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in homogeneous turbulence
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Modeling the response of interacting particles, droplets, or bubbles to subgrid-scale
fluctuations in turbulent flows is a long-standing challenge in multiphase flow simu-
lations using the Reynolds-Averaged Navier-Stokes approach. The problem also
arises for large-eddy simulation for sufficiently small values of the Kolmogorov-scale
particle Stokes number. This paper expands on a recently proposed stochastic vortex
structure (SVS) method for modeling of turbulence fluctuations for colliding or
otherwise interacting particles. An accelerated version of the SVS method was devel-
oped using the fast multipole expansion and local Taylor expansion approach, which
reduces computation speed by two orders of magnitude compared to the original SVS
method. Detailed comparisons are presented showing close agreement of the energy
spectrum and probability density functions of various fields between the SVS compu-
tational model, direct numerical simulation (DNS) results, and various theoretical and
experimental results found in the literature. Results of the SVS method for particle
collision rate and related measures of particle interaction exhibit excellent agreement
with DNS predictions for homogeneous turbulent flows. The SVS method was also
used with adhesive particles to simulate formation of particle agglomerates with
different values of the particle Stokes and adhesion numbers, and various measures
of the agglomerate structure are compared to the DNS results. Published by AIP
Publishing. [http://dx.doi.org/10.1063/1.4966684]

I. INTRODUCTION

Particle collision and agglomeration play an important role in a wide range of turbulent flows
applications involving small particles or droplets. Droplet collision is a key element to cloud forma-
tion and precipitation development (Devenish et al., 2012). Particle agglomeration is particularly
important in aerosol flow problems, such as fly ash collection from combustion processes (Xu et al.,
2010), flame-synthesis of nanoparticles (Zhang et al., 2012), cyclone particle separators (Paiva
et al., 2010), and snow crystal formation (Kajikawa et al., 2000), for which adhesive particles have
Stokes numbers sufficiently close to unity that they display significant drift relative to the fluid
trajectories. Agglomerate formation is preceded by particle collision, where the particle collision
rate is controlled either by the fluctuating turbulent shear flow (for smaller size particles) or by
particle inertia (for larger particles). The fluctuating turbulent shear stress also controls agglomerate
breakup (Serra et al., 1997 and Higashitani et al., 2001). Over long time, the distribution of parti-
cle agglomerate sizes is determined by a balance between influences increasing collision rate and
influences enhancing agglomerate breakup.

A wide variety of turbulence models have been developed using the Reynolds-averaged Navier-
Stokes (RANS) approach, ranging from the popular two-equation models, such as k − ε and k − ω,
to full Reynolds stress models. RANS models yield numerical predictions for the mean turbulent
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velocity field as well as for certain averaged quantities associated with the Reynolds stress tensor.
However, additional modeling is required for RANS simulations to account for the role of turbulent
fluctuations on particle transport. A similar need for subgrid-scale modeling of turbulent fluctua-
tions arises for large eddy simulations (LES) when the Kolmogorov-scale Stokes number is less
than a critical value of about three (Jin et al., 2010).

While numerous effective methods are available to simulate the effect of subgrid-scale fluctua-
tions for transport of non-interacting particles (e.g., Wilson and Sawford, 1996; Loth, 2000; Minier
et al., 2014; and Pope, 2011), turbulent subgrid-scale simulation for interacting particles remains an
unresolved modeling challenge. There are a number of reasons why subgrid-scale modeling for in-
teracting particles poses difficulties. First, the mechanics of interacting particles depends sensitively
on the distance between the particles at small values of separation. Particles that are sufficiently
close to each other experience highly correlated fluid velocities induced by the nearby turbulent
eddies. Models which employ independent (uncorrelated) stochastic forcing at each particle conse-
quently cannot be used for interacting particles. Second, particle collision and adhesion processes
occur on very small time scales, which makes the numerical simulation of colliding and adhesive
particles numerically stiff. This is particularly a problem for simulations using the soft-sphere
discrete element method (DEM), which is usually necessary for dealing with particle agglomerates
that form upon collision of adhesive particles. Consequently, small time steps must be taken for the
particle transport and the subgrid-scale turbulent fluctuation modeling must be sufficiently fast for
the computation to be manageable. Third, the eddy structures of the turbulent flow play an important
role both in dispersing particles and in inducing clustering in the region in-between the eddies
(Squires and Eaton, 1991; Bec et al., 2007; Grits et al., 2006; and Falkovich and Pumir, 2004).
Eddy-induced particle clustering leads to formation of regions of high particle concentration within
the turbulence, which dramatically increases particle collision rate and agglomerate sizes (Sun-
daram and Collins, 1997; Zaichik et al., 2006; and Reade and Collins, 2000). Particle preferential
concentration has particularly interesting consequences in bidisperse flows involving particles that
are both heavier and lighter than the fluid, such as heavy particles and bubbles in a liquid (Fayed,
2013 and Fayed and Ragab, 2013), for which case the heavy particles cluster in the high shear re-
gions in-between the eddies and the light particles (bubbles) cluster within the turbulent eddies. As a
consequence of the issues of computation time and preferential concentration, many of the synthetic
turbulence approaches that have been developed for reconstruction of initial or inlet conditions in
large-eddy simulations (Kraichnan, 1970; Smirnov et al., 2001; Tabor and Baba-Ahmadi, 2010; and
Lund et al., 1998) are not useful for subgrid-scale modeling of flows with interacting particles.

Clustering of non-adhesive particles in turbulent flows is largely due to inertial particle drift
across curved fluid streamlines associated with the presence of turbulent eddies (Squires and
Eaton, 1991). A vortex structure representation of the turbulent flow consequently presents a nat-
ural approach for capturing this effect in the turbulence model. Of course, vortex-based struc-
tural models have long been discussed in the turbulence flow literature. Notable among these
are Townsend’s (1951) model of homogeneous turbulence as a collection of Burger’s vortices
and Lundgren’s (1982) spiral vortex model of turbulence. The scaling and structure of coherent
vortices were examined by Jiménez et al. (1993) in homogeneous turbulence based on results of
high-resolution direct numerical simulations (DNSs) and by Berlin et al. (1996) in a turbulent shear
flow using experiments with low-temperature helium gas. Both studies found that the vorticity field
for low Reynolds number turbulence is dominated by a set of strong, coherent vortex structures of
finite length and with tubular shape, surrounded by a sea of weak random (non-coherent) vorticities.
The length and core radius of the coherent vortices were found to scale with the integral length scale
and the Kolmogorov length scale, respectively, and the vortex strength was found to scale with the
square root of the microscale Reynolds number. Analysis of the Townsend and Lundgren models
was given by Pullin and Saffman (1993) and Saffman (1997), who derive an expression for the
energy spectrum and other measures for isotropic turbulence. Kivotides and Leonard (2003) report
results of a computation in which homogeneous turbulence is represented by a set of finite-length
vortex structures, and show that this system generates an energy spectrum that satisfies the Kol-
mogorov k−5/3 scaling in the turbulence inertial range. The effect of vortex straining on the energy
spectrum of a group of randomly advected vortices is discussed by Malik and Vassilicos (1996).
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Hatakeyama and Kambe (1997) demonstrate good agreement for structure functions of homoge-
neous turbulence between those generated by a group of random strained Burgers vortices and the
classical Kolmogorov theory. Use of vortex models to generate accurate PDF curves for velocity
increment, acceleration, and vorticity is discussed by Min et al. (1996), Wilczek et al. (2008), and
Wilczek and Friedrich (2009).

A first step toward the use of a vortex structure model for turbulent particle transport was made
by Ayyalasomayajula et al. (2008), who proposed a model in which the turbulent eddies are repre-
sented by a two-dimensional vortex array and a stochastic algorithm is used to vary the strength of
each vortex in time. Although extremely simple, this model was shown to yield reasonable results
for particle acceleration statistics and clustering. A three-dimensional stochastic vortex structure
(SVS) model was proposed by Sala and Marshall (2013), in which the turbulent vorticity field is
approximated by a set of finite-length, fixed vortex structures which are randomly positioned and
oriented in the flow field. Predictions of the SVS model for turbulence energy spectrum and particle
collision rate were found to be in close agreement with DNS predictions. However, the original SVS
method was rather slow and only considered transport and collision of non-adhesive particles.

