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(Menin et al. 2007, Tarli et al. 2014) have found that the 
similarity in species composition between sites is correlated 
with differences in soil texture and chemistry. However, 
most of these studies are conducted at relatively small spatial 
scales, and do not encompass multiple geological forma-
tions or the major rivers of Amazonia. Therefore, it is not 
known if results obtained at local spatial scales can explain 
the distribution of species at broad spatial scales. Recent 
studies found that the distribution of palm trees is strongly 
associated with soil texture at local spatial scales (Costa et al. 
2009), whereas soil chemistry (Tuomisto et al. 2003, 2014, 
Higgins et al. 2011, Kristiansen et al. 2012) and isolation 
by distance (Eiserhardt et al. 2011) are more important at 
broad scales. However, no single study was able to associate 
the distribution of species with geography and environmen-
tal conditions across multiple scales, and to demonstrate in 
which scale niche and neutral processes are more important 
for species distribution.

In this study, we measured at local and broad geo-
graphic scales how termite species richness and composi-
tion are associated with spatial predictors, the presence of 
rivers, and measures of climate, tree cover, soil texture, and 
soil chemistry. We hypothesized that local environmen-
tal conditions, such as soil clay content, would be strongly 
associated with changes in termite species composition at 
local geographic scales, whereas space, riverine barriers, and 
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The spatial distribution of species is affected by geographi-
cal barriers to dispersal, by the environment, and by the 
presence of competitors and predators. At large geographic 
scales, dispersal limitation is likely to affect the distribu-
tion of species with low dispersal capacity (Cadotte 2006, 
Thompson and Townsend 2006). In contrast, at small geo-
graphic scales species are less limited by dispersal, and show 
stronger associations with biotic and abiotic conditions than 
with geographic isolation (Hurtt and Pacala 1995, Hubbell 
2005). Despite the importance of both dispersal limitation 
and the environment to species richness and species com-
position (Leibold et al. 2004, Cadotte 2006), few studies 
in Amazonia have attempted to determine their effects on 
species distribution at broad and local geographic scales.

In Amazonia, the distribution of vertebrates has been 
associated with the presence of geographical barriers to 
dispersal, such as large rivers (Ribas et al. 2011, Pomara 
et al. 2014, Boubli et al. 2015, Dias-Terceiro et al. 2015). 
However, other taxa with higher dispersal ability, such as 
plants (Tuomisto et al. 2003, Kristiansen et al. 2012, Pomara 
et al. 2014) and many insects (Penz et al. 2015), are unlikely 
to be limited in their dispersal by rivers. These taxa should be 
more strongly associated with local environmental conditions 
than with geographic distance or the presence of barriers.

Several studies of Amazonian plants (Tuomisto et al. 
2003, Costa 2006, Kristiansen et al. 2012) and animals 
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climate would be associated with changes in species compo-
sition at broad geographic scales.

Termites are among the most abundant animals in 
tropical forests (Fittkau and Klinge 1973). Termite species 
can be strongly associated with climate at broad geographic 
scales (Cancello et al. 2014), and with edaphic conditions 
and vegetation at local scales (Davies et al. 2003, Roisin 
and Leponce 2004). However, in contrast to many verte-
brate taxa studied in Amazonia, reproductives of termite 
species can form large swarms and disperse very long dis-
tances (Wilfert et al. 2006). Over the past 52 Ma, termite 
lineages have dispersed multiple times across continents 
followed by in situ diversification (Bourguignon et al. 
2014). Despite the transcontinental distribution of sev-
eral termite genera (Bourguignon et al. 2014), termites are 
mostly restricted to tropical forests (Bignell et al. 2011), 
and climate is likely to play an important role in their 
distribution at broad scales.

