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ARTICLE

Water quality improvements offset the climatic
debt for stream macroinvertebrates over
twenty years
Ian P. Vaughan 1,2 & Nicholas J. Gotelli2

Many species are accumulating climatic debt as they fail to keep pace with increasing global

temperatures. In theory, concomitant decreases in other stressors (e.g. pollution, fragmen-

tation) could offset some warming effects, paying climatic debt with accrued environmental

credit. This process may be occurring in many western European rivers. We fit a Markov

chain model to ~20,000 macroinvertebrate samples from England and Wales, and demon-

strate that despite large temperature increases 1991–2011, macroinvertebrate communities

remained close to their predicted equilibrium with environmental conditions. Using a novel

analysis of multiple stressors, an accumulated climatic debt of 0.64 (±0.13 standard error) °C

of warming was paid by a water-quality credit equivalent to 0.89 (±0.04)°C of cooling.

Although there is finite scope for mitigating additional climate warming in this way, water

quality improvements appear to have offset recent temperature increases, and the concept

of environmental credit may be a useful tool for communicating climate offsetting.

https://doi.org/10.1038/s41467-019-09736-3 OPEN
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In response to global climate change, species will either shift in
distribution as they track their preferred climate, adapt locally,
or decline in abundance ultimately to extinction1,2. A useful

concept for understanding these changes is climatic debt3,4,
which was inspired by the idea of extinction debt5. Assuming
that species’ abundances and geographic ranges will reach an
equilibrium in a constant environment, the environmental lag
(sensu ref. 6) describes how far the observed community is from
the equilibrium predicted by current environmental conditions.
In the case of temperature and climatic debt, this lag relates
to communities responding more slowly than expected to rising
temperatures4. Such debts have been documented for a range
of taxa including forest plants, birds, and butterflies3,7–9, and
must eventually be paid through migration, local adaptation, or
extinction.

The climatic debt model has focused on warming as the sole
environmental determinant of community change. However,
recent work has shown how a range of biotic and abiotic factors
contribute to the total debt4. In theory, climatic debts could be
reduced by management strategies such as assisted migration
to unoccupied sites10 or the introduction of genotypes that are
better adapted to warmer conditions11.

An important alternative to the climatic debt model is that
communities are not in disequilibrium with environmental con-
ditions. Instead, communities are in equilibrium, but are affected
simultaneously by changes in temperature and other environ-
mental factors, which could either compound or offset the effects
of rising temperature12. Reducing a second stressor accumulates
environmental credit which could be used to pay the climatic
debt, and may be an important mitigation strategy to limit
damage from increasing temperatures.

Here, we introduce the novel concept of water quality credit,
which may have paid the climatic debt accumulated by macro-
invertebrate communities in English and Welsh rivers through
the 1990s and early 2000s. Riverine macroinvertebrates are
sensitive to climate13, and water temperature increases equivalent
to those observed in the current study often account for large
changes in community structure (e.g. refs. 14,15). Concomitantly,
as in much of Western Europe, water quality in British rivers
has improved greatly in recent decades due to better treatment
and reduced discharge of industrial and sewage effluent16. This
has prompted large-scale biological recovery that may have
offset concurrent water temperature increases17–19 (Supplemen-
tary Fig. 1).

Across a series of analyses using ~20–26,000 high-quality, stan-
dardised benthic macroinvertebrate samples collected from
3067 stream locations across England and Wales (Supplementary
Fig. 2), we estimate the overall environmental lag of riverine
communities, and the contributions of climatic debt and water
quality credit that accumulated through the period (Supplementary
Fig. 3). Our results indicate that, at a national scale, macro-
invertebrates responded rapidly to changes in water quality and
temperature, remaining close to equilibrium with the environment
throughout the study period. Because water quality credit paid the
accumulating climatic debt, the overall environmental lag was small.

Results
Macroinvertebrate community classification. We first created a
simple classification of riverine macroinvertebrate communities
based upon their constituent taxa. The classification divided
communities into three types, representing an ordered sequence
from communities characterised by pollution-sensitive taxa
requiring fast-flowing, well-oxygenated water (e.g. Plectopera,
Ephemeroptera; Class 1) to communities characterised by
pollution-tolerant taxa that can persist in slow-flowing, poorly
oxygenated water (e.g. Hirudinea, Isopoda; Class 3; Fig. 1a and
Supplementary Fig. 4a). Similar results were obtained with dif-
ferent classification methods (Supplementary Fig. 4b).