The current paper extends the SVS model proposed by Sala and Marshall (2013) in two re-
spects: (1) a variation of the fast multipole method FMM and local Taylor expansions are used
to dramatically accelerate the SVS computations and (2) the performance of the SVS method is
examined for prediction of turbulent agglomeration of adhesive particles. Successful simulation
of turbulent agglomeration requires both that the particle collision model is accurately simulated
by SVS and also that the fluctuating turbulent shear stress responsible for agglomerate breakup
and erosion is accurately predicted. We also report more extensive comparisons with DNS data,
as well as detailed sensitivity testing of the SVS model results to various input parameters. The
basic SVS model is described in Section II. In Section III, a fast multipole method is developed
for computing the velocity field induced by the vortex structures, which is found to yield nearly
two orders of magnitude increase in computational speed compared to direct velocity computa-
tion. Sections IV-VI present different types of validation and sensitivity tests for the SVS model.
Section IV examines measures of the turbulent flow field. Section V examines prediction of colli-
sion rate for non-adhesive particles and Section VI examines use of SVS for prediction of turbulent
agglomeration with adhesive particles. Conclusions are given in Section VII.

II. STOCHASTIC VORTEX STRUCTURE METHOD

Particle collisions in turbulent flows depend primarily on the eddy Stokes number, which can be
written as a function of eddy size ℓ as

Stℓ ≡ muℓ/3πµdℓ, (1)

where d and m are the particle diameter and mass, respectively, and µ is the fluid viscosity. In the
inertial range, the characteristic velocity uℓ of eddies of size ℓ varies with turbulence dissipation
rate per unit mass ε as uℓ ∼ (εℓ)1/3 (Frisch, 1995). Since the dissipation rate is approximately
independent of scale in the inertial range, the Stokes number varies with ℓ approximately as
Stℓ ∼ ℓ−2/3. Particles are largely transported by the fluid flow for eddies where Stℓ ≪ 1 and the
particle inertia filters out the turbulence fluctuations for eddies where Stℓ ≫ 1 (Ayyalasomayajula
et al., 2008 and Marshall and Li, 2014). In-between these extremes, there exists an eddy size ℓ
for which Stℓ = O(1), in which the particles are thrown out of the turbulent eddies and collect in
high-concentration sheets in the interstitial region between the eddies.

The stochastic vortex structure (SVS) model approximates the turbulent vorticity field by a
collection of vortex structures placed and oriented randomly in the flow field. In the simplest
version of the SVS method, the vortex structures all have the same finite length L, core radius
δ, and strength Γ, although a multiscale version of the SVS model has also been developed. The
vortex length L is assumed in the current paper to be of the order of magnitude of the turbulence
integral length scale ℓ0 = 0.5 u0

3/ε, where u0 is the turbulence root-mean-square velocity. Based
on the well-established observation that strain rate in the inertial range scales as u0/λ (Frisch,
1995), Kambe and Hatakeyama (2000) used a scaling analysis to derive an approximation for
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vortex core radius as δ � 3.9η, where λ = u0(15ν/ε)1/2 is the Taylor microscale, η = (ν3/ε)1/4 is the
Kolmogorov length scale, and ν is the kinematic viscosity. This estimate is in good agreement with
experimental and numerical results (Jiménez et al., 1993 and Berlin et al., 1996). The current paper
uses a somewhat larger assumption δ = 8η for vortex core radius in order to ensure sufficient num-
ber of grid points to adequately resolve the velocity gradient across the vortex cores. Each vortex
structure has a lifetime TV which is assumed to be proportional to the integral time scale, Tℓ = q/3ε,
where q = 1.5 u2

0 is the turbulent kinetic energy per unit mass. While the coherent vortices in a
turbulent flow may in practice last significantly longer than Tℓ, the results of the model are not
sensitive to value of TV . The initial age of the nth vortex structure, τ0n, is specified as a random
variable, where the ratio τ0n/TV has a uniform distribution between 0 and 1. If t0n denotes the time
at which the vortex structure is initiated, then the current age of the vortex structure τn(t) is given by

τn = τ0n + t − t0n. (2)

When τn(t) exceeds the specified lifespan TV , the vortex structure is removed and a new vortex
structure is introduced with random position and orientation in the flow.

The vortex structures induce a velocity field u which is computed using the accelerated method
described in Section III. Each of the NV vortex structures is advected in time by moving the two
endpoints of the vortex structure by solving

dxn, i

dt
= u(xn, i, t), (3)

where the index n identifies the vortex structure and i (=1,2) identifies the endpoint of the structure
under consideration. After moving the end points, the vortex length is reset to L. The centroid
position xn and unit tangent vector λn for each structure are then recomputed from the positions of
the new endpoint locations.

III. ACCELERATED METHOD FOR VELOCITY CALCULATION

The stochastic vortex structures constitute a kinematic representation of the turbulent flow,
which is intended to generate a synthetic fluctuating velocity field that exhibits similar statistical
properties to the actual turbulent flow. The dynamics of the turbulent flow is simulated by whatever
RANS model is used to compute parameters such as turbulent kinetic energy and dissipation rate,
and not via the SVS model. With this point in mind, it is recalled that a divergence-free vorticity
field ω can be generated from the vorticity ω∗ associated with a set of finite-length vortex tubes as

ω = ω∗ + ∇ζ, (4)

where

∇2ζ = −∇ · ω∗. (5)

Substituting (4) into the Biot-Savart equation,

u(x, t) = − 1
4π


V

s × ω(x′, t)
s3 dv ′, (6)

where s ≡ |s| ≡ |x − x′|, and using Green’s theorem, one can readily show that the ∇ζ term in (4)
makes no contribution to the induced velocity field (see the Appendix).

For computation of particle transport, it is more efficient to compute the fluid velocity on a
Cartesian grid covering the computational domain and then interpolate the velocity from the grid
nodes onto the Lagrangian particles that move through the grid. This is particularly true when using
a multiple time scale algorithm for particle transfer (Marshall, 2009), in which the fluid velocity is
computed on a larger time step than that used for transport of either free or colliding particles. The
computations in the current paper are performed using a 1283 Cartesian grid to cover a cubic, triply
periodic domain with side length 2π.
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To accelerate the velocity computation, we utilize the combination of an optimized fast multi-
pole method (FMM) for computing the velocity field induced by sufficiently distant vortex struc-
tures and a local Taylor expansion to reduce the number of points at which the Biot-Savart integral
must be solved. The accelerated method is based on a partitioning of the computational domain into
a tree family of boxes consisting of some number M levels, each of which covers all grid points in
the domain. The first level (m = 1) consists of the entire grid and has only one box. The second level
(m = 2) consists of 8 boxes, which are obtained by dividing the side length of each box in level 1
by a factor of two, as illustrated in Figure 1. This division process is repeated for subsequent levels,
with the number of boxes in each level m increasing as 8m−1. The boxes associated with the highest
level are called the small boxes of the box family.

The velocity is evaluated at each point of the Cartesian grid by solving for the contribution to
the Biot-Savart integral (6) from all vortex structures in the computational domain, as well as from
neighboring domains necessary to enforce the periodic boundary condition. In order to perform
the computation efficiently, we first associate with each grid point a specific smallest box of the
tree family in which the grid point is contained, which is called the target box of the grid point.
The velocity within each target box is determined by integrating the Biot-Savart integral over the
vortex structures contained within some set of boxes (called source boxes) that can be at any level
of the box tree family, but where the set of source boxes is required to cover each vortex structure
within the computational domain exactly once (i.e., the source boxes cannot overlap). Each target
box interacts with each source box either directly or indirectly. In a direct interaction, the velocity
induced by each vortex structure in the source box is evaluated individually on each grid point
within the target box. In an indirect interaction, the induced velocity from all vortex structures
within the source box is computed at the center of the target box at one time using a multipole
expansion, and then the induced velocity is extrapolated onto the grid points within the target box by
a local Taylor series expansion. Lists are compiled for each target box of source boxes with which
the target box interacts directly and indirectly. The selection of source boxes and the box interaction
lists were constructed using the optimized approach proposed by Marshall et al. (2000), which is
based on an analytical error estimate for the multipole expansion derived by Salmon and Warren
(1994).