Material and methods

Study area

The area of termite sampling encompassed an extent of 
271 500 km2 of the Brazilian Amazonian rainforest (Fig. 1),  
and included three climate types: Tropical Rainforest 
Climate (Af ), Tropical Monson Climate (Am), and Tropical 
Savanna Climate (Aw; Peel et al. 2007). The study area cov-
ers a gradient in annual precipitation from ∼ 1800 mm in 
the southern and the northern areas to ∼ 2000 mm in cen-
tral areas. The vegetation in the field sites is predominantly 
characterized by dense evergreen forests, but also includes 
savannas, campinaranas (open forests), and small areas of 
lowland forests subject to periodical flooding ( 5% of total). 

Elevation ranged from 32 to 145 m a.s.l. (mean  84), and 
soil clay content ranged from  0.5 to 87% (mean  34%).

Sampling design and data collection

Termites were sampled between December 2008 and 
September 2014 in 199 250 m long transects (sampling 
units) grouped in 13 regular grids (Fig. 1). Grids and 
transects were previously established by the Long Term 
Ecological Research project aiming at the collection and 
comparison of multiple taxa (Magnusson et al. 2005). Each 
grid had from five to 31 transects. Transects were separated 
by at least 1 km from one another, and followed an eleva-
tion isocline to minimize variation in edaphic conditions 
within each transect. Transects were established at least  
10 m away from the nearest walking trail. One transect was 
flooded during sampling, but termites were not found on 
tree tops above the water level, so we removed the transect 
from analyses (n  198).

Along the central line of each transect, five equally-spaced 
5  2 m sections were surveyed for termites (modified from 
Jones and Eggleton 2000). In 60 transects, five additional 
sections per transect were surveyed, and in 28 transects, 
seven additional sections were surveyed, for a total of 
1486 sections surveyed. In each section, three investigators 
searched for termites for 20 min, yielding 1 h of sampling 
per section, and a total of 1486 h of sampling for the entire 
study. Each section was thoroughly searched for termites in 
the soil, fallen logs, small branches, standing trees, and nests. 
Nests in trees above 2 m were not surveyed. The number 
of transects and sections sampled within each transect were 
defined to maximize the power of the statistical tests used 
in this study (Supplementary material Appendix 1, Text A1, 
Fig. A1).

Figure 1. Location of sampling grids and transects (black circles) in the Brazilian Amazonian forest. Colors represent distinct biogeographic 
regions delimited by the major rivers in the Amazonian forest previously associated with the distribution of several vertebrate taxa (Ribas 
et al. 2011, Pomara et al. 2014, Boubli et al. 2015, Dias-Terceiro et al. 2015). Numbers represent the number of transects sampled in 
individual grids. Five 5  2 m sections were sampled in each transect. Grey areas represent biogeographic regions within Brazilian Amazonia 
not surveyed in our study.
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Termite soldiers and workers were hand-collected and 
stored in 4 ml containers filled with 95% EtOH. Voucher 
specimens of all species are deposited in the Entomological 
Collection of the National Inst. of Amazonian Research 
(INPA), Manaus, Brazil. Termites were sorted to genus 
following Constantino (1999), and then to species or 
morphospecies by comparison with species descriptions 
and material deposited in the Entomological Collection of 
INPA.

We assigned each termite species to one of three feeding 
guilds following Donovan et al. (2001), Davies et al. (2002) 
and Davies et al. (2003): wood feeders, soil feeders, or 
leaf-litter feeders. Termite species richness and composi-
tion were analyzed as a whole, and separately for wood and 
soil feeding termites. Leaf-litter feeders comprised a small 
fraction of species, and were not analyzed separately from 
other groups.

At the transect level, we analyzed termite community 
structure with predictor variables of mean annual tempera-
ture, mean annual precipitation, altitude, tree cover, soil clay 
content, and soil nutrients of P, Ca2, K, and Mg2. Mean 
annual temperature and precipitation were obtained at the 
0.5 arc min resolution (∼ 1 km) from bioclim (Hijmans 
et al. 2005). Other climatic variables available in bioclim, 
such as monthly average temperature and precipitation, are 
correlated with mean annual temperature and precipitation, 
and were not included in our analyses.

