for each model parameter, and the ability to define a credible interval for the
estimate at a chosen probability level, permits explicit estimation of uncertainties associated with the model
selection and the data (e.g., variance introduced by sampling and analytical methods, Qian et al., 2005). This
approach provides more information than a Frequentist approach to simple (or segmented) regression that
generates a single point estimate of the central tendency of model parameters. Bayesian frameworks have
the added advantage of allowing for nonnormal distribution of residuals and greater robustness to outliers
(Gelman et al., 2004). Bayesian methods have been applied to estimate values of regression parameters for
simple linear models of stage-discharge relationships (Moyeed & Clark, 2005); an eight-parameter load rat-
ing curve for nutrients (Vigiak & Bende-Michl, 2013), and segmented regression models for nitrogen-
discharge patterns (Alameddine et al., 2011; Qian & Richardson, 1997).

C-Q dynamics result from a complex interaction of hydrologic, hydraulic, and biogeochemical processes.
‘‘Functional stages’’ of sediment and nutrient export have been defined using hierarchical clustering to
result from unique combinations of source strength and connectivity, entrainment or mobilization condi-
tions, and transport mechanisms; and these functional stages vary in both space and time (Bende-Michl
et al., 2013). Self-organizing maps (SOMs) are data-driven, nonparametric techniques well-suited for classify-
ing or clustering data of varying types (e.g., continuous, ordinal, nominal), scales, and distributions (Koho-
nen, 1990, 2001, 2013). SOMs have advantages over other methods for data visualization and interpretation
(Alvarez-Guerra et al., 2008), and have demonstrated superior performance over parametric methods where

Figure 1. Comparison of best-fit simple (blue line) and segmented (black line)
regression models for log10-transformed Total Suspended Solids (TSS) concen-
tration versus daily mean discharge data for Winooski River (n 5 261) for 1992–
2015. Data points were fit with Bayesian linear regression methods. Threshold
(u) of segmented model depicted as solid vertical line (mode) and dashed ver-
tical line (mean) with gray shading indicating the 95% credible interval of the
posterior distribution. Regression parameters are annotated, including the
intercept (b0) for each model, and prethreshold (b1_I) and post-threshold slopes
(b1_II) of the segmented model.
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data contain outliers or exhibit high variance (Mangiameli et al., 1996). SOMs have been used to classify or
cluster multivariate environmental data, including in-stream species richness (Park et al., 2003), fish commu-
nity distribution patterns (Stojkovica et al., 2013), alluvial fan types (Karymbalis et al., 2010), lake chemistry
data associated with harmful algal blooms (Pearce et al., 2011, 2013), estuary sediment samples (Alvarez-
Guerra et al., 2008), watershed-based ecoregions (Tran et al., 2003), and riverine habitats (Fytilis & Rizzo,
2013). While SOMs have been applied to hydrologic time series data to classify runoff response (Ley et al.,
2011), the authors are not aware of research that has applied a neural network to cluster basins into sedi-
ment and nutrient export regimes.

In this work, we combine the application of a Bayesian segmented linear regression technique paired with
an SOM to cluster patterns in C-Q relationships as a function of catchment properties for a humid-
temperate study area located in a previously glaciated, mountainous region of the Northeastern U.S. The
purpose of this research was twofold: (1) to model threshold effects in C-Q regressions using Bayesian tech-
niques to enhance the utility of regression metrics to suggest watershed variability in hydrologically and
biogeochemically driven impacts on C-Q dynamics; and (2) examine the ability of various watershed metrics
to predict C-Q relationships and characterize between-watershed comparisons of sediment and nutrient
flux or concentration.

2. Methods

2.1. Study Area
The study area consists of 18 tributary basins of Lake Champlain that drain portions of Vermont and New
York in the northeastern U.S., as well as the province of Quebec in Canada (Figure 2). In recent decades, this
largely mesotrophic lake has been impacted by an increasing frequency of harmful algal blooms in its
eutrophic bays, and is the subject of a TMDL for phosphorus (Smeltzer et al., 2012). Eighteen of the Lake
Champlain tributaries have been monitored for more than 25 years (Medalie et al., 2012) and were selected
for this study for their sufficient duration of flow gaging and water quality records (Kennard et al., 2010).
The selected basins range in size from 137 to 2,754 km2 and represent a wide range of geologic settings
and land cover/land use conditions.

The Lake Champlain Basin (LCB) was previously glaciated, and spans biogeophysical regions from the Green
Mountains in Vermont to the Adirondack Highlands in New York, separated by the Champlain Valley Low-
land in the north-central basin and Taconic Mountains and Vermont Valley in the south end of the basin
merging with the Hudson Valley Lowland (Stewart & MacClintock, 1969). Elevations in the study basins
range from 1,339 m at Mount Mansfield in the Winooski Basin of Vermont, and 1,629 m at Mount Marcy in
the Ausable River basin of New York, to 29 m at the average water level of Lake Champlain. The climate is
characterized as humid temperate, with mean annual precipitation (MAP) ranging from over 1,270 mm
along the north-south trending spine of the Green Mountains to a low of 813 mm in the Champlain Valley
(Randall, 1996). Within a typical year, a majority of the runoff from Lake Champlain tributaries occurs
between ice-out and late spring (Shanley & Denner, 1999). The hydrologic regime is characterized by vari-
able hydrologic source areas attributed to saturation-excess flow regimes (Dunne & Black, 1970). Flow in
some of the basins is regulated to varying degrees by hydroelectric dams that operate in run-of-river mode
(supporting information Table S1). In recent years, these basins have been impacted by extreme events,
including Tropical Storm Irene (August 2011) in central and southern Vermont and floods of 1996 and 1998
in northeastern New York.

2.2. Watershed Characteristics
Various hydrologic, topographic, geologic, and land use characteristics were developed for the 18 tributary
basins (Table 1). Land use in the selected watersheds ranges from 3.3 to 54% agricultural and 33 to 89% for-
ested. Urban land uses, including transportation corridors, range from 4.4 to 14% (Troy et al., 2007). Flow-
normalized total suspended solids (TSS), particulate phosphorus (PP), and dissolved phosphorus (DP) flux
and concentration data for each basin were compiled from Medalie (2014) for each available year (1990–
2012 for PP and DP; 1992–2012 for TSS). PP was derived as the difference of measured total and DP (filtered
to< 0.45 mm). Flow-normalization was achieved using Weighted Regressions on Time, Discharge, and Season
(Hirsch et al., 2010); and data thus reflect interannual variability in constituent flux and concentration attrib-
uted to factors other than flow variability. To facilitate between-watershed comparisons, mean annual
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constituent flux was normalized by basin area to generate a mean annual, flow-normalized, yield (in mT/
km2/yr for TSS and in kg/km2/yr for PP and DP; supporting information Table S2).

Additionally, slope (b1) and intercept (log10[b0]) values from Bayesian linear regression models were devel-
oped for the time series of TSS, PP, and DP concentration (C) – discharge (Q) data (see next section). These
data were included as indicators of the sediment and nutrient export regimes of the watersheds (Asselman,
2000; Vogel et al., 2005). C-Q data were sourced from long-term monitoring data sets of instantaneous con-
centrations (VTDEC, 2015) and daily mean flows (USGS, 2016). Velocity and depth-integrated composite
samples were collected approximately monthly, targeting a mixture of flow conditions (VTDEC, 2015). PP/
DP and TSS were sampled approximately 12 and 10 times per year, respectively. In the few cases (1.8% for
TSS, 0.3% for DP/PP) where constituents were reported below the detection limit (i.e., 1 mg/L for TSS, 5 mg/L
for DP/PP), a value one half the respective detection limit was substituted. C and Q data were log10–trans-
formed to meet homoscedasticity assumptions for application of linear models.

Coefficient of Variation (CV) of the C and Q time series (nontransformed), were each calculated as the series
standard deviation, r, normalized by the series mean, l:

Figure 2. Locations of the 18 study area watersheds in the Lake Champlain Basin. Watershed identifications are keyed to
Table 1.
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CV5
r
l
:

A CV ratio was then generated to evaluate the temporal inequality between CV of the two variables, C and Q:

CVC

CVQ
5

rC

lC
� lQ

rQ
:

Pre and post-threshold values (i.e., Segment I and II of the segmented regression model; Figure 1) were
treated independently.