Markov chain modelling. The classification was used to con-
struct a time-varying Markov transition model that described
annual changes in river community types through time (Fig. 2)
and then allowed us to assess whether the dynamical stability of
macroinvertebrate communities had changed during the study
period. Macroinvertebrate communities were dynamic, with
approximately 20% of communities switching classes annually
(Supplementary Fig. 5a; Supplementary Table 3) and long-term
trends in the transition probabilities were consistent with
national-scale improvements in water quality18: the annual per-
sistence of polluted assemblages (Class 3) decreased through time
(Fig. 2), leading to a 50% decrease in the frequency of polluted
assemblages and an increase in the frequency of unpolluted and
intermediate assemblages (Classes 1 and 2; Fig. 1b, Supplemen-
tary Table 4). The prevalence of Classes 1 and 2 increased at
similar rates (Fig. 1), but slightly faster for Class 2, driven by
increasing probabilities through time of switching from Class 3 to
Class 2, decreasing probabilities of switching from Classes 2 to 1,
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Fig. 1 Macroinvertebrate community composition and change across England and Wales 1991–2011. a Characteristic changes in the community among the
three biological classes: the mean prevalence of families within the seven higher taxa showing the greatest change among classes, scaled so that the
relative prevalence of each taxon= 1 in the class where it was most prevalent, and b the change in prevalence of the three classes, with bootstrapped 95%
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and increased persistence of communities within Class 2 (Fig. 2).
Classes 1 and 2 expanded their geographic distributions, while
Class 3 retreated mainly to urban areas and slow-flowing rivers in
the intensively farmed landscapes of eastern England (Fig. 3;
Supplementary Fig. 2a). Class 1 communities were concentrated
in northern and western areas, where fast-flowing, well-
oxygenated rivers are most abundant18, whereas Class 2 expan-
ded across the lowlands of England (Fig. 3; Supplementary
Fig. 2a).

Despite the changes in composition and transition probabil-
ities, the dynamical properties of the fitted Markov model
changed little at the national scale. Asymptotic (damping
coefficient) and non-equilibrium (Dobrushin’s coefficient) dyna-
mical stability measures both indicated a recovery rate from
perturbation of 15–20% year−1 (Supplementary Fig. 5a). There
are few published examples of similar analyses, but these recovery
rates are comparable to those estimated for sub-tidal benthic

communities20 and indicate a resilient system that can recover
quickly from perturbation or respond rapidly to environmental
change. These stability results were not sensitive to how the
invertebrate communities were clustered prior to fitting the
Markov chain model (Supplementary Fig. 5b).

The overall community composition (prevalence of Classes
1–3) was close to the estimated equilibrium state throughout
the monitoring period (Supplementary Fig. 6), suggesting that
there was minimal net environmental lag. Collectively, these
results indicate that monitored changes in the macroinvertebrate
community across England and Wales in recent decades18

represent a response to contemporaneous environmental
change, rather than a time-lagged response to past changes,
reinforcing their value for environmental monitoring. In this
scenario, macroinvertebrates respond to environmental change
in a relatively predictable fashion6, supporting efforts to model
climate change impacts (e.g. refs. 21,22).
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Fig. 2 Annual transition probabilities between the three macroinvertebrate community classes (1991–2011) across England and Wales, based on the
Markov chain. Each panel shows the probability (P) of a community in one of the three states in 1 year either staying in the same state or switching to one
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provided as a Source Data file
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Climatic debt and water quality credit. Although the Markov
model revealed minimal net environmental lag in English and
Welsh rivers, this does not preclude the formation of debts
and credits that may have cancelled each other out, leading to
a negligible net lag. Specifically, a water quality credit may have
formed if decreases in pollutant concentrations could negate
increases in water temperature. To investigate this possibility,
we focused on the biochemical oxygen demand (BOD), which
provides an overall assessment of organic pollution16, reflects
one of the largest water quality improvements in recent decades18

(Supplementary Fig. 1), and impacts aquatic organisms in similar
ways to increasing water temperature: both promote oxygen
stress to meet respiratory demand, and increased oxygen avail-
ability can reduce the sensitivity of freshwater macroinvertebrates
to increasing water temperature13,23,24. Also, compared to point
measurements of dissolved oxygen, BOD better reflects the oxy-
gen conditions that macroinvertebrates experience in their
benthic microhabitats (e.g. ref. 23). Using data from 1991 to 1992,
we calibrated models that predicted temperature and BOD from
the composition of the invertebrate assemblage, and used them to
reconstruct how these two variables were expected to change
based on the observed changes in the invertebrate community
between 1991 and 2011 (Supplementary Fig. 3; ref. 3). The dif-
ferences between reconstructed and observed conditions repre-
sent environmental lags6 (Fig. 4a–c).