Altitude data for each transect were obtained in 90 m 
resolution rasters from The Global Land Survey Digital 
Elevation Model (GLSDEM; USGS 2008), provided by 
The Global Land Cover Facility (GLCF), Univ. of Maryland 
(< www.landcover.org >). In the study region, altitude data 
originated primarily from images from the Shuttle Radar 
Topographic Mission (SRTM; NSF OpenTopography 
Facility 2013). Altitude data obtained from remote sens-
ing were strongly correlated with in situ measurements 
obtained from a GPS device placed along the central line of 
each transect (r  0.89; n  90). Because SRTM data were 
available for all our transects, only SRTM data were used 
in our models. Percentage of tree cover was also obtained 
from GLCF at a 30 m resolution scale (Sexton et al. 2013). 
Tree cover in each transect was calculated as the average tree 
cover in a radius of 90 m around the starting point of each 
transect.

Soil nutrients and soil texture were obtained for most 
transects (n  147) from previous surveys (< http://ppbio.
inpa.gov.br >). For soil measurements, five soil samples were 
collected at a depth of 5 cm at 50 m intervals along each 
transect, pooled, and analyzed for texture and soil chemistry. 
Before analysis, soil samples were cleaned of roots, air-dried, 
and sieved through a 2 mm sieve. Soil texture analyses were 
conducted at the Soil Laboratory of the Agronomy Dept at 
INPA and chemical analyses at the Soil Laboratory of the 
Brazilian Enterprise of Research of Livestock and Agriculture, 
Manaus (Embrapa 1997).

Transects with in situ measurements of soil nutrient 
and texture were distributed in central, northern, and 
southern Amazonia. To include transects with missing soil 
data (25% of transects), we inputed missing soil data into 
transects by randomly selecting observed values from other 
transects. Although this procedure adds noise to the data, 

and potentially reduces the power of the tests, it does not 
increase type I error rates. To confirm that data inputation 
did not affect our ability to detect an association between soil 
variables and termite community, all analyses were re-run 
considering only transects in which soil data were available.

To investigate the association of riverine barriers with 
termite community structure, we assigned each transect 
to one of five biogeographic regions from which four were 
previously defined by Ribas et al. (2011): 1) Guiana – west –  
northern of Negro river and west of Branco river; 2)  
Guiana – east – northern of Negro river and east of Branco 
river; 3) Negro – southern of Rio Negro and northern of 
the Amazon river; 4) Inambari – southern of the Amazon 
river and western of the Madeira river; and 5) Rondonia – 
southern of the Amazon river and eastern of the Madeira 
river. These regions are bounded by the major rivers in 
Amazonia and have been associated with the composition 
(Pomara et al. 2014, Dias-Terceiro et al. 2015) and diversifi-
cation (Ribas et al. 2011, Boubli et al. 2015) of several ver-
tebrate taxa. The vector representing the five biogeographic 
regions was included as a categorical predictor variable in 
regression (ANCOVA) and RDA models (see Data analysis 
section for details).

In Amazonia, variation in environmental conditions is 
usually more strongly associated with geographic distance 
than the presence of rivers (Pomara et al. 2014). The weak 
association between riverine barriers and the environment 
usually allows separating the effects of riverine barriers and 
edaphic conditions on species distribution (Higgins et al. 
2011, Pomara et al. 2014).

Data analysis

Because the number of sections sampled in each transect 
ranged from five to 12, we rarefied the termite data on those 
transects in which more than five sections were sampled. 
For each termite species in each transect, we calculated the 
species abundance and probability of occurrence (presence) 
expected in a random draw of five sections per transect. We 
provide details on rarefaction calculations in Supplementary 
material Appendix 1, Text A2. Therefore, the sampling effort 
per transect may differ from other studies focusing on the 
taxonomic representation of termites in a single area, or in 
which fewer transects were sampled (Jones and Eggleton 
2000, Davies et al. 2003).