A flow duration curve for each basin was constructed from existing USGS records of mean daily Q for years
1990 through 2015 (Centre d’Expertise Hydrique Qu�ebec, 2016; Medalie, 2014; USGS, 2016). The threshold
value determined from Bayesian linear regression (next section) was normalized in two ways to enable
between-basin comparisons of the threshold magnitude: (a) as a ration to the median Q; and (b) expressed
as a quantile of flow based on the flow duration curve.

2.3. Bayesian Linear Regression
2.3.1. Model Development
Segmented rating curves were developed via Bayesian linear regression (BLR) methods on the time series
of C data (TSS, PP, DP) and mean daily Q data from the 18 tributaries for years 1990 through 2015. BLR pro-
vided a framework for identifying thresholds (Qian & Cuffney, 2012), and defining credible intervals around
the estimated values for threshold, intercept, and pre and post-threshold slopes (Figure 1). Bayesian models
also permitted the seamless back-transformation of error terms addressing bias introduced when using log-
transformed regressors (Koch & Smillie, 1986; Stow et al., 2006), and allowed for the explicit estimation of
sources of uncertainty in the C-Q relationships (Schmelter et al., 2012). Concentration was modeled as a
power function of discharge:

Table 1
Physical Characteristics of Study Area Watersheds, Lake Champlain Basin

Map
key Tributary

Total
drainage

areaa

(km2)

Mean
annual

precipitationb

(mm)

Peak
flow

anomalyc

Basin
reliefd

(m)

Drainage
densitye

(km/km2)

Percent of
hydrologic
soil group

A & B soilsf (%)

Land useg

Water/
wetland (%)

Forest
(%)

Agriculture
(%)

Developed
(%)

6 Ausable 1,334 1,164 16.0 1,598 1.08 26.5 3.0 89.1 3.3 4.5
7 Bouquet 708 1,051 14.7 1,446 1.18 30.0 1.5 87.4 6.3 4.6
1 Great Chazy 778 848 11.8 1,139 1.54 38.7 3.7 68.7 21.9 5.6
16 Lamoille 1,870 1,198 10.7 1,309 1.89 24.4 2.3 39.1 44.4 14.2
14 LaPlatte 137 1,002 21.9 468 2.05 8.1 2.2 75.5 13.9 8.2
13 Lewis 207 1,074 19.1 736 2.32 28.5 4.2 61.6 25.6 8.2
5 Little Ausable 193 850 21.2 619 1.23 55.0 1.4 71.5 19.4 7.8
2 Little Chazy 140 917 14.1 429 1.37 45.1 3.5 58.4 30.7 7.3
12 Little Otter 188 974 14.7 380 3.08 15.2 3.4 33.0 54.0 9.4
9 Mettawee 1,063 1,228 17.7 1,117 1.36 25.6 2.7 59.1 29.3 8.9
17 Missisquoi 2,232 1,050 11.3 1,146 1.57 33.3 1.9 73.0 18.8 6.2
11 Otter 2,442 1,239 3.5 1,260 1.99 27.8 3.3 62.9 25.7 8.0
18 Pike 662 1,184 12.0 681 1.23 71.4 2.3 52.6 37.7 7.0
10 Poultney 719 1,120 15.3 800 1.65 13.0 5.0 66.0 20.9 8.0
8 Putnam 160 1,103 17.6 678 1.33 36.2 4.2 87.2 3.8 4.4
4 Salmon 175 913 20.1 693 1.42 55.4 2.2 77.9 11.0 9.0
3 Saranac 1,589 1,070 6.1 1,451 0.93 26.6 9.8 81.0 3.9 5.3
15 Winooski 2,754 1,163 10.3 1,307 1.77 18.1 1.5 76.6 9.9 11.7

aSource: (WBD) 1:24,000 scale.
bPRISM data for 1981–2010 obtained through USGS Streamstats of Vermont (Olson, 2014) and New York (Lumia et al., 2006).
cRatio of mean annual peak flow to mean annual flow for the period from 1990 to 2012 (except Little Ausable (wy1992–2012) and Pike (wy2001–2015)).
dSource: 10 m Digital Elevation Models.
eTotal length of National Hydrography Data set (NY, Que) or Vermont Hydrography Data set stream network mapped in each basin, normalized by basin area.
fSources: SSURGO (NY and VT), Canadian National Soil Database (Que), and STATSGO02 (Franklin County portion of the Saranac River basin in NY).
gSource date: 2001; Developed category includes Open-Urban and Roads; Agriculture includes Brush/Transitional; from Troy et al. (2007).
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Ct5b0 Qb1
t ;

where C is the sediment or solute concentration, and Q is the river discharge for a specified time interval, t.
Rating curves were developed as the logarithm (base 10) of instantaneous concentration, C, regressed on
the log10 of daily mean discharge, Q:

log10Ct5 log10b01 b1log10 Qtð Þ1 E:

Log10 (b0)—commonly simplified to b0—is the model intercept and b1 is the slope of the regression line,
which describes the predicted change in log-C with each incremental increase in log-Q. The error term, E,
then reflects scatter about the regression line and encapsulates all other sources of variance in sediment
(nutrient) C with Q, such as differences in constituent availability due to seasonal effects and antecedent
conditions. This error term also includes measurement error of model parameters. The following segmented
linear regression model was applied to all time series data:

y � Nðly; ry
2Þ;where :

ly5
b01 b1 x1 E1 if x < / Segment Ið Þ

b01 b11 dð Þ x1 E2 if x � / Segment IIð Þ

(

and where y refers to the response variable (log10 C); x is the explanatory variable (log10 Q); ly and ry
2 are

the mean and variance of the response variable, respectively; / is the threshold value of Q; d is the change
in slope past the threshold; and E is the model error. For those watersheds not exhibiting a strong threshold
C-Q response, the above model collapses to a simple linear regression, signified by a near-zero value for d.
The Bayesian framework includes prior knowledge on model parameters (i.e., b0, b1, l, r2, /, d) through the
specification of parameter distributions. Vague priors were established for all parameters so that the poste-
rior distributions would be influenced most by the data themselves (Gelman et al., 2004).
2.3.2. Model Diagnostics and Evaluation Criteria
The posterior distributions on the prethreshold (b1_I) and post-threshold (b1_II) regression slope parameters
for each BLR model run were evaluated as either flat, inclined positively (accretionary), or inclined nega-
tively (dilutionary). If the 95% credible interval (CI) on the posterior distribution of the mean of b1 included
a zero value, the segment slope was deemed flat, or near-zero. The posterior quantiles on the delta (d)
parameter of the model were also examined to determine whether the 95% CI excluded a value of zero.
Inclusion of a zero value in the CI for d would suggest no significant difference between the slopes of Seg-
ments I and II, and a simple regression model might equally-well characterize the C-Q relationship. A deci-
sion tree for model assignment is included in supporting information Figure S1.

Post hoc analysis of model assignments was performed comparing means of basin characteristics by model
type using one-way Analysis of Variance (ANOVA) methods followed by Tukey Honest Significant Differ-
ences (HSD) tests between individual group means. For those variables that were not normally distributed
(as tested by Shapiro-Wilks method), nonparametric methods were applied (Kruskal-Wallis). Model assign-
ments were also compared on a univariate basis for correlations to physical and hydrological variables,
applying Pearson methods (or the nonparametric Spearman’s rank method when underlying data were not
normally distributed). Statistical tests were performed in JMP (v. 12.0, SAS Institute, Cary, NC).
2.3.3. Model Computation
BLR model fitting and parameter estimation were carried out using Markov-chain Monte Carlo (MCMC)
methods. A Gibbs sampler was used to obtain samples from the posterior distribution and estimate the
mean, mode, quantiles, and credible intervals for each model parameter. MCMC sampling was implemented
in R (R Core Team, 2016) using JAGS (Plummer, 2003) through interfaces developed in software packages,
including ‘‘rjags’’ (Plummer, 2016), ‘‘runjags’’ (Denwood, 2016), and ‘‘coda’’ (Plummer et al., 2006). R code for
the BLR model is provided in the supporting information. Sampling was conducted with four parallel chains
initialized with random number generators, for 100,000 iterations with a thinning factor of 10, after discard-
ing the initial 5,000 iterations for adaptation and burn-in phases. Convergence was confirmed by visual
examination of trace plots and the Gelman-Ruben statistic (Gelman & Rubin, 1992); i.e., potential shrink
reduction factor less than 1.1. Measures of chain stability and accuracy included Monte-Carlo standard
errors (or estimated SD of the sample mean in the chain) and effective sample size (or number of iterations
normalized by autocorrelation of chains).
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2.4. SOM Model Development
Supporting information Figure S2 contains a conceptual diagram of the SOM used to cluster the study area
basins into distinct sediment and nutrient flux regimes based on physical and hydrological variables. Indi-
vidual observations (vector of input variables, in this case, physical characteristics of the watersheds such as
MAP, basin relief, drainage density, etc.) are clustered into output categories (in this case, dominant annual-
average sediment or nutrient flux). Details of the SOM algorithm, computational methods, and cluster vali-
dation techniques (Vesanto & Alhoniemi, 2000; Vesanto et al., 2000; Wehrens & Buydens, 2007; Anderson,
2001; Oksanen et al., 2017) are provided in supporting information.