FIG. 1. Image representing two levels of the box family used to cover the computational grid. The first level consists of the
entire grid and the second level consists of the eight individual boxes numbered 1-8 in the image. An example is shown where
box 1 is a source box (blue online) and box 7 is a target box (red online), where the vector pointing from the centroid of box
1 to that of box 7 is indicated by an arrow and denoted by r. The individual vortex structures contained within box 1 are
represented by short line segments within the box.
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A. Direct velocity computation—Interpolation from the data plane

For a source box that interacts directly with a given target box, the velocity induced by each
vortex structure in the source box is computed at each grid point in the target box. The veloc-
ity computation is done by first pre-computing the velocity induced by a vortex structure of unit
strength on the data plane, which is defined as the positive r-z plane relative to the axis of the vortex
structure (Figure 2). This computation is performed once at the beginning of the computation and
the results are stored.

The induced velocity on the data plane is determined by computing the induced velocity normal
to the r-z plane of a coordinate system that is local to a vortex structure of unit strength, where the
vortex center is located at the origin of the local coordinate system. The velocity at each point of
the grid used to cover the data plane is determined using a Gaussian vortex blob method (Marshall
and Grant, 1996), where the number of vortex blobs, Nb, used to discretize the vortex structure is
set equal to Nb = int(βL/δ), and where the Gaussian radius of the blob is set equal to the vortex
structure radius δ and β is a blob overlap coefficient. If the centroid of the ith vortex blob is denoted
by bi, i = 1, . . . , Nb, the associated vorticity field is given by

ωi(x, t) = Ωi

π3/2δ3 exp
(
− |x − bi |2

δ2

)
. (7)

Here, the blob amplitudeΩi is given by

Ωi = (ΓL/Nb)λb (8)

and λb is a unit vector tangent to the vortex structure axis. Substituting (7) into the Biot-Savart
integral (6) yields the velocity field induced by the ith vortex blob at a target point x as

ui(x, t) =
P

(
3
2 ,

|x−bi |
δ2

2
)

4π |x − bi |3
Ωi × (x − bi) , (9)

where P(a, z) is the incomplete gamma function with limits P(a,0) = 0 and P(a,∞) = 1. When
a = 3/2 and z = x2 for some real variable x, a convenient expression for the incomplete gamma
function in terms of the error function erf(x) can be written as (Abramowitz and Stegun, 1965)

P
(

3
2
, x2

)
= erf (x) − *

,

2xe−x
2

√
π

+
-
. (10)

The velocity at any point x on the data plane is obtained by summing the velocity induced by all Nb

vortex blobs, as given by (9).
At subsequent times, the induced velocity from a vortex structure m at grid point x is obtained

by interpolation from the data plane. This interpolation is performed by centering the data plane at

FIG. 2. Schematic diagram showing the interpolation procedure used for direct computation of the velocity induced by a
vortex structure on a node of the grid cell. Here L is the length of the vortex structure and P identifies the inclined plane from
which the induced azimuthal velocity v induced by the vortex is interpolated.
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the vortex structure centroid xm, and orienting the plane so that it passes through the target point x
and is tangent to the vortex axis unit vector λm, as illustrated in Figure 2. The grid cell in which lies
the point x is obtained in the data plane by integer division and the velocity induced by the vortex
structure is interpolated onto the target point and reoriented to lie in the global coordinate system,
yielding a velocity contribution u′m on point x from vortex structure m. The periodic boundary
condition is enforced by including velocity induced by vortex structures in one period on each side
of the computational domain, resulting in 27NV total vortex structures if the entire computation is
performed directly. The total direct velocity at a point x from the Ndir vortex structures for all source
boxes on the direct interaction list (including vortex structures in the side domains used to enforce
periodic boundary conditions) is then given by

udir(x, t) =
Ndir
m=1

u′mΓm. (11)

Since the sum (11) must be computed for every grid point within the Cartesian grid, it is very time
consuming if the summation is performed over all vortex structures in the computational domain
and the neighboring periods of the computational domain. For this reason, the direct interaction list
is restricted to only a small number of source boxes with centroids located sufficiently close to the
centroid of the target box.

B. Indirect velocity computation—Multipole expansion

For a source box ℓ that interacts indirectly with the target box, the contribution of all vortex
structures in box ℓ is evaluated at any point x in the target box using the multipole expansion
(Greengard and Rokhlin, 1987)

∆uℓ(x, t) = 1
4π

∞
m=0

∞
n=0

∞
k=0

(−1)m+n+k
m! n! k!

Iℓ,mnk ×
∂m+n+k

∂xm∂ yn∂zk

( r
r3

)
, (12)

where r = x − ξℓ is the vector from the centroid ξℓ = ξ1,ℓex + ξ2,ℓey + ξ3,ℓez of box ℓ to the point x.
The box moment Iℓ,mnk of box ℓ is defined by

Iℓ,mnk =


Vℓ

(x − ξ1,ℓ)m(y − ξ2,ℓ)n(z − ξ3,ℓ)kω(x, t) dv. (13)

The box moments are evaluated by first computing the moment Jmnk of a single vortex struc-
ture of unit strength aligned in the x̂-direction about the vortex centroid in a local coordinate system
(x̂, ŷ , ẑ), which is given by

Jmnk =


V

x̂m ŷn ẑkω̂(x̂ − x̂′) dv ′, (14)

where ω̂(x)λ is the vorticity field associated with the vortex structure and λ is a unit vector along the
vortex axis. For a vortex structure of length L and core radius δ, we find

J000 = L, J100 = J010 = J001 = 0, J200 = J020 = J002 = Lδ2/2. (15)

Since the values of Jmnk are isotropic (the same for all directions), it is not necessary to translate
between the local coordinate system used to compute (14) and the global Cartesian coordinate
system. The moment Iℓ,mnk of a box ℓ is obtained by summing over the moments Jmnk of all of the
Nℓ vortex structures in box ℓ, which have vortex strengths Γi and centroid locations ci, giving

Iℓ,mnk =

Nℓ
i=1

m
q=0

n
s=0

k
t=0

*
,

m
q
+
-
*
,

n
s
+
-
*
,

k
t
+
-
(ci1 − ξℓ1)q(ci2 − ξℓ2)s(ci3 − ξℓ3)t

× Γi J(m−q)(n−s)(k−t)λℓ. (16)
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Once the moments of all of the smallest size boxes are obtained using (16), the moments of
higher-generation boxes are obtained from the translation formula

Iℓ,mnk =

8
i=1

m
q=0

n
s=0

k
t=0

*
,

m
q
+
-
*
,

n
s
+
-
*
,

k
t
+
-
(ξi1 − ξℓ1)q(ξi2 − ξℓ2)s(ξi3 − ξℓ3)t

× Ii,(m−q)(n−s)(k−t), (17)

where i denotes one of the eight offspring boxes of parent box ℓ.

C. Indirect velocity computation —Local Taylor series expansion

The derivative term in (12) depends on the location of the target point x. Since we compute
the velocity at each point of a N3 Cartesian grid, there are typically a large number of target points
within a given box. The local expansion method accelerates the process of computing the indirect
component of the velocity field by evaluating the velocity induced by a source box ℓ with centroid
ξℓ at the centroid ξ̂b of the target box b (defined as the smallest box containing the target point
x), and then determining the velocity at each individual grid point x using a local Taylor series
expansion of K(x − ξℓ) = r/r3 about the target box center ξ̂b, given by

K(x − ξℓ) =
∞

m=0

∞
n=0

∞
k=0

(x − ξ̂b1)m(y − ξ̂b2)n(z − ξ̂b3)k
m! n! k!