Termite species richness per transect was calculated as the 
average species richness that would be achieved by sampling 
five sections per transect. To quantify the turnover in termite 
species composition, we calculated the Bray–Curtis dissimi-
larity index between all pairs of transects based on the matrix 
of average species occurrences per transect (  the probabil-
ity of sampling a given species in a transect when sampling 
five sections). Virtually the same results were obtained per-
forming the same analyses using only five randomly selected 
sections per transect. Additionally, the Bray–Curtis dissimi-
larity index between pairs of transects was decomposed into 
the balanced variation and abundance components (Baselga 
2013). Different ecological processes generate patterns 
of species abundance and species replacements (balanced 
component). Abundance gradients can be associated with 
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environmental variables (Legendre and Gauthier 2014). If 
all relevant environmental data are included, spatial statisti-
cal analyses can be used to disentangle the effects of environ-
mental variables on species distribution from species spatial 
distribution not caused by the environment. When control-
ling for spatial autocorrelation, spatial statistical analyses also 
correct for type I error rates which can be inflated by the 
lack of independence of samples (Peres-Neto and Legendre 
2010). Because we were interested in the spatial distribution 
of species caused both by environmental variables and by 
historical processes that may include dispersal, we included 
Moran Eigenvector Maps (MEMs) based on the geographical 
location of the sampled transects as explanatory variables in 
our models (Peres-Neto and Legendre 2010; see detailed 
information on MEMs construction in Supplementary 
material Appendix 1, Text A3).

The MEM analysis generated 197 vectors representing 
spatial autocorrelation from local to broad scales which 
could be used individually as covariates in regression models. 
To reduce the number of spatial predictors in our models, we 
selected only those MEMs with significant spatial structure 
as suggested by Dray et al. (2012) and Griffith and Peres-
Neto (2006). We determined the significance of MEMs 
by comparing the observed Moran’s I index of each MEM 
with expectations based on a Monte Carlo randomization 
(Dray et al. 2006, 2012, Griffith and Peres-Neto 2006). 
Additionally, we selected only those MEMs with high explan-
atory power for a given response variable by performing a 
forward selection of MEMs based on the adjusted R2 values 
(Peres-Neto and Legendre 2010). Because different vectors 
can have distinct explanatory power for each measure of the 
termite community, forward selection was conducted inde-
pendently for termite species richness and the Bray–Curtis 
dissimilarity index representing changes in termite species 
composition. Finally, we divided MEMs into vectors repre-
senting local and broad scale spatial autocorrelation. Local 
and broad scale MEMs were defined by having small or large 
associated eigenvalues (Dray et al. 2006, 2012, Griffith and 
Peres-Neto 2006).

The selected MEMs were incorporated as covariates in 
regression and db-RDA analyses along with environmen-
tal variables and the biogeographic positioning of transects.  
We used variance partitioning to separate: 1) variation in 
species distribution explained uniquely by the environment 
(E), 2) variation in species distribution explained uniquely 
by spatial autocorrelation, possibly caused by neutral pro-
cesses (S), 3) variation in species distribution associated 
uniquely with the biogeographic positioning of transects 
(BG), 4) variation explained jointly by the environment, by 
spatial autocorrelation, and by biogeographic region (E  S, 
BG  S, E  BG, and E  S  BG), and 5) unexplained or 
residual variation in species distribution (R). Spatial variance 
was further partitioned into variance explained by local and 
broad scale spatial autocorrelation.

To partition the variance into broad and local-scale 
components, we first fitted regression and RDA models 
using only broad-scale or local-scale MEMs as predic-
tor variables. The residuals from these models were then 
regressed against environmental variables and MEMs that 
were not included in the initial models. Broad-scale MEMs 
represent all possible broad-scale spatial structure present in 

differences in productivity between areas, or dispersive pro-
cesses over limited geographical ranges. In contrast, neutral 
processes and ecological sorting over large areas should only 
be associated with the balanced component of beta diversity 
(Svenning et al. 2011).