The final input data comprise 17 variables, including metrics describing hydrologic, topographic, geologic, and
land use characteristics of the 18 tributary basins (Table 1) and selected parameters derived from regressions
of C on Q for TSS, PP, and DP. Inputs were range normalized (Alvarez-Guerra et al., 2008) as follows:

norm xið Þ5
ðxi2minðxiÞÞ

ðmax ðxiÞ2min ð xiÞÞ
:

Clusters were examined post hoc for their ability to predict loading, by comparing mean annual TSS/PP/DP
concentration, flux, and yield (supporting information Table S2) between clusters. Flux and yield values
were log-transformed to ensure normality for application of ANOVA methods. For each input variable, the
intracluster mean (on a normalized scale) was plotted against the overall mean, and the magnitude and
direction relative to the overall mean was examined to better understand variables driving the clustering.

3. Results and Discussion

3.1. Models of Concentration-Discharge Dynamics Revealed by BLR
BLR methods identified six general C-Q patterns for the LCB watersheds out of the nine classifications pro-
posed by Moatar et al., (2017) (Figure 3a, supporting information Tables S3a, S3b, and S3c). For TSS, the best
fit of C-Q data for six of the basins was provided by Model A (i.e., an upward-inclined prethreshold segment,
and upward inclined post-threshold segment, or ‘‘up-up’’ pattern), while ten basins exhibited a Model D
(flat-up) response and two were classified as Model B (up-flat). Given the close correlation of PP to TSS (aver-
age R2 5 0.81; range: 0.50–0.93), model assignments for PP C-Q patterns were nearly identical, with four
exceptions. The PP model differed from the TSS model for Mettawee, Little Ausable, and Pike (all D models)
and Salmon (A; supporting information Table S3b). A majority of the C-Q responses for DP was classified as
Model D (12); additional DP responses were classified as Model G (3), E (2), or C (1), characterized by a
down-up, flat-flat, or up-down pattern, respectively.

Our BLR methods permitted the definition of subclasses on the C-Q Model A and I, extending the classifica-
tion of Moatar et al. (2017) (Figures 3b and 3c). Examination of the posterior for model parameter, d, allowed
us to determine if regression slopes were credibly different before and after the indicated threshold. A
steeper post-threshold slope (relative to the prethreshold value) classified the response as either Model A2
(accretionary) or I2 (dilutionary); a lesser post-threshold slope defined Model A3 or I3. In the case of no cred-
ible difference between the slopes of Segments I and II (i.e., 95% CI includes zero), the model type was clas-
sified as either A1 (accretionary) or I1 (dilutionary). For TSS and PP, respectively, 28% and 22% of our basins
were distinguished as having a Model A2 C-Q response.

A degree of uncertainty in model assignment arose in five cases for DP and two for PP. For all model types
other than A1, E, and I1, the posterior on the delta (d) parameter should exclude zero (supporting informa-
tion Figure S1). However, this was not always the case. For example, the DP C-Q response for Little Otter
was assigned to Model D based on a 95% CI for the prethreshold slope that included zero and for the post-
threshold slope that excluded zero. However, the 95% CI for d spanned zero, suggesting no significant dif-
ference between the slope values, and that a simple model (A1) could fit the data nearly as well. Similarly,
Model A1 could have been substituted for Model D for Poultney (DP), Bouquet (DP), Great Chazy (DP), Pike
(PP), and Putnam (PP); and Model E rather than H could have fit the DP data nearly as well for Putnam
(Model E rather than H). Several factors may have contributed to this uncertainty. Little Otter and Putnam
are small basins that tend to exhibit weaker C-Q correlations (Syvitski et al., 2000). Uncertainty in the DP
model assignments may have arisen due to the generally weaker correlation of this solute to Q (i.e., lower
b1 values), as compared to sediment. Finally, in the cases of Poultney and Putnam, representativeness of
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the C-Q time series may have influenced model assignment, as the highest flows are somewhat underrepre-
sented in the available records for these basins (supporting information Table S4).

Overall, the C-Q responses for TSS and PP were dominated by positive slopes including Models A (33 and
28%, respectively) and D (56%, 72%). We attribute this accretionary pattern to the relative abundance of
suspended sediments in these post-glacial basins and to legacy stores of phosphorus. A threshold effect in
the C-Q response for TSS (and by extension, PP and other sediment associated constituents) is not uncom-
mon (Hicks et al., 2000; Meybeck & Moatar, 2012). A similar distribution of TSS models (62% D and 21% A)
was observed by Moatar et al. (2017) in a sampling of 293 gaging stations in French basins ranging from 50
to 110,000 km2. The C-Q responses for DP in our study area basins were also dominated by positive slopes.
Dilutionary effects were relatively uncommon and limited to DP Models C and G for our LCB study area. In
this regard, our results differed from those of Moatar et al. (2017), who evaluated a close analog to DP,
namely, PO3–

4 . The majority of their basins exhibited a stable or declining C trend with Q (Models E, H, or I),
while our basin responses were dominated by an accretionary hydrologic response for DP at high flows
(67% Model D and 17% G). Our model assignments may not be directly comparable, since we applied
Bayesian inference of the 95% CI on the posterior of b1, and Moatar et al. (2017) used an absolute value of
0.2 for b1 to distinguish accretionary or dilutionary behavior from a stable response. However, our b1_II val-
ues (mean of posterior distribution) for DP ranged from 0.22 to 0.46, with one exception: 0.13 for Little
Otter. Supporting information Figure S3 illustrates pre and post-threshold values for our 18 basins with
whiskers denoting the 95% CI on parameter estimates relative to the traditional value of 0.2.
3.1.1. Regression Slopes
3.1.1.1. Prethreshold
For TSS, 10 basins had a flat or nearly flat prethreshold segment (Model D); values of b1_I for these basins
ranged from 20.28 to 0.48 (Figure 4a). However, the 95% CI of the posterior distribution of b1_I spanned

Figure 3. Identification of segmented regression models of log10C-log10Q relationships, including (a) conceptual models
of nine types identified by Moatar et al. (2017), modified to depict a variable threshold position (vertical dashed line), and
colored indication of dominant export regime of pre or post-threshold segment: hydrologic (blue) and reactive (red);
(b) variations on Models A and I suggested by this study and discerned through examination of posterior distribution of
model parameters for BLR; and (c) relative abundance of model types exhibited by study area watersheds for TSS, PP,
and DP.
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zero, suggesting that a zero value is also possible. Six basins exhibited a C-Q pattern with a moderately to
strongly inclined prethreshold slope (either Model A1 or A2) with b1_I values ranging from 0.28 to 0.87, and
with the 95% CI on these estimates excluding a zero value. The mean b1_I value (l 5 0.57) for Model A2
basins was significantly different (ANOVA, p< 0.05) and greater than the mean b1_I value for Model D
basins (l 5 20.01). The one Model A1 and two Model B basins had b1_I values in a range comparable to
the Model A2 basins (supporting information Table S3a). Similarly, for PP, the b1_I values for Model A2
basins (l 5 0.42; range: 0.21–0.54; n 5 4) were significantly different (ANOVA, p< 0.05) and higher than val-
ues for Model D basins (l 5 0.02; range: 20.19 to 0.27, n 5 13). The one Model A1 basin had a b1_I value
comparable to the Model A2 basins. For DP, prethreshold slopes were largely flat or declining. Model D fit a
majority of the basins, with b1_I values (l 5 0.03; range: 20.07 to 0.13; n 5 12) comparable to those of PP
and TSS (Figure 4a).
3.1.1.2. Post-Threshold
For both TSS and PP, the range of values for post-threshold slope, b1_II, was higher for Model A basins than
D basins (Figure 4a). For TSS, the group mean value for Model A2 basins (l 5 1.8; range: 0.99–2.4; n 5 5)
was greater than Model D basins (l 5 1.1; range: 0.41–1.6; n 5 10; ANOVA, p< 0.10). Two Model B basins
had statistically significant (p< 0.10) lower post-threshold slopes than either A2 or D basins, with b1_II val-
ues of 20.28 and 0.5. For PP, Model A2 basins (l 5 1.5; range: 0.68–2.3; n 5 4) were greater than Model D