Although BOD and temperature were weakly correlated in
the observed data (r= 0.05, n= 26,103), their reconstructed
values were highly correlated (r= 0.74), consistent with a similar
biological response to increasing temperature or BOD. Over the
monitoring period, observed mean water temperature increased,
whereas reconstructed temperature decreased—consistent with
the observed increase in the prevalence of taxa preferring cooler
conditions19 (i.e. Class 1)—generating an estimated climatic debt
of 0.64 °C by 2011 (Fig. 4d; Supplementary Table 5). Con-
comitantly, observed BOD declined faster than the reconstructed
BOD, leading to an estimated water quality credit of 0.63 mg l−1

(back-transformed value; Fig. 4e; Supplementary Table 5). We
cross-calibrated reconstructed BOD and temperature so that the
change in BOD could be converted to an equivalent temperature
change (Supplementary Fig. 7). This calibration yielded a water
quality credit equivalent to 0.89 °C, paying the climatic debt
and potentially leaving a small net water quality credit, although
this credit did not differ significantly from zero (linear regression:
P= 0.06; Supplementary Table 5; Fig. 4f).

Discussion
In response to climatic warming, management that reduces other
stressors at local or regional scales may be an effective way of
reducing ecological impacts and increasing resilience12. Such
interventions are seen to be more achievable than change at the
global scale12, and may provide more time for species and eco-
systems to adapt to climate change25. This approach can also
provide secondary biodiversity and ecosystem service benefits,
such as reducing risks of harmful cyanobacterial blooms and
lowering drinking water treatment costs26,27. Because most eco-
systems are subject to multiple stressors28, the success of off-
setting global change in this way relies upon an understanding
of how different stressors interact12. If local stressors such as
water quality have additive or synergistic effects with climate,
reducing their impacts could be a valuable mitigation tool.
However if local stressors act antagonistically with climate, the
potential for offsetting will be limited25.

Our credit–debt framework applies where the ecological
impacts of different stressors can be cross-calibrated, allowing
their actions to be expressed on a common scale (°C in this
study). This framework would readily generalise to three or more
stressors, allowing more complete accounting of the credits and
debts within a system, using a common currency to facilitate
stakeholder engagement. In the case of rivers, basin-scale man-
agement could compare the potential credits accrued though
different strategies such as reducing point source or diffuse

N

a b

2003 2007 2011

1991 1995 1999

Fig. 3 The study area and locations of macroinvertebrate samples collected for calculating transition probabilities among years. a Outline of Great Britain,
indicating England and Wales (shaded): the scale bar is 200 km. b The samples collected in each year (sample sizes are given in Supplementary Table 1),
shaded according the biological class to which they belonged. The colour scheme matches Fig. 1. For brevity, data are shown for four-year intervals
(see Supplementary Fig. 2 for a full version). National outlines contain OS data © Crown copyright and database right (2017)
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pollutant inputs, including fine sediments, and expanding ripar-
ian tree cover to shade the channel. In the same way as for
biodiversity offsetting29, the value of the credit–debt approach
depends in part upon how closely the reduction in one stressor
counteracts an increase in another. While closely related via
their impacts on oxygen stress, changes in temperature and
BOD will not have identical ecological effects, so offsetting will
inevitably be imperfect. This limitation is likely to increase where
the mechanistic link between stressors is weaker.

In the UK, it is difficult to judge how far into the future the
benefits of water quality credit may extend. By 2011, mean BOD
was 1.1 mg l−1, below the reference threshold of 2.4 mg l−1 for
much of Western Europe30, although BOD below this level still
affects invertebrate abundance31. Further reductions in BOD
may have limited capacity to offset increasing temperatures,
and we predict that further warming will lead to a reversal of
the trends of the past two decades and an increase in the per-
sistence and frequency of Class 3 polluted assemblages.