We performed multiple linear regression analyses using 
species richness as response variable, and a distance-based 
redundancy analysis (db-RDA) using the Bray–Curtis dis-
similarity index as a response variable representing termite 
species composition. Similar results were obtained by using 
a db-RDA analysis on the abundance balanced compo-
nent of the Bray–Curtis index of species dissimilarities 
(Supplementary material Appendix 1, Fig. A2), or a RDA 
analysis on the Hellinger transformed species occurrence 
data (results not shown). RDA analyses using the Hellinger 
transformation have relatively high statistical power to detect 
associations of species composition and environmental 
variables, and is commonly used (Legendre and Gallagher 
2001).

To separate the effects of environmental variables and 
riverine barriers on termite species richness and composi-
tion, we included the vector representing the biogeographic 
region of transects as a covariate into the regression and  
db-RDA models. We used variance partitioning to deter-
mine the amount of variance in termite species richness and 
species composition uniquely associated with environmental 
variables and with the biogeographic region of transects.

Similar to other constrained ordination methods, RDA 
analysis can be problematic due to arch effects (Palmer 
1993). As an alternative to db-RDA, we performed a  
Non-Metric Multidimensional Scaling (NMDS) with two 
dimensions on the Bray–Curtis dissimilarity matrix. We 
then used the scores from NMDS as response variables in 
multiple regression analyses. The results from the regressions 
using the NMDS scores were very similar to the results from 
the db-RDA analysis.

Altitude was correlated with mean annual temperature 
(r  0.49; p  0.001) and mean annual precipitation 
(r  0.56; p  0.001) and was not included in regression 
and RDA models. Mg2 was correlated with K (r  0.56; 
p  0.001) and Ca2 (r  0.50; p  0.001). The concen-
tration of these nutrients was combined, and we used the 
total concentration of exchangeable cations in the soil as 
a response variable (see Tuomisto et al. 2014 for a similar 
approach). The remaining variables were weakly correlated 
to each other (r  0.4) and were used as independent pre-
dictor variables. Because species usually show a stronger 
response to the increase in soil nutrients at low soil nutrient 
content (Tuomisto et al. 2014), P and soil cations were log 
transformed prior to the analyses.

Controlling for spatial autocorrelation and spatial 
structure on termite community

Over large areas, ecological communities show strong spatial 
autocorrelation (Koenig 1999): areas close to each other 
exhibit similar composition of species. Spatial autocor-
relation in biological communities can result from neutral 
processes, such as random dispersal, and deterministic pro-
cesses, such as the species responses to spatially structured 
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to perform significance tests on MEMs were created spe-
cifically for this study, and are available at < https://dx.doi.
org/10.6084/m9.figshare.1319582.v10 >. We provide a  
step-by-step document explaining community level analyses 
conducted in R (Supplementary material Appendix 2). We 
made all termite data publicly available at < https://dx.doi.
org/10.6084/m9.figshare.1319582.v10 > under Creative 
Commons – BY license (free to use and distribute). Links for 
downloading termite data and R functions are also provided 
in Supplementary material Appendix 2.

Results

We found a total of 271 termite species or morphospecies 
in 4389 colonies. Termite species richness per transect was 
higher in the relatively colder and dryer areas of southern 
(Brazilian shield; S  13.4  3.5) and northern Amazonia 
(Guiana shield; S  11.8  3.1) than in central Amazonia 
(S  9.2  2.8; ANOVA test: p  0.01).

Termite species richness and species composition 
had a strong spatial structure at broad geographic scales 
(R2

rich  0.47; R2
dbRDAspace:broad  0.23), but were not spa-

tially structured at local geographic scales (R2
rich  0.09; 

R2
dbRDAspace:local  0.01), as quantified by regressions and db-

RDA analyses of termite species richness and composition 
against broad- and local-scale MEMs. After we removed 
broad scale spatial autocorrelation, most of the remaining 
variation in termite species richness (93%) and species com-
position (94%) was variation within the sampling grids.