Figure 4. Box plots of: (a) b1 and (b) b0 regression parameters by constituent (TSS, PP, and DP) for the most frequently
encountered log10C-log10Q relationships in the Lake Champlain Basin (Models A and D). Letter symbols denote C-Q
regression model type after Figure 3. Bottom plols display the ratio of threshold Q to median Q (c) by constituent and
(d) by constituent for Model types A and D.
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basins (l 5 0.86; range: 0.21–1.4; n 5 13; ANOVA; p< 0.10). For DP, post-threshold slopes (l 5 0.31; range:
0.13–0.46; n 5 12) were less than TSS and PP, although still weakly accretionary. Our Model D values for
b1_II (mean of posterior distribution) ranged from 0.22 to 0.46, with one exception: 0.13 for Little Otter.
3.1.2. Regression Intercepts
Mean values of b0 were not significantly different between model groups (ANOVA, p> 0.05), but PP and DP
model intercepts were higher than TSS intercepts (Figure 4b). When considering sediment-related constitu-
ents for all 18 basins on a univariate basis (Spearman’s rank correlation, p< 0.10), the TSS and PP b0 values
correlated negatively to basin relief (–0.469, 20.542) and positively to drainage density (0.511, 0.452). The
intercept values for the solute, DP, were negatively correlated to total drainage area, MAP, and basin relief
(–0.550, 20.480, 20.689). Additionally, the percent land cover in agricultural use showed a significant posi-
tive correlation (0.488) to DP b0 value. Intercept values for all three constituents (TSS, PP, DP) showed strong
positive correlations to mean concentrations of total calcium (0.608, 0.701, 0.641), and mean total calcium
(TCa) concentration, itself, was strongly correlated, in a negative sense, to total drainage area (–0.647) and
basin relief (–0.845).

Findings for TSS are somewhat inconsistent with some other studies, which identify basin area as a signifi-
cant factor inversely correlated to the regression intercept for sediment (Nash, 1994; Syvitski et al., 2000).
For example, in a study of 57 North American river gaging stations (on 49 rivers) with upstream drainage
areas ranging from 720 to 1,680,000 km2, Syvitski et al. (2000) reported a negative correlation between
mean annual discharge (MAQ; as a proxy for basin size) and b0, with MAQ explaining up to 65% of variance
in b0. With the addition of basin relief, the explained variance in the intercept increased by 5%–70%. Our
study found a moderately strong negative correlation to Total Drainage Area (Pearson r 5 20.507) for PP,
but this relationship was weaker for TSS (r 5 20.362). Differences between our results and those of Syvitski
et al. (2000) may be related to the wide range of basin sizes examined in the latter study. If their data set is
restricted to basins of comparable size (i.e., less than 5,000 km2, n 5 11), a similar negative correlation value
is obtained (r 5 20.413). Notably, all the intercept values calculated by Syvitski et al. (2000) were less than
zero, while our intercept values included a mix of positive and negative values. Syvitski et al. (2000) values
were based on simple linear regressions, which may underestimate the b0 value in threshold-affected
watersheds. Employing segmented regressions has allowed for a less constrained interpretation of b0 rela-
tive to other basin variables, wherein the b0 value is less tied to the magnitude of b1. In other words, under
the constraint of simple linear regression, an increase in b1 will necessarily be associated with a decrease in
b0 (Asselman, 2000; Warrick, 2014). Under a segmented model fit, the magnitude of b0 is less constrained
by collinearity with the post-threshold slope, b1_II (see Figure 1), and thus more useful for characterizing
export dynamics.
3.1.3. Threshold Magnitude and Frequency
Model types were further reviewed for differences in threshold magnitude and frequency by examining the
threshold value expressed as a ratio to the median Q (supporting information Tables S3a, S3b, and S3c) and
computing the percentage of time that the threshold is exceeded. Notably, threshold positions identified
for TSS/PP/DP models by our BLR methods, demonstrated a considerable range below and above the
median Q (Figure 4c). The threshold position expressed as a ratio to the median Q was particularly high for
two TSS Model B basins, one TSS Model A2 basin, PP Model A1, and DP Model E (comprising the outliers in
Figure 4c).

The 10 TSS Model D basins (l 5 1.2; 0.5–2.7) generally had lower threshold positions than Model A2 basins
(l 5 4.0; 2.3–7.4; Figure 4d) and group means were statistically different (Wilcoxon rank-sum, p< 0.05). Con-
sequently, the percentage of time that the TSS threshold was exceeded was greater for Model D basins
(17–72%) than for Model A2 basins (2–20%), (Wilcoxon, p< 0.05). Thus, D basins are spending a relatively
large amount of time in a functional stage characterized by positive C-Q correlation. The one A1 basin had
a threshold position similar to the A2 basins. Two Model B basins (Little Ausable and Salmon) had very high
threshold positions, exceeded less than 2% of the time, beyond which C-Q data transitioned from a positive
correlation to a flat response. The PP C-Q response reflected a similar pattern, with Model D basins exhibit-
ing significantly lower threshold positions than Model A2 basins. No significant difference between DP
models was observed for threshold ratios, which ranged widely from 0.2 to 9.9 times the median Q. DP
Model D basins had a similar central tendency and range of threshold ratio as their TSS and PP counterparts
(supporting information Figure S3b).
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On a univariate basis, the TSS and PP threshold ratios were positively correlated to the slope of the prethres-
hold segment (0.712, 0.571, Wilcoxon, p< 0.05), since Model A2 basins (with higher threshold positions) are
characterized by inclined prethreshold slopes while Model D basins (with lower threshold positions) have
near-flat prethreshold slopes. DP threshold ratios were positively correlated to the post-threshold regression
slope—a reflection of the fact that a majority of those basins with thresholds above the median Q were classi-
fied as either Model D or G, which demonstrate a positive C-Q relationship for the post-threshold segment.
3.1.4. Sediment and Solute Export Regimes
Regression and variance metrics can be used to classify sediment and nutrient export regimes of catch-
ments on a continuum from chemodynamic to chemostatic, and from positive to negative correlation of
the log C-Q relationship. We have adapted the bivariate plot of b1 and CV ratio suggested by Musolff et al.
(2015) as a convenient way to compare our results to theirs, and to highlight the advantages of a seg-
mented regression model for discerning variable export regimes for pre and post-threshold flow stages.
Musolff et al. (2015) identified two overlapping zones for chemodynamic response of TSS and total phos-
phates, denoting export regimes dominated by ‘‘threshold-driven’’ and ‘‘reactive’’ processes, with the latter
straddling the b1 5 0 line (Figure 5a). Their conceptual model defined ‘‘threshold-driven’’ responses as being