∂m+n+k

∂xm∂ yn∂zk
K(ξ̂b − ξℓ). (18)

Substituting (18) into (12) and truncating the summation after P terms gives the contribution of
source box ℓ to the velocity at grid point x as

∆uℓ(x, t) =
P

m=0

P
n=0

P
k=0

Dℓ,mnk(x − ξ̂b1)m(y − ξ̂b2)n(z − ξ̂b3)k, (19)

where

Dℓ,mnk =

P−m
q=0

P−n
s=0

P−k
t=0

Bℓ,qst

m!n!k!
× ∂m+q

∂xm+q

∂n+s

∂ yn+s

∂k+t

∂zk+t
K(x − ξℓ), Bℓ,qst =

1
4π

(−1)q+s+t
q!s!t!

Iℓ,qst . (20)

D. Example computations

A series of example computations were performed with 512 vortex structures on a 1283 grid
with B different levels of box division. The order p of terms in the multipole and local expansions
was allowed to vary from p = 0 to a maximum of p = 2 for all of the remaining computations. The
order of the interaction is set for each source-target box combination as a function of the distance d
between the box centers. The critical separation distance for each order is specified as a function of
the box size b at the highest level B, such that we use order

p =




0 if d0 ≤ d < d1

1 if d1 ≤ d < d2

2 if d2 ≤ d
, (21)

where d0 = α0b, d1 = α1b, and d2 = α2b. If d < d0, the source box is placed on the direct interaction
list of the target box.

Results for computations with different values of B are shown in Table I for a case with critical
distance coefficients α0 = 4, α1 = 3, and α2 = 2. The table lists the computed value of turbulent
kinetic energy (TKE) (a measure of accuracy), the CPU time, and the percentage of the total
possible boxes placed on the direct list (averaged over all target points). The CPU time results are
for single-processor calculations for ease of comparison. It is noted that some source boxes do not
enclose any vortex structures, in which case the box is ignored and not placed on either the direct
or indirect list. At the top of the table are data for a computation in which the velocity is computed
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TABLE I. Comparison of CPU time, percentage of the computation per-
formed directly (in terms of number of boxes of the smallest size), and
flow measures such as turbulent kinetic energy and enstrophy for the direct
computation (set in bold type) and for indirect computations with four
different levels of the boxing scheme used for the velocity acceleration
method. The computations were performed with Nv = 512 vortex structures,
with critical distance coefficients α0= 4, α1= 3, and α2= 2.

Smallest box level % direct boxes TKE Enstrophy CPU time (s)

Direct 100 1.528 51.449 1065.5
2 100 1.528 51.449 1107.9
3 36.6 1.522 51.434 460.7
4 0.816 1.507 51.611 23.7
5 0.0183 1.497 52.153 12.8

using only the direct interaction. For B ≤ 4, the TKE error for computations using the accelerated
method is less than 1.5% of the direct computation, while the CPU time is reduced to less than 3%
of that for the direct computation.

The CPU time is reduced further for the case with B = 5 to about 1.5% of the direct computa-
tion time, but at the same time the TKE error increases to about 16%. The reason for this sudden
increase in TKE error is that the box size b grows progressively smaller as B is increased, so that
an increasingly large percentage of the computation is performed using the indirect approach. As
discussed by Salmon and Warren (1994), the multipole expansion error increases in a nonlinear
manner as the critical distance decreases. Based on the results in Table I, we selected to perform the
remainder of the computations in the paper with B = 4 and α0, α1, α2 = 4, 3, 2.

IV. ANALYSIS OF THE SVS SYNTHETIC TURBULENCE FIELD

The key parameters associated with the SVS method are the number of vortex structures NV

in the computational domain, the strength of each vortex structure Γ, the vortex length L, and the
vortex core radius δ. These parameters can be related to various measures of the turbulent flow field,
such as the turbulent kinetic energy per unit mass E, the dissipation rate per unit mass ε, and the
enstrophy per unit volumeΩ, defined by

E =
1

2V


V

u · u dv, ε =
2ν
V


V

Di jDi j dv, Ω =
1

2V


V

ω · ω dv, (22)

where Di j are the components of the rate of deformation tensor, u and ω are the velocity and
vorticity vectors, respectively, and V is the computational domain volume. For homogeneous,
isotropic turbulence, the dissipation rate and the enstrophy are related by ε = 2νΩ.

The enstrophy can be estimated using the expression for a Burgers vortex (Burgers, 1948) in a
field with axial stretching rate c, in which the vorticity field has the form of a Gaussian,

ω =
Γ

πδ2 exp(−r2/δ2), (23)

and the Gaussian radius is δ = 2
√
ν/c. For a system of NV Burgers vortices of length ℓ and strength

Γ, the enstrophy is given by

Ω =
NVΓ

2ℓ

4πδ2V
. (24)

A theoretical expression for the energy spectral density e(k) in a system of NV Burgers vortices
of length ℓ and strength Γ is given by Saffman (1997) as

e(k) = NVΓ
2ℓ

4πV k
exp(−δ2k2/4), (25)
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where k is the wavenumber magnitude. This expression is derived based on the assumption that the
vortices do not interact with each other, so that the energy induced by each vortex can be added
together to obtain the total system energy. Integrating over the wavenumber interval (kmin, kmax)
gives the turbulent kinetic energy as

E =

kmax
kmin

e(k) dk =
NVΓ

2ℓ

4πV
[E1(δ2k2

min/4) − E1(δ2k2
max/4)], (26)

where E1(·) is the exponential integral function.
A series of computations was performed in which the number of vortex structures in the

computational domain was varied from 32 to 512, and the product NVΓ
2 varies from 0 to 4000.

The velocity field is computed using the accelerated method described in Section III. The mean
computed values of enstrophy Ω and turbulent kinetic energy E obtained from the definitions (22)
are plotted as a function of NVΓ

2 in Figure 3(a). In both cases, the computational results collapse
onto a single line, as predicted by (24) and (26). Since both enstrophy (and hence dissipation rate)
and turbulent kinetic energy are proportional to the combination NVΓ

2ℓ/V , the modeler is free to
select NV based on an alternative criterion and then to set Γ to obtain the desired turbulent kinetic
energy.

There is a slight variation in the computational values of turbulent kinetic energy and enstro-
phy depending on the randomly selected positions and orientations of the vortex structures. In
order to characterize the amount of variation caused by the random character of the SVS algo-
rithm, the turbulent kinetic energy and enstrophy calculations were repeated 10 times and the
root-mean-square value was calculated for different values of the number of vortex structures, Nv,
in the computational domain, with fixed value of NVΓ

2 = 2000. The standard deviation and mean
values of these results were obtained, the ratio of which yields the relative standard deviation σE/E
and σΩ/Ω. A plot of the relative standard deviations is shown in Figure 3(b) as functions of NV .
The standard deviations exhibit some variation with the number of vortices for small values of NV ,
but for NV ≥ 64 they are nearly independent of the number of vortices. The standard deviation
for turbulent kinetic energy is about 4%-5% of the mean value, whereas that for enstrophy is only
about 1% of the mean value. We note that this deviation is not a resolution error; since enstrophy
is computed from the velocity gradients it is significantly more sensitive to resolution errors than
is the kinetic energy field. Rather, the observed fluctuations arise from the variation in position

FIG. 3. Plots showing (a) the mean enstrophy Ω (solid line, on the right-hand axis) and the turbulent kinetic energy E

(dashed line, on the left-hand axis) as functions of the product NvΓ
2 and (b) the relative root-mean-square enstrophy σΩ/Ω

(solid line) and turbulent kinetic energy σE/E (dashed line) variation as functions of number of vortex structures (with
NvΓ

2= 2000). Computations are for a case with L = ℓ0= 0.885 and δ = 0.126. The data in (a) are for Nv = 512 (squares),
256 (circles), 128 (triangles), 64 (plus signs), and 32 (asterisks), with Γ adjusted accordingly. The lines are best fits to the
data.
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and orientation of the vortices between the different configurations examined. Since the vorticity
field is largely confined to the region within and immediately surrounding the vortex structures, it
is reasonable that the relative standard deviation for enstrophy should be small, provided that the
vortex structures do not overlap. The higher value of the relative standard deviation for turbulent
kinetic energy arises from the fact that the velocity field at any point in the flow is dependent not
only on its position relative to the nearest vortex structure but rather on all vortex structures in the
flow field.