When all variables were included in the regression model, 
twenty two percent of the variation in termite species rich-
ness could be explained either by spatial variation at broad 
geographic scales (broad scale MEMs) or by environmental 
variables with broad scale spatial autocorrelation (adjusted 
R2 values; Fig. 2A). Although termite species richness was 
higher in areas with high concentration of soil cations 
(r  0.25) and low mean annual temperature (r  –0.40) 
and precipitation (r  –0.28), only precipitation was asso-
ciated with a reduction in termite species richness when 
spatial autocorrelation was controlled for (Supplementary 
material Appendix 1, Table A1). Despite the association of 
environmental variables with termite species richness, 27% 
of the variation in species richness could be explained only 
by spatial predictors associated with geographic distance 
(MEMs), but not accounted for by the environment or by 
biogeographic regions delimited by major rivers (Fig. 2A).

The composition of termite species quantified by RDA 
and NMDS analyses was similar in adjacent regions separated 
by major rivers (Inambari and Guiana (east) in Fig. 3A). 
In contrast, areas separated by large geographic distances 
had distinct species composition (Guiana (west), Negro, 
and Rondonia regions in Fig. 3A). Most of the broad-scale 
variation in termite species composition could be explained 
either by spatial predictors or differences in environmental 
conditions between regions (Fig. 2B, Fig. 3B). Termite species 
composition was associated with mean annual temperature 
(rCAP1  –0.27; rCAP2  0.48), precipitation (rCAP1  –0.68; 
rCAP2  0.19), clay content (rCAP1  –0.29; rCAP2  –0.43), 
and P (rCAP1  0.25, rCAP2  0.30; Fig. 3B). However, only 

the data (Dray et al. 2012). Therefore, when the effect of 
broad-scale MEMs is removed from response variables, only 
local-scale variation (e.g. within grids and between neigh-
boring transects) should remain. This residual variation can 
be explained by environmental variables with local variation 
or local scale spatial autocorrelation, or remain unexplained 
(R). The advantage of using variance partitioning instead of 
conducting analyses at the metacommunity and grid scales 
separately is that MEMs represent spatial scales continuously 
from local to broad scales. Moreover, because MEMs already 
control for spatial autocorrelation, type I error rates are not 
inflated (Peres-Neto and Legendre 2010).

In addition to community-level analyses, we performed 
pairwise comparisons of congeneric species to determine 
if their range of distributions were bounded by rivers. For 
these analyses, eight termite genera were selected: Syntermes, 
Cornitermes, Neocapritermes, Termes, Cylindrotermes, 
Anoplotermes, Ruptitermes, and Rhinotermes. All selected gen-
era have multiple species occurring in at least two sampling 
grids each. These genera represent the two families found 
(Termitidae and Rhinotermitidae) and multiple subfamilies, 
and include species with a wide range of nesting and feeding 
habits, such as soil-feeding (e.g. Anoplotermes) and wood-
feeding termites (e.g. Cylindrotermes), that could potentially 
differ in the capacity to disperse across rivers. Species occur-
ring in only one sampling grid were not included in pairwise 
comparisons.

Geographic barriers to dispersal associated with allopatric 
speciation can cause congeneric species to be spatially seg-
regated (Ribas et al. 2011). To test if the co-occurrence of 
congeneric species was lower than expected, we counted the 
number of sampling grids in which individual pairs of conge-
neric species co-occur. The mean co-occurrence within genera 
(MC) was then calculated, and MC compared against expec-
tations from a null model. The null model randomly assigned 
species into genera while maintaining the number of species 
per genus and the occurrence of individual species in grids 
constant. The randomization was repeated 999 times (N) 
and MC recalculated in each randomization. P-values were 
calculated as the frequency with which the co-occurrence of 
congeneric species in the null model (MCnull) was lower or 
equal to the observed co-occurrence (Mcobs; one-tail test):

p
MC MC

N

null i obs
i

N

=
≤( ) +

+
=
∑ |

1

1

1
The null model used here is analogous to those commonly 
used for phylogenetic analyses of species co-occurrence in 
which species labels are reshuffled in a phylogeny (Webb 
2000). Therefore, using a taxonomic tree with two levels 
would produce similar results.