Figure 5. Plot of regression slope (b1) versus CV ratio to visualize export regime for (top plots) TSS, (middle) PP, and (bot-
tom) DP from 18 LCB watersheds, respectively, (using presentation style of Musolff et al., 2015). Simple regression data
are presented in Figures 5a, 5c, and 5e; segmented regression data are presented in Figures 5b, 5d, and 5f, with metrics
for prethreshold data (down-directed triangle) plotted separately from post-threshold data (up-directed triangle). Vertical
whiskers span the 95% credible intervals around the estimate of b1 defined by BLR. Bounds in the top left and bottom left
of each plot are defined solely by CVQ and b1 (not CVC), and have been derived from the mean and standard deviation of
Q from Bouquet data (see Musolff et al., 2015 for further discussion).
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episodic in nature with a strongly positive relationship between C and Q (i.e., high b1 value). These are sys-
tems in which C variability is driven predominantly by Q variability, and both Musolff et al. (2015) and
Thompson et al. (2011) mapped TSS to this category. To avoid confusion, and for consistency with Moatar
et al. (2017), we have used a more generalized term—‘‘hydrologic’’-ally driven (Figure 5)—for rivers that
plot to this zone, since use of the term ‘‘threshold-driven’’ by Musolff et al. (2015) does not appear to sug-
gest a prerequisite that all watersheds of this zone exhibit a distinct threshold(s) in the C-Q pattern. For
example, a Model A, E, or I response could plot to this zone. In contrast, ‘‘reactive’’ responses reflect pro-
cesses that are more independent of fluctuating Q and that are characterized by rapid in-stream cycling
(Musolff et al., 2015). Musolff et al. (2015) and Thompson et al. (2011) identified ammonium and phosphates
in this category, citing the importance of biologically and chemically mediated processes in controlling C.
Similarly, Moatar et al. (2017) identified a weak C-Q relationship (‘‘reactive’’ response) for TSS at flows below
the median Q, and suggested the importance of biochemical processes in regulating TSS concentration at
these low-flow stages. In the context of sediment and sediment-related constituents, we expand the defini-
tion of ‘‘reactive’’ export regimes to include the array of biologically, chemically, and physically mediated
processes that are responsible for the removal (uptake) or return (release) of constituents from advective
transport (Fisher et al., 1998). Thus, for PP and TSS, ‘‘reactive’’ could include nonchemical and nonbiological
processes that are largely decoupled from Q, such as lateral and vertical exchanges of fine sediment and
associated constituents between the water column and the stream bed, channel margin deposits, discon-
nected flood chutes, or floodplain (Boano et al., 2014; Karwan & Saiers, 2009; Skalak & Pizzuto, 2010).

Figure 5 illustrates bivariate plots for TSS, PP, and DP from our 18 LCB tributaries based on simple linear
regression (Figures 5a, 5c, and 5e) and segmented regression (Figures 5b, 5d, and 5f). Overall, a stronger C-
Q relationship is suggested by data points derived from a segmented regression than is revealed by the
simple regression results (supporting information Text S3), leading to greater dispersion on the b1/CV ratio
plot. (Select data points with very high b1 or CV values plot off the chart and are not represented in Figure 5
for image clarity). For TSS and PP, post-threshold data generally have higher, positive b1 values and thus
plot above the prethreshold points, which tend to assemble close to the horizontal line marking a zero
value for b1. In the case of DP, the points assemble closer to the zero line, reflecting the generally lower b1

values for this solute.

Figures 5b, 5d, and 5f also help visualize the uncertainty on the pre and post-threshold b1 parameter explic-
itly estimated from our BLR approach, and how this was leveraged to classify model types (Figures 3a and
3b) as well as assign a ‘‘reactive’’ or ‘‘hydrologic’’-ally driven export regime (Musolff et al., 2015). The poste-
rior distribution of the b1_I (or b1_II) parameter available from the BLR was examined, and if the 95% CI
spanned a value of zero, the point was classified as ‘‘reactive’’ and color-coded red. Otherwise, the point
was classified as ‘‘hydrologic’’-ally driven and coded blue.

For TSS and PP, the C-Q relationship of the prethreshold stage in some cases plots to the ‘‘reactive’’ zone,
rather than the ‘‘hydrologically-driven’’ zone (i.e., the Model D basins). During the low-flow functional stage,
C dynamics are nearly independent from Q (i.e., r2 values for logC-logQ regressions are very low); and there-
fore, b1 metrics provide minimal information for interpretation (Thompson et al., 2011). These basins are dis-
tinguished from the Model A1 and A2 basins in which the prethreshold points were classified as
‘‘hydrologic’’-ally driven (color-coded blue) and b1 values defined some credibly positive slope, ranging on a
continuum from modestly to substantially accretionary. For TSS, two basins exhibited a ‘‘reactive’’ post-
threshold slope (Model B). For both basins (Salmon and Little Ausable), the indicated threshold is high
(greater than 10 times the median Q), and the pattern may reflect particle exhaustion at these highest dis-
charges. In the case of Little Ausable, the apparent C-Q pattern may also be a function of having poor sam-
ple representation from these highest flow ranges (supporting information Table S4). For DP, a majority of
the prethreshold stages were classified as ‘‘reactive’’ (Models D or E); a few basins demonstrated a hydrolog-
ically driven response at low flows—either accretionary (Model C) or dilutionary (Model G). Similarly, most
basins exhibited a hydrologically driven post-threshold response (Model D or G), although a few were either
dilutionary (Model C) or stable (Model E). Two basins have a pre or post-threshold value that is negative
and greater in absolute value than 0.2 (Otter Model C and Little Chazy Model G).

Previous researchers (Basu et al., 2010; Musolff et al., 2015; Thompson et al., 2011) have suggested an abso-
lute value of 0.2 for the regression slope as a ‘‘cut-off’’ to distinguish between reactive and hydrologic
response. Bayesian inference provides an alternative, data-driven approach for interpretation of the
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regression slope parameter, which also offers insight into the uncertainty of model assignment. Interest-
ingly, most of our model assignments employing BLR conformed to this rule of thumb, with accretionary or
dilutionary responses defined by a mean of the posterior on b1 values> |0.2|. Generally speaking, the uncer-
tainty of the b1 estimate, or length of whiskers defined by the Bayesian credible interval, is greater in magni-
tude for the prethreshold slopes than the post-threshold slopes for all three constituents. This finding may
reflect seasonal shifts in ‘‘reactive’’ versus ‘‘hydrologic’’ process dominance at these low flows, as moderated
by factors such as temperature, plant growth, and aquatic biota. For example, recent research, aided by
high-frequency sampling, suggests that the transition between functional stages is dynamic and driven
largely by meteorological variables such as antecedent moisture or rainfall intensity, rather than being pre-
dominantly a function of basin-scale physical features (Bende-Michl et al., 2013; Bieroza & Heathwaite,
2015). Additionally, interannual shifts in threshold position may be contributing to uncertainty in the b1 esti-
mate (e.g., due to river system responses to extreme events, changing land use patterns or progressive
implementation of watershed restoration projects, and best management practices) (Zhang et al., 2016).

Thus, while previous research has suggested that TSS and PP C-Q patterns are consistently hydrologically
driven at a basin scale (Musolff et al., 2015), our BLR approach suggests that TSS and PP export regimes can
exhibit more complexity. In some threshold-affected systems, low discharge ranges may comprise a distinct
functional stage that is more dominated by reactive processes, including and facilitated by lateral and verti-
cal exchanges of fine sediment within the hyporheic and parafluvial zones which temporarily remove con-
stituents from advective flow. In this context, the river corridor can be viewed as a reactor facilitating
changes in particulate P concentration, as opposed to just a vessel for transport (Harvey & Gooseff, 2015;
Mulholland et al., 1997; Withers & Jarvie, 2008).

The variance in threshold position among watersheds is a reflection of the duration of time that each water-
shed stays in a particular functional stage of sediment/nutrient flux. For example, although not a focus of
this current study, the seasonal distribution of flows that exceed the PP threshold may influence the relative
annual flux among basins. A cursory review of 1990–2015 discharge data indicates that the PP Model D
basins spend a majority of their time (>50%) in the prethreshold, reactive, functional stage during the
months of June through October (supporting information Figure S5). Most of the basins are also dominantly
in this reactive functional stage during the month of February (all except Poultney). Some of the Model D
basins (Great Chazy, Little Otter, Mettawee, and Winooski) spend a majority of all months except April in
this reactive functional stage; these are basins with a particularly elevated threshold position exceeded
between 13 and 29% of the time on an annual basis. The latter three basins have some of the highest mean
annual concentrations of PP (supporting information Table S2). Future application of our novel approach
will examine seasonal variation in threshold position and functional stages of nutrient and sediment export.