The Markov model and estimation of environmental lags
provide independent lines of evidence that benthic macro-
invertebrate communities were close to equilibrium at the
national scale, despite large environmental and biological chan-
ges. The potential for water quality to offset rising temperatures is
consistent with both experimental (e.g. ref. 23) and observational
(e.g. refs. 17,32) studies, but this is the first time that the debt and
credit have been quantified and directly compared in the field.
The expanded framework of climatic debts and environmental
credits can be applied to other systems in which reductions in

environmental stressors could, within limits, potentially mitigate
rising temperatures. Using common units to compare debts and
credits (°C) could make this a valuable tool for communicating
mitigation options among scientists, stakeholders, and policy
makers.

Methods
Overview of the methods. There were three parts to the study (Supplementary
Fig. 3): (i) collation of national-scale data sets for macroinvertebrate communities,
water chemistry, temperature, and discharge; (ii) classification of macro-
invertebrate communities into three types and specification of a Markov chain
transition model based on the probabilities of community state change through
time. This model was used to quantify how close communities were to equilibrium
with the environment (i.e. whether an environmental lag was present); (iii) com-
parison of observed long-term changes in abiotic conditions (primarily water
temperature and BOD) with those predicted from changes observed in community
structure, allowing an assessment of environmental debts, credits, and net lags.
All data analyses were carried out in R version 3.4 (ref. 33) and the fit of regression
models checked using plots of the residuals34.

Collation of biological and physico-chemical data. Macroinvertebrate data were
collected by the Environment Agency in the course of routine monitoring of rivers
across England and Wales over a period of many years. Locations were selected
from the Agency’s database if they: (i) had at least one instance in which they were
sampled in consecutive years so that annual transition probabilities could be
estimated for the Markov state transition model, below, and (ii) included the
elevation, channel slope, and distance from source of the location, as these are
effective proxies for physical habitat35.

To minimise spatial autocorrelation, we selected the most frequently sampled
location from each Water Framework Directive waterbody36, leading to 3067
locations (Supplementary Figs. 2 and 3). Our analyses focussed upon 1991–2011
because: (i) this was a period with good spatial and temporal coverage across
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Fig. 4 The concepts of climate debt, water quality credit, and the net environmental lag, and the estimated values for English and Welsh rivers 1991–2011.
a An increase in the observed (Obs) water temperature, not matched by an increase in the reconstructed (Rec) temperature, leads to a climatic debt
accumulating (Tdebt). b A decrease in the observed pollutant load that is not fully matched by an equivalent change in the community, hence by the
reconstructed pollutant load, generates water quality credit (WQcredit). In c water quality credit has been converted to an equivalent change in temperature
(see Supplementary Fig. 7), and the increase in water quality credit (blue) and climatic debt (red) are plotted against time, along with the net climatic lag
(black dashed line). In this example, credit > debt so that the net change is negative, representing a small water quality credit, despite rising temperatures.
d–f The observed accumulation of climatic debt (d) and water quality credit for BOD (e) across England and Wales; filled symbols represent the observed
conditions; open symbols the reconstructed conditions. f Climatic debt, water quality credit, and the net lag (filled points; black, dashed line). Regression
lines fitted using generalised least squares, with bootstrapped standard errors (see Supplementary Table 5 for full outputs of the regression models).
Source data are provided as a Source Data file
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England and Wales, and (ii) an extensive quality assurance procedure revealed a
near-constant error rate through time (see ref. 18). Sampling intensity varied
through space and time (mean= 948 locations sampled per year; Supplementary
Fig. 2a), but a similar subset of rivers was sampled in each year (Supplementary Fig.
2b). Where a location was sampled multiple times in the same year, one sample was
selected at random. This led to a final sample size of 19,915 samples, creating
14,343 annual transitions: a mean of 6.68 per site or 717.2 per year (Supplementary
Table 1).

Macroinvertebrate samples were taken in spring (March–May) using a standard
3-min kick sampling protocol37. Identification was primarily to family level: here
we follow the taxonomy of Vaughan and Ormerod19 (n= 78 taxa). Taxon
abundance was recorded either as counts of individuals or the log10 abundance
class to which each taxon belonged (e.g. 1–9 individuals or 10–99 individuals). To
harmonise the abundance data, we converted all data to log10 abundance classes
and recorded the abundance as the mid-point of that class (e.g. the class 1–9 was
recorded as 5.5). The classification and Markov model analyses below were run
with both presence–absence and abundance versions of the data: in the main paper
we focus upon the conservative presence–absence approach.