The power spectrum e(k) was examined for a series of computations with NVΓ
2 = 200 and

numbers of vortices of NV = 512, 256, 128, 64, and 32, with values of Γ adjusted to give the speci-
fied product value. The spectrum lines fall on top of each other and cannot be distinguished, which
confirms the prediction from (25) that the spectrum depends on NV and Γ through the combination
NVΓ

2ℓ/V . In Figure 4, we compare the SVS computational spectrum for the case with NV = 512
to Saffman’s approximate prediction (25). The theoretical expression is found to be significantly
higher than the SVS computational values, particularly for higher values of k. This result is likely
due to the fact that Saffman assumed all vortices to be non-interacting, and so he simply added
the kinetic energy of each vortex (associated with its own self-induced velocity) to obtain the total
kinetic energy. In the computations, the vortex structure orientation is random, so the induced
velocity from one structure will counter that from other structures at sufficiently large distances,
thus reducing the total kinetic energy. Also shown in Figure 4 is a line indicating k−5/3 dependence,
which fits the computational plot reasonably well within the low-wavenumber inertial range, similar
to the observations of Kivotides and Leonard (2003).

The SVS predictions are compared in Figure 4 to the results of a pseudo-spectral direct numer-
ical simulation (DNS) computed on a 1283 grid, similar to that presented by Vincent and Meneguzzi
(1991). The flow is initiated by a randomly perturbed velocity field with uniform probability distri-
bution for wavenumbers spanning the interval 1 ≤ k ≤ 64. Dealiasing is performed by setting the
coefficients of the highest 1/3 wavenumber coefficients to zero using a spherical filter. A preliminary
computation is run without forcing until time t = 10 in order to allow the turbulence to develop a
range of length scales characteristic of statistically stationary homogeneous isotropic turbulence.
The computation is then restarted with non-zero forcing, where the transform of the forcing vector
is assumed to be proportional to the fluid velocity transform, such that (Lundgren, 2003 and Rosales
and Meneveau, 2005)

f̂ =



Cû for k < kcrit

0 for k > kcrit
, (27)

FIG. 4. Power spectrum from an SVS computation with NVΓ
2= 200 and NV = 512 (solid line, A), compared to a

computational result from DNS (dashed-dotted line, B) and the theoretical result Eq. (25) from Saffman (1997) (dashed
line, C). Also shown is a straight line indicating k−5/3 dependence in the inertial range (short dashed line).
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TABLE II. Scaling variables characterizing the fluid turbulence.

Turbulent kinetic energy, q 0.14 Taylor microscale, λ 0.27
Mean dissipation rate, ⟨ε⟩ 0.016 Microscale Reynolds

number, Reλ

81

Kinematic viscosity, ν 0.001 Integral length, ℓ0 0.89
Kolmogorov length, η 0.016 Integral time, Tℓ 2.9

where the coefficient C is adjusted at each time step so as to maintain approximately constant
turbulent kinetic energy. The current computations are performed with kcrit = 5, so that the forcing
acts only on the large-scale eddies. Various parameter values characterizing the DNS computations
are given in Table II. The spectrum predicted by the DNS computations compares well with the SVS
predictions for low values of wavenumber (k < 20), but for high wavenumber the SVS spectrum
decays much more quickly than do the DNS results. This rapid decay at high wavenumber is consis-
tent with the fact that the vortex radius for these computations was specified to be eight times larger
than the Kolmogorov length scale, so the SVS flow field has little energy at very small length scales.

The velocity probability density function (PDF) in one coordinate direction (x-direction),
normalized by the root-mean-square value, was computed for a series of SVS computations with
NVΓ

2 = 3975 and different number of vortex structures. Unlike the power spectrum, the velocity
PDF exhibits significant variation with a value of NV . This observation indicates that the velocity
PDF varies with NV and Γ independently, and not only through the product NVΓ

2. The PDF has a
fat tail for low values of NV , typical of a superstatistical system (Beck, 2008), but the PDF func-
tions for large values of NV (greater than about 500) approach an asymptotic curve that is nearly
Gaussian. In Figure 5(a), a comparison is shown of the velocity PDF for the SVS computation with
NV = 512, the DNS simulation (symbols), and a best-fit Gaussian curve p(v) = 0.8 exp(−0.5v2),
where v ≡ vx/vx,rms. The DNS results are in close agreement with the Gaussian function, as ex-
pected (Voth et al., 1998). The SVS predictions fit well to the Gaussian function for vx/vx,rms < 3,
but for higher values of vx they exhibit higher values. This difference indicates that while still very
rare, high velocity occurrences are more common for the SVS computations than for the DNS.

The PDF of the x-component of the fluctuating fluid acceleration field is plotted in Figure 5(b).
Fluid acceleration is computed from the SVS or DNS velocity field for post-processing purposes
using a centered difference approximation in space and a forward difference in time. We again find

FIG. 5. Plots showing the PDF of the x-component of (a) velocity and (b) acceleration. (a) Comparison of PDF for SVS
computation with Nv = 512 (solid line), DNS (symbols), and a best-fit Gaussian curve (dashed line). (b) Comparison of PDF
for SVS computation with Nv = 512 (solid line), DNS (symbols), and the experimental correlation (28) of La Porta et al.
(2001) (dashed line).
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that the PDF plot is sensitive to the value of NV , and that it approaches an asymptotic curve for
values of NV greater than about 500. The SVS prediction for the case with NV = 512 is compared to
the DNS results in Figure 5(b). Also shown in this figure is the empirical expression for the PDF,

p(a) = 1.8 exp
�
−a2/{(1 + |ac1/c2|c3)c2

2}
�
, (28)

obtained experimentally by La Porta et al. (2001). In this expression, a ≡ ax/ax,rms, and the coef-
ficients are given by a best fit to the experimental data of La Porta et al. as c1 = 0.539, c2 = 1.588,
and c3 = 0.508. The SVS prediction for acceleration PDF with NV = 512 is found to agree closely
with both the DNS prediction and with the experimental correlation (28), and in all cases the
acceleration PDF exhibits non-Gaussian statistics characterized by fat tails, typical of a highly
intermittent signal. Mordant et al. (2004) associates the acceleration intermittency in turbulent flows
with the presence of coherent vortex structures, so agreement between the SVS and DNS for the
acceleration PDF is another indication that the coherent vortices are correctly modeled in the SVS
representation.

The PDF of the vorticity component ωx is plotted in Figure 6 from SVS results with Nv = 2048
vortex structures in the computational domain. The vorticity is determined by first computing the
synthetic turbulence velocity field, as discussed in Section III, and then numerically differentiating
using a centered finite-difference method to obtain vorticity from ω = ∇ × u. The PDF for vorticity
is sensitive to the number of vortex structures used for the SVS computations, and because the
vorticity is evaluated using a velocity gradient it required a somewhat larger number of vortices
to reach the asymptotic state for large vortex numbers than did the velocity or acceleration PDFs.
The SVS vorticity PDF is shown in Figure 6 to be in excellent agreement with the vorticity PDF
obtained from the DNS predictions.