3.2. SOM Clustering of Watersheds for PP and DP
By preclassifying our eighteen LCB tributaries into distinct C-Q patterns, relying on Bayesian inference, we
have improved the utility of regression metrics to suggest between-watershed differences in drivers and
capacity for system export of sediment and phosphorus. This expanded set of regression metrics can be
included, alongside other basin metrics, as inputs to a SOM for grouping our humid temperate basins by
constituent export regime. Our main intent was to discern whether the combination of watershed charac-
teristics and export regime was responsible for greater or lesser flux of PP and DP to Lake Champlain. For
example, it is conceivable that a basin that exhibits a strong sediment/PP C-Q response but has low overall
P source strength due to land cover patterns, may generate low overall flux to LCB. Conversely, a basin with
high sediment and P source strength may generate low flux to LCB if there are aspects of topography, cli-
mate, or geomorphic setting that enhance storage or attenuation of sediment/PP within the river network
leading to a weaker C-Q response (i.e., lower b1). Therefore, we included both watershed characteristics (i.e.,
precipitation, discharge, soils, land cover, etc.) and export regime metrics as inputs to a PP SOM and DP
SOM, in order to model these nonlinear, epistatic relationships, and cluster the basins by overall average
annual flux of TSS and PP to Lake Champlain.

For each constituent, the 18 basins were assigned to three distinct clusters and multivariate input data
(Table 1 and supporting information Tables S3a–S3c) have been reduced to a 2-D lattice for visualization: a
3 3 6 lattice for PP (Figure 6a) and a 4 3 4 lattice for DP (Figure 7a). The column-to-row ratio for theses latti-
ces approximated the ratio of the first two principal components of the input data (5.7/3.4 for PP; 4.3/3.2 for
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DP; PCA on correlations), as per Cereghino and Park (2009). Clustering outcomes were slightly different for
each constituent (Figures 6b and 7b), driven by differing combinations of input variables (Figures 6c and 7c).
3.2.1. PP SOM Results
ANOVAs revealed significant differences between mean cluster values for flow-normalized flux of both TSS
and PP (p< 0.10; Figure 6d), but not for mean annual concentration or yield (p> 0.10). Post hoc testing
applying Tukey HSD showed that the mean flux values for Clusters 1 and 3 were higher than, and

Figure 6. Particulate phosphorus SOM clustering outcomes for Lake Champlain Basin tributaries, including (a) SOM lattice
(see supporting information Figure S2 and Text S2); (b) basin location map color-coded by SOM cluster assignment and
keyed to C-Q regression model types; (c) variable bar plots by cluster (n 5 number of basins per cluster; y axis represents
range-normalized values; refer to section 2.4). Note: for clarity of presentation, variable plots have been rendered using
different vertical scales. (d) Mean annual flux of (left) TSS and (right) PP in metric tons per year (mT/yr) by SOM cluster.
Color shading relates to clusters in Figures 6a–6c. Letter symbols denote C-Q regression model type after Figure 3. Flux
estimates are from Medalie (2014).
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statistically different from, Cluster 2 for both PP and TSS (p< 0.10). Larger basin sizes were generally associ-
ated with greater flux of TSS and PP. However, Clusters 1 and 3 comprised basins of similar size, but clus-
tered separately.
3.2.1.1. Higher-Flux Basins of PP Clusters 1 and 3
Cluster 1 and 3 basins each exhibit strong threshold effects in the C-Q response for both TSS and PP: Model
A2 for Cluster 1 and Model D for Cluster 3, except Mettawee in Cluster 3, which was classified as Model A2

Figure 7. Dissolved phosphorus SOM clustering outcomes for Lake Champlain Basin tributaries, including (a) SOM lattice;
(b) basin location map color-coded by SOM cluster assignment and keyed to C-Q regression model types; (c) variable bar
plots by cluster (n 5 number of basins per cluster; y axis represents range-normalized values; refer to section 2.4). Note:
for clarity of presentation, variable plots have been rendered using different vertical scales. (d; left) Mean annual flux in
metric tons per year and (right) concentration in milligrams per liter of DP by SOM cluster. Color shading relates to clus-
ters in Figures 7a–7c. Letter symbols denote C-Q regression model type after Figure 3. Flux and concentration estimates
are from Medalie (2014).
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for TSS. While both Cluster 1 and 3 basins demonstrated higher-than-average flux of PP and TSS (Figure
6d), a different combination of variables appears to be driving this pattern in each case (Figure 6c). These
two clusters share some variables in common—including, higher-than-average values for basin relief and
MAP.

Variables that distinguish these two higher-loading Clusters (1 and 3) from each other (i.e., variables that
trend in opposite directions from the overall mean) include the regression intercepts for both TSS and PP
and the post-threshold response for PP (Figure 6c). Cluster 1 (Model A2) basins appear to have greater
transport capacity (larger b1_II values) relative to Cluster 3 (mostly Model D) basins (Figure 4d). However,
threshold position as a ratio to the median Q was higher for Cluster 1 than 3 basins, although not signifi-
cantly so (ANOVA/Tukey HDS, p> 0.10). This would mean that transport of sediment and sediment-bound P
occurs disproportionately during less-frequent, higher-magnitude flows in these Model A2 basins—i.e., they
exhibit a more episodic C-Q response than Model D basins, and could be considered supply limited with
respect to TSS and PP (Basu et al., 2011; Thompson et al., 2011). Importantly, Model A2 basins also have
steeper prethreshold slopes relative to Model D basins. Therefore, small discharge events are more impact-
ful on TSS and PP export than similar magnitude events in Model D basins.

Cluster 1 basins appear to have a much lower range of b0 values for each constituent than their Cluster 3
counterparts, reflecting a lower baseline supply of suspended sediment and particle-bound P in the former
group. The lower-than-average b0 values for TSS and PP (as well as the higher-than-average b1 values previ-
ously noted) in Cluster 1 basins (Saranac, Lamoille, and Missisquoi) may also be related to in-stream
impoundments (supporting information Table S1) and the possible storage of fine sediments and PP behind
dams at least during low to moderate flow stages. For example, Wang et al. (2008) noted a stepped
decrease in the intercept parameter for C-Q regressions developed for TSS time series data on the Yangtze
River in China, as in-stream impoundments were constructed to support generation of hydropower. At the
same time, they attributed observed increases in b1 to the increased erosive power in the lower reaches of
the Yangtze River in China, resulting when upstream impoundments sequestered sediments and led to
decreased downstream concentrations of suspended sediments (so-called, ‘‘hungry water’’ effects of Kon-
dolf, 1997). Elevated b1 values in impounded rivers have also been attributed to effects of diminished sedi-
ment storage capacity of in-stream reservoirs (Zhang et al., 2016).

Cluster 3 basins tend to be dominated by lower-infiltration soils (exhibit lower percentages of HSG A and
B soils). This is likely a reflection of their geographic position with near-lake areas located in the Cham-
plain Valley or Vermont Valley/Taconic biophysical regions. These regions are associated with silt and
clay deposits from postglacial freshwater and brackish-water lake episodes that inundated the valley to
higher stages than the present Lake Champlain (Stewart & MacClintock, 1969). Similarly, Medalie (2013)
noted a significant correlation between physiographic province and both concentration (Kruskal-Wallis
p 5 0.092) and flux (p 5 0.045) of total phosphorus. This difference between Cluster 1 and Cluster 3
basins is particularly illustrated when comparing the Winooski basin (Cluster 3) to Lamoille and Missis-
quoi basins (Cluster 1). Despite similar size, relief, MAP, and impoundment/flow regulation status, these
basins clustered differently for PP, driven in large part by differences in b0 values which resulted in their
assignment to different regression model types (e.g., Winooski, TSS_ b0 5 10.37, Model D versus
Lamoille and Missisquoi values of 20.67 and 20.29, Model A2). This higher-than-average baseline supply
of sediment (and PP) for Winooski basin, could reflect the fact that, on a basin scale, Winooski has a
somewhat greater dominance of lower-infiltration soils (lower percentage of HSG A and B soils) than
Lamoille or Missiquoi (Table 1). This pattern may also reflect differential source regions and connectivity
of PP and TSS (Doyle et al., 2005) and may be a function of between-watershed differences in the domi-
nant geomorphic state of the channel (aggradational versus incisional) (Kline & Cahoon, 2010; Roy &
Sinha, 2014) and duration of recovery time for vegetative boundary conditions following extreme flood
events (Wolman & Gerson, 1978).