We conducted all analyses in the R program (R 
Development Core Team). Altitude and tree cover data were 
extracted from raster files using the raster package (Hijmans 
and Etten 2013). We used the spdep (Bivand 2013) and 
spacemakeR (Dray 2013) packages to create the connectivity 
matrix between grids using a Gabriel graph, and to calculate 
MEMs. db-RDA, RDA, NMDS, and variance partitioning 
analyses were performed by using R code modified from 
Dray et al. (2012), and functions from the vegan package 
(Oksanen et al. 2008). Moran’s I and bootstrap functions 
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more topographically complex areas of western Amazonia 
(Gascon et al. 2000, Tuomisto et al. 2003, Higgins 
et al. 2011, Kristiansen et al. 2012, Pomara et al. 2014).  
Those studies have shown that the distribution of plants is 
mostly associated with soil chemistry (Tuomisto et al. 2003, 
Higgins et al. 2011), whereas vertebrate distribution can be 
affected by barriers to dispersal, particularly rivers (Pomara 
et al. 2014). In our study of termite assemblages in central, 
northern, and southern Amazonia, soil clay content was 
strongly associated with changes in species composition 
at local scales (Fig. 3D). However, at broad spatial scales, 
temperature, precipitation, soil bases, and isolation by dis-
tance were also strong predictors of species richness and 
composition (Fig. 3B).

Broad-scale climatic associations are often found 
for terrestrial taxa (Hawkins et al. 2003, ter Steege et al. 
2010, Cancello et al. 2014). However, the correlations for 
Amazonian termites are the reverse of the typical: termite 
species richness was higher in relatively colder and dryer 
areas of southern and northern Amazonia. In exposed 
habitats such as savannas, surface temperatures of soil, 
leaves, and other unshaded microhabitats can be very high 
(Kaspari 1993), which can suppress termite activity (Smith 
and Rust 1994). Termite richness is also lower in areas of 
high seasonal precipitation and areas that are periodically 
flooded (Dawes-Gromadzki and Spain 2003). The lack of 
association of termite species composition with climate at 
local spatial scales could result from the low resolution of 
measures of temperature and precipitation at these scales 
(Bedia et al. 2013). Despite the possible direct effects of 
climate on termite species distribution, climatic variables 
had low variation in our study area, and the negative asso-
ciation of termites with temperature and precipitation likely 
resulted from the effect of other variables correlated with 
climate.

The relatively colder and drier areas with high termite 
species richness in our study coincide with the Guiana and 

precipitation, clay content, and P were significantly associated 
with termite species composition when spatial variation was 
partialed out in dbRDA analyses (Fig. 3D). Spatial predictors 
(broad-scale MEMs) alone explained more variation in ter-
mite species composition than did environmental predictors 
alone (R2

dbRDAspace|env riv  0.04; R2
dbRDAenv|space riv  0.02). 