Water chemistry and temperature were recorded by the Environment Agency at
monthly intervals over the same time period as the biological sampling. In addition
to water temperature, we focused on three water quality determinants: BOD,
nitrate, and orthophosphate (sampled using standard methods18). Total oxidised
nitrogen was sometimes recorded in place of nitrate. However, because nitrate
often exceeded 99% of the total when both were recorded, we regressed nitrate on
total oxidised nitrogen (linear regression: n= 79,781, R2= 0.98) and used this to
impute missing nitrate values (n= 20,217; ref. 18). We filtered the data set to
remove locations that were immediately downstream of outfalls from sewage
treatment works or industrial discharges.

Median water chemistry and temperature were calculated at each location for
the 12 months prior to the spring biological sampling period (i.e. March–February
inclusive); years at a sampling site were rejected if they contained fewer than nine
monthly samples. This resulted in an initial data set with 10,790 locations (mean of
9.7 years per location; 1991–2011) with all four variables sampled. When >50% of
samples were below detection limits, annual medians were imputed at each location
using the method of regression-on-order-statistics (NADA package38).

Daily mean discharge data were sourced from the Centre for Ecology and
Hydrology’s National River Flow Archive. We used data from 943 stations across
England and Wales (mean= 19.3 years 1991–2011) and calculated annual median
discharge for the same 12 month periods as for chemistry. The discharge in m3 s−1

was divided by the catchment area and expressed in units of mm day−1 (ref. 39) to
give a standardised run off measurement that was independent of stream size
(catchment area).

Some of the biological locations corresponded with the chemistry and
hydrology, but most locations were a short distance apart. Fortunately, in most
cases chemistry and hydrology samples were collected nearby on the same
watercourse (mean distance= 3.8 km). We therefore interpolated water
temperature, water chemistry measurements, and discharge in every year using
local kriging with a 25 km neighbourhood (gstat package40). Measured or imputed
physical variables were available for >95% of biological sampling locations in each
year (mean= 2980 year−1). In all analyses, water chemistry and discharge were log
transformed.

Biological classification. Macroinvertebrate community composition varies along
a continuum in English and Welsh rivers18, so was divided into an arbitrary
number of similar-sized classes using cluster analysis. We repeated the analysis
with different clustering techniques and numbers of clusters to ensure that the final
conclusions were not sensitive to the choices made. We focus upon the simplest
approach using three classes because this provided the simplest interpretation and
maximised the sample size within each class to produce more consistent estimates
of transition probabilities (see below).

The 19,915 samples were classified using a hierarchical clustering method,
Ward’s method, and a non-hierarchical approach, partitioning around medoids
(cluster package41). Both methods utilise a dissimilarity matrix, and we calculated
Jaccard dissimilarities for presence–absence data and Bray–Curtis dissimilarities on
the abundance data. In total, there were 12 permutations: two clustering
algorithms, two distance matrices, and three, five, or seven cluster-groupings that
were analysed. Results are presented for the combination of Jaccard distance and
Ward’s clustering, but most analyses were re-run with the other permutations to
ensure that the results were not sensitive to this choice.

Temporal trends in the prevalence of the three biological classes across England
and Wales were estimated using a generalised additive model (GAM) following
Fewster et al.42. With the emphasis on annual transitions between classes, we fitted
year as a factor, rather than using a smoothing term. Due to the large number
(n= 3067) of relatively short and sparse time series, we used six site-level
covariates instead of fitting site as a factor18,42: altitude, slope, distance from source,
the proportion of the WFD catchment that had urban land cover (estimated from
the UK Land Cover Map 2000; ref. 43) and the longitude and latitude of the site.
The latter two were modelled using a tensor product of thin-plate smoothing
splines (mgcv package44). All variables except longitude and latitude were log+ 1
transformed to improve the fit of the model. Nonparametric bootstrapping was
used to estimate 95% confidence limits around the prevalence of each class42.