Post-threshold CV ratios for PP (and TSS) were elevated in Cluster 1 basins relative to the average for each
of the other clusters. This pattern hints at the importance of less frequent, higher-magnitude storms in pro-
ducing suspended sediment, and sediment-bound P in these basins. Also, in our study area, impounded
and/or regulated rivers did tend to have lower CVQ values than nonregulated rivers (Wilcoxon, p< 0.10),
which would contribute to somewhat elevated CV ratios for both TSS and PP, and further promote the
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importance of low-frequency, higher-magnitude storms for sediment, and sediment-bound P export
(Meade, 1982).
3.2.1.2. Lower-Flux Basins of PP Cluster 2
Cluster 2 basins had lower flux of TSS and PP than Clusters 1 and 3 (Figure 6d). Cluster 2 basins are generally
smaller in size (137–778 km2) with C-Q relationships representing a mix of Model types (A1, A2, B, and D).
They have higher background supplies of TSS and PP (elevated b0 values), and are generally of lower relief
with lower MAP. Mean values for relief and MAP are significantly different (ANOVA, p< 0.05) and lower for
Cluster 2 than Cluster 1 (and 3). Cluster 2 basins exhibit lower-than-average post-threshold b1 values for
both TSS and PP, perhaps related to lesser stream power that would be expected from the combination of
smaller basin size, lower relief, and lesser MAP. Cluster 2 basins are also characterized by less-than-average
forest cover and somewhat greater-than-average percentage of agricultural land use (although land use is
not a significant factor driving clustering). Interestingly, while Cluster 2 basins overall contribute smaller
loads of TSS and PP than Cluster 1 or 3 basins (likely related to their smaller size), they are characterized by
a mean annual PP concentration range that is higher than that of the Cluster 1 basins (though the overall
cluster means are not significantly different at a 5 0.10) and statistically different than mean PP concentra-
tion for Cluster 3 (ANOVA, p< 0.05). This result may be due to the fact that even at low flow ranges, these
basins have sufficient power to entrain and mobilize fine particles and associated P from legacy stores (i.e.,
elevated b0 values) derived from the erodible glaciolacustrine soils and sediments of the Champlain Valley.
3.2.2. DP SOM Results
The DP SOM also clustered basins into three groups, but the group composition varied somewhat from that
generated by the PP SOM (Figure 7). Log-transformed DP (and TSS) flux values for Clusters 2 and 3 were
higher than Cluster 1, although statistically significant only between groups 2 and 1 (ANOVA/Tukey HSD,
p< 0.10). Notably, these are nearly the same basins that comprised the high-flux clusters for PP, with the
exception of Poultney and Mettawee (compare Figures 6 and 7). In contrast, DP concentrations were higher
for Cluster 1 than Clusters 2 and 3, and the means between Clusters 1 and 3 were significantly different
(p< 0.05) (Figure 7d). There were no significant differences between mean cluster values for DP yield
(p> 0.10).
3.2.2.1. Higher-Flux Basins of DP Clusters 2 and 3
The higher-flux basins of Clusters 2 and 3 tended to have higher-than-average basin relief and MAP, which
can be attributed in part to their larger total drainage area (Figure 7b). Cluster 2 basins were larger than
Cluster 3 basins, which themselves were larger than Cluster 1 basins, and the difference between group
means was statistically significant (ANOVA/Tukey HSD, p< 0.05). Basins in Clusters 2 and 3 also tended to
have lower than average regression intercept values, suggesting lower baseline supplies of DP. Interestingly,
they also exhibited higher values for the slope parameter on the post-threshold segment of the TSS C-Q
regression. This may reflect enhanced sediment transport capacity of these basins, given their higher-than-
average relief, which itself is correlated to greater MAP (Pearson r 5 0.480 for all 18 basins). To some degree,
elevated b1_II values may also reflect greater availability of TSS sources (e.g., enhanced floodplain connec-
tion) at higher flow stages (Asselman, 2000). We speculate that higher availability of TSS could lead to
reduced DP flux as a result of sorption (i.e., nutrient cycling).

Land use appears to contribute to differences between higher-flux Clusters 2 and 3 and suggests alternate
sources of DP. Cluster 2 basins tended to be more developed and less forested, while the opposite was true
for Cluster 3 basins, and the difference between cluster means was significant in each case (p< 0.10 for for-
ested, p< 0.01 for developed). Cluster 2 basins (Otter, Winooski, and Lamoille) include the urban centers of
greater Burlington, Montpelier, Rutland, and Middlebury, which are serviced by wastewater treatment facili-
ties. The mean value of post-threshold regression slopes for Cluster 2 basins is greater than Cluster 1 basins,
though not significant (p 5 0.18), suggesting a more hydrologically driven transport of DP for these basins.
3.2.2.2. Lower-Flux Basins of DP Cluster 1
The lower-flux basins of DP Cluster 1 are characterized by lower-than-average relief and MAP. In contrast to
the other basins, they have elevated b0 values for both TSS and DP, indicating higher baseline supplies of
these constituents. Higher DP b0 values may also be a reflection of the higher-than-average agricultural
land use in Cluster 1 basins. Although it was not an input to the SOM, the mean concentration of total cal-
cium (TCa) appears to have been a latent variable driving clustering of basins for DP. Cluster 1 had signifi-
cantly higher mean TCa than Cluster 2 and 3 basins (ANOVA/Tukey HSD, p< 0.05). Elevated TCa
concentrations and TSS b0 values for TSS in Cluster 1 basins may both be a reflection of their geographic
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position within the Champlain Valley or Vermont Valley/Taconic biophysical regions, characterized by car-
bonate bedrock and erodible glaciolacustrine sediments. Thus, DP in these Cluster 1 basins may be attenu-
ated through sorption to, or biogenic coprecipitation with, calcite-bearing particles (Moatar et al., 2017). While
Cluster 1 basins are responsible for generally lower flux of DP to Lake Champlain (due largely to their smaller
size), they do however, exhibit higher DP concentrations than either Cluster 2 or 3 basins (Figure 7d).
3.2.3. Sediment and Solute Export Regimes Revealed by SOM Clustering
Nonparametric SOM clustering results suggest that different functional stages of C-Q are responsible for the
flux of sediment and nutrients to Lake Champlain from different basins. For TSS and PP, two unique clusters of
high-flux basins were identified. In the first group, sediment and sediment-bound P flux is hydrologically
driven and disproportionately occurring during relatively infrequent, high-magnitude runoff events. During
hydrologically and hydraulically dominated functional stages, TSS and PP are entrained and mobilized as a
result of stream bed scour, stream bank collapse, rill erosion, gully formation, floodplain scour (where hydro-
logically connected), and mass movement of strath terraces or closely coupled hillsides (Baker, 1977; Benda &
Dunne, 1997; Nanson, 1986; Trimble, 1997; Walling et al., 1999; Walling & He, 1999; Yellen et al., 2014). In the
stream channel, sediment and solute transport would be more dominated by advective forces in a down-
stream direction than by diffusive or dispersive forces in either a lateral or vertical direction (Ward, 1989).
Accretionary and hydrologically dominated patterns may also result from progressive or sudden release of
sediments from in-stream impoundments at high flows (Meade, 1982; Wang et al., 2008). The inclined pre and
post-threshold stages of these Model A2 watersheds may reflect suspended sediments liberated from a two-
phase bed load transport regime where sediments accumulated in the channel between storm events are
more readily moved, while the second phase consists of additional fines liberated from disturbance of a coarse
streambed armor layer (Jackson & Beschta, 1982; Reid et al., 1997; Ryan et al. 2002), or as stabilizing biofilms or
aquatic vegetation are breached (Lawler et al., 2006). Alternatively, this pattern may simply reflect expansion
of the variable source area with increasing stage (Asselman, 2000; Dunne & Black, 1970).