V. VALIDATION OF SVS PREDICTIONS FOR PARTICLE COLLISION RATE

The SVS predictions for particle interactions were validated by comparison to DNS results
with use of a soft-sphere discrete-element method (DEM) simulation for a set of Np colliding
non-adhesive particles of diameter d and mass m. The computations solve the momentum and
angular momentum equations for the particle velocity and rotation rate, given by

m
dv
dt
= FF + FA, I

dΩ
dt
=MF +MA, (29)

FIG. 6. Plot comparing the PDF of the x-component of vorticity from SVS simulations (solid line), with NVΓ
2= 350 and

Nv = 2048, and DNS results (symbols).
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subject to forces and torques induced by the fluid flow (FF and MF) and by the particle collision
and adhesion (FA and MA). Here, I is the moment of inertia and v and Ω are the particle velocity
and rotation rate, respectively. The dominant fluid force is the particle drag force, but we also ac-
counted for secondary forces including the Saffman and Magnus lift forces and the added mass and
pressure gradient force on the particles. Particle Reynolds numbers were small, allowing use of the
Stokes drag law and low Reynolds number lift laws (Saffman, 1965, 1968; and Rubinow and Keller,
1961). Collisions were detected when the distance between two particles is less than the particle
diameter. Collision forces between the particles include the normal elastic and dissipative forces,
sliding resistance, and twisting resistance. Particle normal collision was computed for non-adhesive
particles using the nonlinear Hertz (1882) theory for normal elastic force, the Tsuji et al. (1992)
model for normal dissipative force, and the Cundall and Strack (1979) model for sliding resistance.
The fluid velocity was interpolated from a 1283 fluid grid onto the Lagrangian particle locations
with cubic accuracy using the M4′ variation of the B-spline interpolation method, which was orig-
inally developed by Monaghan (1985a) and is commonly used in spherical particle hydrodynamics
(Monaghan, 1985b) and for regridding in vortex methods (Cottet and Koumoutsakos, 2000). The
multiple time step algorithm of Marshall (2009) was used with three different time step levels,
corresponding to the fluid, particle, and collision time scales, arranged from largest to smallest. The
reported computations used a fluid time step of ∆t = 0.01 for a duration of 10 000 time steps. The
DNS runs were initiated using a preliminary computation without particles with 5000 time steps to
establish a statistically-steady turbulent flow. Simulations were performed on a cubic grid with 2π
side length and 46 656 particles.

A listing of integral flow measures for the different cases examined in this comparison is given
in Table III. The number of vortices was varied from NV = 32 to 2048 in the SVS runs SVS-1a
through SVS-1g in order to examine the effect of the number of vortices on the collision results,
and in each case the value of vortex circulation was adjusted to maintain nearly constant turbulent
kinetic energy. The computations were performed for values of the integral-scale Stokes number
St0 of 0.07, 0.34, and 1.7, where St0 is defined by (1) with uℓ = u0 and ℓ = ℓ0. The corresponding
values of the Kolmogorov-scale Stokes number StK for these three cases are 0.81, 3.94, and 19.9,
respectively. A filtered DNS computation (DNS-F) was also performed in which the coefficients of
the highest 67% of the wavenumbers (k > 21.3) was set to zero, which yields an energy spectrum
very close to the SVS spectrum. The filtered DNS run is used as a method to determine the influence
of small-scale fluctuations on the particle collisions. Besides kinetic energy, integral measures listed
in Table III include enstrophy Ω, a vorticity magnitude measure ω95, and a stretching rate measure
S. The vorticity magnitude measure ω95 is defined as the value of vorticity magnitude for which
95% of the grid points have a lower vorticity magnitude. The stretching measure S is defined as the
average over the flow field of the maximum value of the logarithmic stretching rate λ1 = Λ̇/Λ. Here,
Λ is the stretch of a material line segment along the principal direction of the rate of deformation
tensor D associated with the largest eigenvalue λ1 of D. Since D is symmetric, the eigenvalues of D
can be efficiently computed using the Smith algorithm (Smith, 1961). The enstrophy for the filtered
DNS run (DNS-F1) is about twice the value for the associated SVS run (SVS-1), and the enstrophy
for the unfiltered DNS run (DNS-1) is about 20% higher than that for the filtered DNS run due to the
contribution of the small vortices filtered out in the DNS-F1 run. In accordance with the result (24),
the enstrophy remains nearly constant in the SVS runs (SVS-1a through SVS-1g) as the number of
vortices is changed with NVΓ

2 held constant. The vorticity magnitude parameter ω95 is about 40%
larger and the stretching measure S is about 15% larger for the DNS run compared to the SVS-1a
run.

The total number of collisions was found to increase almost linearly with time, and the slope of
this line was used to compute the collision rate per unit volume ṅC. From this value, the collision
kernel α11 was computed using the definition

ṅC =
1
2
α11n2, (30)

where n = Np/V is the number of particles per unit volume. The predicted value of α11 for each
case was computed from (30) using the specified value of n and the computed value of ṅC based
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TABLE III. List of parameter values and resulting particle collision kernel α11 for runs validating SVS prediction of turbulent
particle collision rate. The runs indicated by DNS-F are a filtered version of the DNS runs with the Fourier coefficients set to
zero for the highest 67% of the wavenumbers. The DNS results, set in bold type, are used to validate the SVS results with the
same Stokes number.

Run
Number of

vortices, NV

Stokes
number,

St0

Turbulent
kinetic

energy, E
Enstrophy,
Ω

Vorticity
strength

parameter, ω95

Stretching
measure, S

Collision
Kernel, α11

(×10−4)

DNS-1 NA 0.34 0.122 9.80 5.29 1.49 3.92
DNS-F1 NA 0.34 0.122 8.13 4.83 1.47 3.82
SVS-1a 2048 0.34 0.111 4.06 3.66 1.29 3.27
SVS-1b 1024 0.34 0.113 4.09 3.89 1.27 3.40
SVS-1c 512 0.34 0.117 4.04 3.63 1.20 3.40
SVS-1d 256 0.34 0.113 4.05 2.89 1.09 3.39
SVS-1e 128 0.34 0.108 4.04 1.94 0.97 3.37
SVS-1f 64 0.34 0.112 4.03 1.37 0.82 3.21
SVS-1g 32 0.34 0.122 4.04 1.12 0.69 2.90
DNS-2 NA 0.07 0.122 9.80 5.29 1.49 0.709
DNS-F2 NA 0.07 0.122 8.13 4.83 1.47 0.680
SVS-2a 2048 0.07 0.115 4.06 3.66 1.29 0.714
SVS-2b 1024 0.07 0.113 4.10 3.89 1.27 0.705
SVS-2c 512 0.07 0.117 4.04 3.63 1.20 0.670
DNS-3 NA 1.7 0.122 9.80 5.29 1.49 61.5
DNS-F3 NA 1.7 0.122 8.13 4.83 1.47 61.0
SVS-3a 2048 1.7 0.115 4.06 3.66 1.29 60.5
SVS-3b 1024 1.7 0.113 4.10 3.89 1.27 60.5
SVS-3c 512 1.7 0.117 4.04 3.63 1.20 60.5

on a linear fit to the total number of collisions, and the resulting values of collision kernel are listed
in Table III. A comparison of the collision kernels between the full DNS, the filtered DNS, and the
SVS method was conducted for integral-scale Stokes numbers of St0 = 0.07, 0.34, and 1.7, where
the Stokes number is changed by modification of the particle diameter. As predicted by collision
theory (Saffman and Turner, 1956 and Abrahamson, 1975), the collision kernel increases with par-
ticle diameter (indicated by increasing Stokes number), with DNS predictions of α11 = 5.8 × 10−5,
3.26 × 10−4 and 6.45 × 10−3 for St0 = 0.07, 0.34, and 1.7, respectively. The filtered DNS predictions
for the collision kernel are within about 4% of the full DNS predictions for each case, indicating that
the small scales of the turbulent motion have little effect on the collision coefficient. The collision
kernel for the SVS model with 2048 vortices was about 16% lower than the full DNS prediction for
the St0 = 0.34 case, and the SVS model predictions for α11 were within 0.8% and 5.7% of the full
DNS predictions for the St0 = 0.07 and 1.7 cases, respectively. The effect of the number of vortex
structures on the SVS predictions was examined by repeating the run for St0 = 0.34 with 32, 64,
128, 256, 512, 1024, and 2048 vortices, while at the same time adjusting the vortex strength to keep
the kinetic energy approximately constant.

The tendency of particles to cluster can be characterized by the radial distribution function
(RDF), g(r), defined by

g(r) = 1
4πρ0r2

dN
dr

, (31)

where the average number of particles per unit volume ρ0 is related to the particle volume fraction
Cp by ρ0 = 6Cp/π, and N(r) is the average number of neighboring particles whose centroids are
located within a radial distance r from a given particle centroid. The value of g(r) is estimated by
counting for each particle the number of neighboring particles that fall into a set 400 spherical bins,
each of width ∆r = 0.000 15, surrounding the given particle. The number of particles in each bin is
averaged over all particles in the computational domain and over 1000 time steps near the end of the
computations in order to smooth the distribution. Figure 7 shows a comparison of the RDF for both
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FIG. 7. Comparison of the radial distribution function as a function of radius at St0= 0.34 for a SVS computation (SVS-1a)
with Nv = 2048 vortex structures (A, blue line) and a DNS computation (DNS-1) (B, red line).

a DNS computation (DNS-1) and SVS with NV = 2048 vortex structures (SVS-1a) at an integral
Stokes number St0 = 0.34, which are observed to exhibit close agreement.