The presence of major rivers alone explained less variation 
in termite species composition than environmental variables 
or spatial predictors alone (R2

dbRDAriv|env space  0.01). Results 
from NMDS analyses provided similar results to dbRDA 
analyses (R2

NMDSspace|env riv  0.14; R2
NMDSenv|space riv  0.05; 

R2
NMDSriv|space env  0.02; Fig. 2B; Supplementary material 

Appendix 1, Fig. A3).
The turnover in termite species composition with soil  

clay content and P was associated with the differential 
response of soil and wood-feeding termites to these gradi-
ents. The species richness of soil-feeding termites was higher 
in areas of high soil clay content (b  0.56; p  0.001), 
whereas the species richness of wood-feeding termites was 
higher in areas of low soil clay content (b  –0.26; p  0.01) 
and high P (b  0.44; p  0.001). The species richness of 
soil-feeding termites was also higher in areas with high con-
centration of soil bases (b  0.66; p  0.001), and differed 
in southern (S  7.8  2.7), northern (S  5.8  3.36), and 
central Amazonia (S  3.94  2.3; ANOVA test: p  0.01).

When termite species were analyzed individually, no 
termite species had a range of distribution clearly bounded 
by the major rivers included in our study. Moreover, there 
was no evidence that congeneric species co-occur less than 
expected by chance (p  0.88).

Discussion

In spite of a rich literature on the drivers of species distri-
bution in Amazonia, most previous studies have been of 
vertebrates and plants, and most have been conducted in the 

(A) (B)

Figure 2. Variance in termite species richness (A) and composition (B) explained (R2) by biogeographic region, environmental variables,  
and spatial predictors. Species composition was measured as two axes of non-metric multidimensional scaling (NMDS) analysis using the 
Bray–Curtis dissimilarity index. To represent riverine barriers, each sampled transect was assigned to one of five biogeographic regions 
delimited by the major rivers in the Amazonian region. Spatial predictors were represented by Moran eigenvector maps based on the 
geographical distance between transects. db-RDA and non-metric multidimensional scaling (NMDS) analyses provided very similar 
results.
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exhibit sharp discontinuities in species composition along 
edaphic gradients. These discontinuities are associated  
with changes in soil types and cannot be explained by 
differences in climate or by the presence of geographical 
barriers to dispersal (Higgins et al. 2011). Although the 
number of sampling grids in our study was too small to 
capture abrupt discontinuities, it is likely that both climate 
and soil type affected the distribution of termite species 
(Davies 2002, Davies et al. 2003, Cancello et al. 2014). 
Moreover, more than 27% of the variation in termite spe-
cies richness and composition could be explained only by 
the geographic separation between areas, and not by soil 
type or climate.

The distinct composition of species in distant areas can 
result from unmeasured environmental variables or reflect 
dispersal limitation and historical effects (Legendre and 
Gauthier 2014). Spatially structured environments are often 

Brazilian shields in the north and south. These ancient 
geological formations have higher content of soil bases than 
more recent sedimentary formations of central Amazonia 
(Quesada et al. 2011). In our study, termite species rich-
ness and composition varied with soil bases, especially for 
soil-feeding termites. Soil-feeding termite species (e.g. 
Anoplotermes spp.) were much more common in areas 
with high soil bases, whereas other termite species (e.g. 
Cylindrotermes spp. and Neocapritermes braziliensis) occurred 
slightly more in areas of low soil bases.

Previous termite studies also found a higher incidence of 
soil-feeding termites in northern Amazonia (Davies 2002, 
Davies et al. 2003) than in central Amazonia (Ackerman 
et al. 2009). Similar changes in species composition along 
soil gradients have also been observed for plants in west-
ern Amazonia (Higgins et al. 2011) and central Amazonia 
(Lehtonen et al. 2015). In western Amazonia, plants 

(A) (B)

(C) (D)

Figure 3. Biplot based on a distance-based redundancy analysis (db-RDA) representing the association of termite species composition 
(response variable) and environmental variables (predictor variables) before (A–B) and after (C–D) the removal of spatial structure on 
termite data. Termite species composition was measured using the Bray–Curtis dissimilarity index (summarized in PCoA axes in db-RDA 
analysis). Polygons in (A) and (C) represent clusters of transects delimited by the major rivers in Amazonia. Temp: mean annual temperature; 
Prec: mean annual precipitation. Spatial predictors (197 MEMs) are not shown in (A) and (B) for clarity.
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