In the second group, the sourcing and mobilization of sediment and P are more bimodal, resulting from
both hydrologic processes at post-threshold discharges and reactive processes (such as nutrient cycling or
lateral/vertical exchanges of fine sediment) that dominate at prethreshold discharges. For these basins
exhibiting a ‘‘reactive’’ export regime in prethreshold flow stages (i.e., near-flat trends in C with increasing Q),
the vertical and lateral components of flow appear to gain influence relative to longitudinal (i.e., down-
stream) components. This may be due, in part, to lesser overall magnitudes of discharge, but may also reflect
different hydrogeomorphic patterns in these rivers (i.e., an enhanced degree of floodplain connection,
greater diversity of channel and bed forms, greater percentage of in-stream storage from impoundments or
channel-contiguous wetlands than their ‘‘hydrologically-driven’’ counterparts). Research suggests that bio-
geochemical and physical processes other than advection dominate these reactive functional stages, such
as: hyporheic exchange (Karwan & Saiers, 2009); vertical exchange or filtering (Boano et al., 2014); lateral
exchange with fine-grained channel margin deposits (Skalak & Pizzuto, 2010; Withers & Jarvie, 2008); micro-
scale bed form migration (Harvey et al., 2012; Pizzuto, 2014); and attenuation in in-stream wetlands (e.g.,
Qian & Richardson, 1997), impoundments (Wang et al., 2008), or transient storage areas behind large woody
debris jams (Wohl & Beckman, 2014). Lagged groundwater recharge from antecedent storms (Bieroza &
Heathwaite, 2015) may cause short-term dilutionary effects that contribute to variability in prethreshold TSS
and PP C patterns. It is also possible that some of the more elevated concentrations result, not from reactive
processes, but from hydrologically driven sediment transport when the turbidity measured at the basin out-
let has been generated by localized storms from distal areas of the basin (Bieroza & Heathwaite, 2015; Lawler
et al., 2006). We speculate that this reactive functional stage of sediment/nutrient flux could also include bio-
turbation by wildlife (e.g., beavers and benthic organisms) as cited in Boano et al., (2014) and humans (e.g.,
active ditching of first-order streams that deliver suspended sediments during low-flow time periods), based
on direct observations from these basins.

DP export to Lake Champlain from high-flux basins appears to result largely from a mix of hydrologic pro-
cesses at post-threshold discharges and reactive processes (nutrient cycling) at prethreshold discharges.
Hydrologic phases of transport appear to be dominantly accretionary in nature. This result contrasts some-
what with findings of Moatar et al., (2017) who noted chemostatic or dilutionary responses in a majority of
their study basins. The accretionary response in our study area may reflect sourcing and mobilization of DP:
(1) from impoundments at high flow stages; (2) from wastewater treatment facilities or combined sewer
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outflows at higher discharges; (3) from increased connections to channel-contiguous wetlands at higher
flow stages (Watson et al., 2016); or (4) from tile drainage systems (Franzi et al., 2009). Two high-flux DP clus-
ters appear to be distinguished by basin-scale land use, with developed uses associated to one cluster, and
agricultural uses more prevalent in the other. Still, post-threshold b1 values for DP are generally much lower
than b1 values for PP (Figure 4a). This observation is also reflected in the lower overall flux estimates for DP
as compared to PP (i.e., compare Figure 6d to 7d).

4. Conclusions and Implications

We have outlined a methodological approach to expand upon previous classification schemes for sediment
and solute export from catchments (Moatar et al., 2017; Musolff et al., 2015; Thompson et al., 2011; Zhang
et al., 2016), with a focus on suspended solids and particulate and dissolved phosphorus. Using the Lake
Champlain Basin to examine concentration-discharge dynamics, our method leveraged information from
Bayesian inference to achieve estimation of segmented regression model parameters, and identify thresh-
old position to avoid potential bias in manual threshold selection. Notably, threshold positions identified by
our BLR methods, demonstrated a considerable range below and above the median Q – which has been
used by previous researchers (Meybeck & Moatar, 2012; Moatar et al., 2017) as a default break-point to clas-
sify segmented C-Q regression models and discern differences between pre and post-threshold export
regimes. The BLR approach identified different functional stages of TSS, PP and DP export, in that a proba-
bility distribution on pre and post-threshold regression slopes from a segmented regression model could
be interpreted to discern between ‘‘reactive’’ and ‘‘hydrologically-driven’’ stages of constituent export. We
extended the term ‘‘reactive’’ export regime to include the array of biologically, chemically, and physically
mediated processes that are responsible for the uptake or release of constituents from advective transport.

Additionally, this study has applied a nonparametric clustering and data visualization approach, using an
SOM, to yield insights into nonlinear combinations of independent variables that appear to be driving
basin-scale differences in mean annual flux and concentration of sediment and phosphorus. Though further
testing with greater numbers of basins would be useful, the SOM results helped define two unique clusters
of high-flux basins for TSS and PP. In the first group, sediment and sediment-bound P flux is hydrologically
driven and disproportionately occurring during relatively infrequent, high-magnitude runoff events. In the
second group, the sourcing and mobilization of sediment and P are more bimodal, resulting from both
hydrologic processes at post-threshold discharges and reactive processes (such as nutrient cycling or lat-
eral/vertical exchanges of fine sediment) that dominate at prethreshold discharges. The former functional
stage generates an acute flux response and may be more consequential in the context of loading to the
lake (e.g., TMDLs and sediment budgets). However, the latter functional stage generates a more chronic
concentration response that may be of greater concern in the context of ecological balance in the receiving
waters (Bende-Michl et al., 2013). For example, in a hydrodynamically and ecologically diverse receiving
water like Lake Champlain (Xu et al., 2015a, 2015b), understanding and predicting the magnitude, timing,
and location of these episodic versus chronic inputs of nutrients is critical to projecting riverine load
impacts on lake water quality and ecosystems across both time and space (Giles et al., 2016; Isles et al.,
2017). Shallow segments of the lake, where P availability and ecosystem productivity are most impacted by
benthic P loading (Isles et al., 2015), large PP loads from episodic high-flow events can remain potentially
bioavailable for years to decades; but chronic inputs will also accumulate over time and persist in these
environments (Isles et al., 2017, Zia et al., 2016). Deeper sections of the lake could be more impacted by
chronic inputs of DP, as even during large events, particulate phosphorus quickly settles to depths where it
is no longer potentially bioavailable to phytoplankton, and the short-term (days to months) cycling of
potentially dissolved riverine nutrients tends to govern nutrient ratios and bioavailability (Isles et al., 2017).

Insights into landscape drivers of concentration-discharge patterns provided by this BLR-SOM approach can
also aid water resource managers. For example, different management strategies would be warranted for
each of the high-flux basin clusters for PP, based on differences in the identified export regimes. Emphasis
could be placed on diverting, detaining, and attenuating storm-water flows and restoring and enhancing
connections to floodplains and channel-contiguous wetlands in PP Cluster 3 (Model A2) basins, where flux
is more episodic in nature, hydrologically driven and disproportionately occurring during relatively infre-
quent, high-magnitude runoff events. Whereas, source reduction and other best management practices to
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buffer and disconnect sediment and PP source regions from the stream network would be more appropri-
ate in PP Cluster 1 (Model D) basins characterized by greater baseline (legacy) supplies of these constitu-
ents. Similarly, DP clustering results that distinguish groups of high-flux basins by association with different
land use patterns, may suggest differences in DP source types (e.g., point versus diffuse) and focus restora-
tion or remediation efforts, accordingly. A better understanding of between-watershed differences in the
functional stages of constituent export is also important in a nonstationary climate to anticipate spatially
and temporally variant sensitivities to increased frequency, persistence, and intensity of storm events (Guil-
bert et al., 2015) and projected increases in dry summer conditions (Guilbert et al., 2014).

This data-driven, nonparametric approach to classification of export regimes can be particularly useful in an
adaptive management context, as analysis is easily updated with new estimates of physical and chemical
data. Computation methods (section 2.3.2) can be adapted to handle censored data (Kruschke, 2015). The
Bayesian framework offers particular flexibility for study areas with sparse C-Q data. Our methods used
vague priors on parameter estimates, so that the data would drive the estimates (Gelman et al., 2004). How-
ever, this technique could also be used with informative priors for watersheds with limited C-Q data. For
example, analysis could apply the basin-scale posterior range for regression parameters as a prior on BLRs
to estimate C-Q relationships at a subwatershed scale, provided that biogeophysical characteristics of the
two scales are similar. In a temporal context, our basin-scale estimates could be used as prior information in
a hierarchical model of C-Q regressions by season (subject of a pending future publication).

While application of these techniques to other hydroclimatic regions and different spatial and temporal
scales would yield insights into C-Q patterns unique to those areas, the overall BLR-SOM framework and
methodology should be transferable among regions. The Bayesian model is sufficiently flexible to esti-
mate parameters for C-Q responses with multiple thresholds, and the BLR approach could be extended to
model additional solutes with different C-Q patterns. With increasing availability of high-frequency con-
centration and discharge monitoring data from in situ sensors, automation of the BLR-SOM approach
could permit near-real-time estimation of export regimes, of value to water quality management and
stakeholder communities.
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