As noted by Zaichik et al. (2006), the collision kernel is proportional to the product of the radial
distribution function g(r) (RDF) and the relative radial velocity ⟨wr⟩ (RRV) evaluated at collision
(r = 2rp). Each of these quantities was separately computed for cases with different Stokes number
to examine the individual quantities that make up the collision kernel. A set of plots is given in
Figure 8 showing RDF and RRV at collision as a function of the Kolmogorov-scale Stokes number
StK for both DNS results and SVS results with NV = 2048 vortices. Our predictions are compared
to the DNS results for RDF and RRV of Fayed and Ragab (2013) for Reλ = 77 and of Wang
et al. (2000) for Reλ = 75, and to the DNS results for RDF of Sundaram and Collins (1997) for
Reλ = 54. The RDF value for StK = 19.9 is nearly the same in the SVS and DNS predictions, and
so the two symbols for DNS and SVS results are almost coincident in Figure 8(a). The RDF exhibits
a very thin peak near the collision point for small Stokes number, which contributes to the high
data variability in Figure 8(a). Both the DNS and SVS predictions in Figure 8 are in reasonable
agreement with each other and with literature values.

FIG. 8. Plot showing (a) radial distribution function (RDF) and (b) relative radial velocity (RRV) at collision as functions
of the Kolmogorov Stokes number StK. The plots show DNS data of Wang et al. (2000) at Reλ = 75 (circles, red line), DNS
data of Sundaram and Collins (1997) for Reλ = 54 (squares, blue line), DNS data of Fayed and Ragab (2013) for Reλ = 77
(deltas, green line), and our DNS predictions (filled diamonds) and SVS predictions (open diamonds) for Reλ = 81.
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VI. VALIDATION OF SVS PREDICTIONS FOR TURBULENT PARTICLE AGGLOMERATION

Computations to examine turbulent agglomeration were conducted with a similar DEM algo-
rithm as described in Sec. V, but with a modification of the collision force and torque models to
account for adhesion effects. In particular, the normal elastic and adhesive van der Waals force was
computed using the model of Johnson et al. (1971) (i.e., the JKR model). Adhesion introduces
a strong rolling resistance torque, for which we used the model of Dominik and Tielens (1995),
along with experimental results of Ding et al. (2008) to set the critical angle for onset of particle
rolling. The effect of adhesion on the sliding resistance was modeled using an expression derived by
Thornton (1991). We also included a crowding correction term for the particle drag force developed
by Di Felice (1994). A comprehensive summary of the computational method for both adhesive and
non-adhesive particles is given by Marshall (2009). The reported computations used a fluid time
step of ∆t = 0.005 for a duration of 20 000 time steps, with a total of 46 656 particles. As discussed
in Sec. V, the DNS runs were initiated using a preliminary computation without particles with 5000
time steps to establish a statistically-steady turbulent flow.

A particle agglomerate constitutes a set of particles which are bonded to each other, either
directly or via other intermediate particles of the agglomerate, via soft (e.g., van der Waals) bonds.
A set of particles bonded via hard bonds (e.g., sintered particles) is referred to as an aggregate,
and is outside the scope of this paper. Agglomerate development in the turbulent flow field is char-
acterized in the current paper using two dimensionless parameters—the Stokes number St and the
adhesion parameter Ad. The adhesion parameter Ad is a ratio of adhesive force to particle inertia,
defined by the ratio

Adℓ =
γ

ρpu2
ℓrp

, (32)

where the adhesive surface energy density γ is equal to half the work required to separate two surfaces
that are adhesively bound per unit surface area. Both the Stokes number in (1) and adhesion parameter
were defined using the characteristic length scale ℓ0 and velocity scale u0 of the turbulence integral
scale for the fluid length and velocity scales ℓ and uℓ, which is indicated by a subscript “0.”

Plots showing SVS predictions for the total number of particles contained in an agglomerate,
Ntot, and the average number of particles per agglomerate, Npagg, as functions of time are given
for a case with St0 = 0.34 and Ad0 = 11 in Figure 9 for different values of the number of vortex
structures, NV , ranging from 128 to 2048. The vortex strength is adjusted to maintain a constant
turbulent kinetic energy in each case. While the collision kernel listed in Table III approaches

FIG. 9. Effect of the number of vortex structures on turbulent agglomeration for SVS runs with St0= 0.34 and Ad0= 11,
where all runs have the same value of turbulent kinetic energy. The plots show (a) the total number of particles contained in
agglomerates Ntot and (b) the average number of particles per agglomerate Npagg as functions of time. Plots are given for
different numbers of vortex structures, with Nv = 128 (black line), 256 (green line), 512 (red line), and 2048 (blue line). The
DNS results are indicated using a dashed line.
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FIG. 10. Plot showing average number of particles per agglomerate over a long run time leading to a statistical equilibrium
condition, for SVS with NV = 2048 (blue curve) and DNS (dashed curve).

a nearly constant value for NV of about 128 and greater, the agglomeration measures shown in
Figure 9 continue to exhibit significant dependence on vortex number up to about NV = 512. The
DNS predictions, indicated by the heavy dashed line in Figures 9(a) and 9(b), are found to be in
excellent agreement with the limiting value of the SVS predictions for large NV .

The run shown in Figure 9 was extended to a time of t = 250 to examine the continued
agreement between SVS and DNS as the equilibrium condition is reached. The average number of
particles per agglomerate is plotted versus time for this extended run in Figure 10, showing that
the SVS run (with NV = 2048) and DNS continue to exhibit reasonable agreement at long time.
The value of the average number of particles per agglomerate fluctuates in time when this statistical
equilibrium state is reached due to breakup and recollision of large agglomerates.

The effect of Stokes number is shown in Figure 11, which compares SVS predictions with
NV = 2048 vortex structures and DNS predictions for values of the Stokes number of St0 = 0.1,
0.2, and 0.34, in all cases with Ad0 = 11. The different Stokes numbers are produced by changing
the particle diameter, with all other parameters held constant. Plots are given both for the average
number of particles per agglomerate, Npagg, and for the total number of agglomerates, Nagg, as
functions of time. The value of Npagg decreases rapidly with decrease in St0, going from Npagg = 130
at t = 100 for St0 = 0.34 to Npagg = 10 for St0 = 0.1. The peak value of the number of agglomerates
is shown in Figure 11(b) to be nearly the same for the three cases, but the peak occurs at a later
time as the Stokes number decreases. The observed differences in agglomeration measures with
change in St0 are primarily due to decreasing collision rate as the Stokes number decreases, which
is consistent with theoretical predictions for collision rate at both small and large Stokes numbers
(Saffman and Turner, 1956 and Abrahamson, 1975). Good agreement is observed between the SVS
and DNS predictions.

The effect of adhesion parameter is examined in Figure 12, which compares SVS predictions
with NV = 2048 vortex structures and DNS predictions for values of the adhesion parameter of
Ad0 = 5.5, 11, 28, and 110, in all cases with St0 = 0.34. The different adhesion parameter values
are produced by changing the adhesion surface energy density γ, with all other parameters held
constant. As expected, the average number of particles per agglomerate decreases in Figure 12(a)
with decrease in Ad0. The total number of agglomerates in Figure 12(b) is found to peak at nearly
the same time for the different values of Ad0, and to then decrease rapidly after the peak value
for high values of Ad0, indicating that agglomerates are colliding to form larger agglomerates. For
Ad0 = 5.5, the number of agglomerates decreases slowly after the peak since colliding agglomerates
might not adhere to each other or might breakup again into smaller agglomerates. Again, good
agreement is observed between the SVS and DNS predictions.