Markov state transition model. To capture dynamical properties of the system we
defined a Markov chain based on the annual probabilities of macroinvertebrate
communities remaining in the same class, or switching to another class in each
time step. Following Caswell45 and Hill et al.20, the analysis proceeded in two
stages: (i) we used a loglinear analysis to select a suitable model specification,
comparing alternative models in which transition probabilities were either fixed or
allowed to vary between different river types or through time; and (ii) we then
analysed the best-fitting model to calculate the expected frequencies of the different
classes at equilibrium, and the dynamic stability of the equilibrium.

Following Caswell45, we fit a hierarchy of models in which transition
probabilities are homogeneous across space and time, vary only in space or time, or
are allowed to vary across both space and time (Supplementary Methods). In this
study, space was represented by different river types, dividing the rivers into rural
and urban, or upland and lowland channels. In every case, transition probabilities
varied through time and among river types (loglinear analysis: all P < 0.001;
Supplementary Table 2a), but temporal differences in transition probabilities
among river types were weak: the space–time interaction was only significant
(at P < 0.05) in three out of eight instances and was strongly rejected by the AIC
model comparisons (Supplementary Table 2b). Based on the AIC, the model
containing space and time (but no interaction) was the optimal model in every
case. Addition of the interaction term greatly reduced the support for the model in
all eight cases (delta AIC > 70). These results suggest that while the prevalence of
the biological classes differed among river types, the temporal trends were similar.
As the focus of the study was primarily temporal (cf. spatial) change, and the mix
of upland–lowland and rural–urban rivers sampled was near-constant through
time (Supplementary Fig. 2b), the selected model assumed spatial homogeneity but
allowed transition probabilities to vary among years (n= 20 transitions).

The Markov model estimated the probabilities of macroinvertebrate
communities in each class (i.e. their current state) either remaining in the same
class or moving to a different class at each transition period (i.e. their fate). Three
properties were estimated from the Markov chain for each transition period: (i) the
prevalence of the three biological classes at equilibrium (=the stationary
community20); (ii) the proportion of communities remaining within the same class,
referred to as the persistence; and (iii) two measures of the convergence rate of the
community following disturbance: the damping ratio, ρ, which is the ratio of
the dominant eigenvalue to the second largest eigenvalue (popbio package46) and
Dobrushin’s coefficient, �α (ref. 47). The damping ratio measures the return time to
equilibrium following a small local perturbation, whereas Dobrushin’s coefficient
measures the rate of convergence of two communities that are in different non-
equilibrium states47. Return rates (year−1) for the two measures are calculated as
log ρ and −log�α (ref. 47). The mean absolute difference between the observed
prevalence of the biological classes and their equilibrium prevalence was used as a
simple measure of the system’s proximity to equilibrium.

Overall trends in transition probabilities and transition matrix statistics through
time were modelled using linear regressions fitted with generalised least squares
(GLS). In every case, the AIC was used to select between models including first-order
moving average and autoregressive error distributions, and a basic model without
a term for temporally autocorrelated residuals34. In every case, the simplest model
within two AIC units of the model with the lowest AIC was selected. Models were
fitted using the rms package, with standard errors estimated from 400 bootstraps48.

To synthesise the temporal changes in transition matrix statistics across all 12
permutations of the cluster analysis (two dissimilarity metrics × two clustering
methods × three, five, or seven clusters), we fitted mixed effects models using the
nlme package49. We fitted random slopes and intercepts, as well as first-order
autoregressive or moving average error terms, and selected the most parsimonious
model within two AIC units of the smallest AIC. The mean absolute difference
between the observed and equilibrium prevalence was log transformed to improve
model fit.

Estimating climatic debt and water quality credit. We estimated climatic debt
following Bertrand et al.8, calibrating transfer functions that allowed temperature
or water chemistry to be predicted from the observed macroinvertebrate com-
munity. The same approach is well-established in reconstructions of paleoclimates
(e.g. refs. 50,51). Transfer functions were created for water temperature and BOD,
the main focus of the debt and credit analyses. We also analysed air temperature
and a combination of orthophosphate, nitrate, and discharge, all three of which
were highly correlated (|r|= 0.62–66; n= 26,103). For air temperature, we used
mean annual values calculated for the same periods as water temperatures, cal-
culated from the UK Meteorological Office52. For water chemistry, we used the first
component from a principal component analysis containing the three variables
(explaining 75% of the variance). In all cases, we refer to the predicted conditions
as being reconstructed to distinguish them from direct empirical measures of
temperature or chemistry.

All biological samples from the 3067 sampling locations, for which kriged water
temperature, chemistry, and discharge were available, were used (n= 26,103). In
lieu of an independent data set for calibrating the transfer function, we used
samples from 1991 to 1992 to calibrate the models (n= 2751), which were then
used to make predictions for the complete data set (1991–2011) to reconstruct the
expected changes in the environment. In contrast to previous studies (e.g. ref. 8),
our transfer functions were calibrated during a period of known environmental and
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biological change18, when environmental lags may already have been present,
introducing potential bias into the transfer function6. We do not think that this was
a problem here because the system appeared to be close to equilibrium throughout
the study period (see Markov results). At worst, the results should indicate changes
in the relative, rather than absolute, environmental lags.

Transfer functions were created using weighted averaging partial least squares53

(WA-PLS), a well-established approach for historical climate reconstruction. WA-
PLS models were fitted with the rioja package54, using the log10 macroinvertebrate
abundance data. Leave-one-out cross-validation was used to select the model
complexity (number of components retained) and estimate the overall fit to the
1991–1992 training data54. For water temperature, we selected one component
(cross-validated R2= 0.15), and for BOD, three components (R2= 0.43). Air
temperature retained two components (R2= 0.43) and combined discharge and
nutrient concentrations retained three components (R2= 0.64).

Mean annual observed and reconstructed conditions were calculated across the
3067 locations, and the environmental lags estimated by subtracting the
reconstructed conditions from the observed values4. Climatic debt is defined as a
positive lag for temperature, with the observed temperatures rising faster than the
changes in the reconstructed temperature4. Extending this analogy, water quality
credit was defined as a faster improvement in the observed relative to the
reconstructed quality, producing a negative lag.

To allow a direct comparison of climatic and BOD lags, we converted BOD to
equivalent predicted water temperatures (Supplementary Fig. 7). We fitted a GAM,
regressing reconstructed temperature onto reconstructed BOD (n= 27,378) using a
penalised thin-plate regression spline, with the degree of smoothing selected using
generalised cross-validation44. The observed and reconstructed BOD were
converted to temperature equivalents using the fitted model and the BOD lag was
calculated in degrees Celsius. With the water quality lag expressed in Celsius, the
net environmental lag was estimated by summing the climatic and BOD lags. This
process was repeated using the discharge and nutrients principal component, and
air temperatures in place of water temperatures.

GLS models were used to test for trends in: (i) the observed and reconstructed
conditions, leading to estimates of climatic and water quality lags, and (ii) climatic,
water quality, and the net environmental lag, following the same protocol as for
transition probabilities (above). For the climatic and water quality lags, an
interaction term between year and type of time series (observed or reconstructed
conditions) was included to allow a different slope to be fitted to each one. Models
were fitted to (year – 1991), so that the time series started at zero, and the intercept
constrained to be the same for the two time series so that the estimated lag was zero
in 1991. In addition to assessing first-order structures for autocorrelated errors, we
assessed an error variance structure that allowed heterogeneity of variance among
the time series34. For the net environmental lags, intercepts were set to zero, so that
lags were zero at the start of the time series.

Finally, we re-fitted the GLS models for temperature, water chemistry, and net
environmental lags without constraints on the y-intercepts to check that this did
not strongly influence the results. For the combination of water temperature and
BOD, the results were similar, with a smaller net lag estimated compared to when
the y-intercept was fixed at zero (Supplementary Fig. 8; Supplementary Table 5).
Using air in place of water temperatures, a larger net water quality credit was
estimated, although still not significantly different from zero (Supplementary
Fig. 9). A combination of nutrients and discharge only offset a fraction of the
climatic debt (Supplementary Fig. 9), consistent with eutrophication having weaker
biological effects than BOD within the range of conditions typically encountered in
lowland Europe31.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The source data underlying Figs. 1, 2, 4d–f, Supplementary Figs. 1, 4–6, 8 and 9, and
Supplementary Tables 3–5 are provided as a Source Data file. The full data set, including
the biological classifications, is available from https://github.com/ivaughan/climatic_debt

Code availability
The R code to reproduce the analyses is available from https://github.com/ivaughan/
climatic_debt.
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