The agglomerate number distribution indicates the percentage of agglomerating particles con-
tained in agglomerates consisting of n particles. The agglomerate number distribution is sorted into
logarithmic bins of base 2, where the value of bin size indicates the nominal number of particles in
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FIG. 11. Effect of Stokes number on (a) number of particles per agglomerate (Npagg) and (b) number of agglomerates (Nagg)
for DNS computations (solid lines) and SVS computations (dashed lines) with NV = 2048 vortex structures. Computations
are for St0= 0.1 (A, blue), 0.2 (B, green), and 0.34 (C, red), with Ad0= 11.

agglomerates within the bin. A plot showing the agglomerate number distribution for a case with
St0 = 0.34 and Ad0 = 11 is shown in Figure 13. SVS predictions with NV = 2048 vortex structures
are observed to yield a number distribution that is reasonably close to that obtained using DNS.

Each agglomerate is characterized by the number of particles N contained in the agglomerate
and the radius of gyration Rg , which is defined by

Rg =



1
N

N
i=1

|xi − x̄|2


1/2

. (33)

In this equation, x̄ denotes the position vector of the agglomerate centroid and xi is the centroid of
the ith particle within the agglomerate. It is well known that particle agglomerates admit a power
law relating N and Rg given by (Adachi and Ooi, 1990; Liu et al., 1990; and Jiang and Logan, 1991)

N = K
�
Rg/d

�D
, (34)

FIG. 12. Effect of adhesion parameter on (a) number of particles per agglomerate (Npagg) and (b) number of agglomerates
(Nagg) for DNS (solid lines) and SVS computations (dashed lines) with NV = 2048 vortex structures. Computations are for
Ad0= 5.5 (A, black), 11 (B, green), 28 (C, red), and 110 (D, blue), with St0= 0.34. The C and D lines in (b) are nearly
coincident, so only the D line is shown.
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FIG. 13. Plot showing the percentage of particles, PB, contained in agglomerates with different numbers of particles. The
number of particles in the agglomerate are grouped logarithmically into bins, with average number of particles for the given
bin indicated by NB. The plot compares DNS results (blue bars, on left) with SVS results (red bars, on right) for the case
with NV = 2048 vortex structures.

where K is a coefficient (called the fractal pre-factor) and the exponent D is called the fractal
dimension of the agglomerate. The value of D varies over the interval 1 ≤ D ≤ 3 depending on
the agglomeration formation mechanism (Brasil et al., 2001). For instance, Eggersdorfer et al.
(2011) cite typical values of D = 2.5 for diffusion-limited agglomeration, D = 3.0 for ballistic
particle-cluster agglomeration, and D = 1.8 for diffusion-limited cluster-cluster agglomeration. For
turbulent agglomeration of latex particles in stirred tanks, Selomulya et al. (2001) report values
of D between 1.7 and 2.1 and Waldner et al. (2005) report values of D between 1.8 and 2.6. A
log-log plot of N versus Rg/d for both DNS results and SVS predictions with NV = 2048 is shown
in Figure 14. The DNS and SVS predictions are in excellent agreement, and both are found to
exhibit a best-fit line with slope D = 2.3. As discussed above, this value of fractal dimension of the

FIG. 14. Plot showing the number of particles in an agglomerate N versus the ratio of the gyration radius to the primitive
particle diameter, Rg/d, with both DNS data (triangles, blue) and SVS data with NV = 2048 (crosses, red). The solid line is
a best-fit to the data with a slope of D = 2.3.
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particle agglomerates is in good agreement with values noted in previous experimental literature for
turbulent agglomeration.

VII. CONCLUSIONS

An accelerated form of the stochastic vortex structure (SVS) method for subgrid-scale turbu-
lence modeling for interacting particles was developed using the method of multipole expansions.
It was shown that with only five box levels, the accelerated method can reduce the velocity compu-
tation time by two orders of magnitude, with error in the total turbulent kinetic energy (TKE)
prediction of less than 2%. The effect of the stochastic nature of the SVS algorithm on prediction of
mean quantities was examined, and it was found that the ratio of the standard deviation to the mean
value obtained from repeated runs with different vortex positions and orientations was about 5% for
TKE and 1% for enstrophy. Characteristics of the SVS synthetic turbulence predictions were exam-
ined against results of direct numerical simulation (DNS) and various theoretical and experimental
results from the literature. The predicted energy spectrum was compared against both DNS results
and approximate theoretical results from Saffman (1997), and shown to be in reasonable agreement
with both for moderate and small values of wavenumber (less than about 20), but (as expected)
to give too low values for higher wavenumbers. The predicted velocity, acceleration, and vorticity
probability density functions (PDFs) were found to be sensitive to the number of vortex structures
used, but to approach the DNS predictions for large number of vortex structures. SVS predictions
for other integral measures, such as the ω95 measure of the maximum vorticity magnitude and the
average stretching rate measure, also exhibit good agreement with DNS.

Though the validation of the statistical properties of SVS-generated fields is encouraging,
the ultimate arbiter of the robustness of this model is whether or not it achieves the ultimate
modeling objectives. To this end, simulations with colliding, non-adhesive particles were performed
comparing the SVS predictions for radial distribution function, relative radial velocity, and collision
kernel to DNS results. Computations were performed for an integral scale Stokes number range of
0.07–1.7, yielding good agreement between SVS and DNS predictions. The simulations indicate
that the SVS results for collision rate are not very sensitive to the number of vortex structures as
long as this number is sufficiently large. DNS and SVS simulations were also performed for colli-
sion and agglomeration of adhesive particles over a range of Stokes number and adhesion parameter
values. Agglomeration measures examined include total number of particles captured in agglom-
erates, number of agglomerates, average number of particles per agglomerate, number distribution
of agglomerates, and agglomerate fractal dimension. Values of these agglomeration measures were
found to approach values close to those of the DNS predictions for sufficiently high numbers of
vortex structures.

The paper suggests that the stochastic vortex structure method provides a rapid, reliable
approach for modeling subgrid-scale turbulence fluctuations for flows with interacting particles.
The SVS method is consistent with the large-scale energy spectrum and the various probability
density function curves that describe homogeneous turbulence, as well as with a wide range of
integral measures of the turbulent flow. The speed-up in velocity field computation introduced in the
current version of the SVS method makes this approach highly efficient compared to other synthetic
turbulence approaches. Because the SVS method deals directly with the vortical structures that
dominate the large-scale motion of the turbulence, it allows accurate prediction of phenomena, such
as particle clustering, that are dependent on the structural form of the turbulent eddies.

We note that the current validation study was conducted for a relatively low Reynolds number
flow for which the integral-scale Stokes number was close to unity. For high Reynolds number
turbulence, there exists a large range of scales between the integral scale and Kolmogorov scale. A
study using the wavelet-based coherent vortex simulation approach by Nejadmalayeri et al. (2013)
found that the number of energy-containing structures at a fixed kinetic energy level increases
linearly with Reynolds number in homogeneous turbulence. While the SVS method has not yet
been tested for high Reynolds numbers for purposes such as prediction of particle collision rate,
we speculate that it may not be necessary to cover the entire range of these length scales with
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the synthetic turbulent flow. Rather, it might be sufficient to introduce SVS structures only for a
length scale ℓ for which the eddy Stokes number Stℓ is closest to unity. Eddy structures much
larger than this scale ℓ will simply advect the particles with minimal relative motion between the
particles, and the fluctuations associated with eddies much smaller than ℓ will be filtered out by the
particle inertia. However, we also recall that several experimental and computational studies have
observed that intense vortex structures are less prominent for high Reynolds number turbulence
(with Reλ ≥ O(1000)) than is the case at low Reynolds numbers (Berlin et al., 1996 and Ishihara
et al., 2009). The potential effectiveness of vortex-based methods such as SVS at high turbulent
Reynolds numbers will therefore need to be carefully assessed in future work.
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APPENDIX: INDUCED VELOCITY BY A SCALAR GRADIENT VORTICITY FIELD

Substituting (4) into the Biot-Savart Equation (6) gives the induced velocity at a point x as

u(x, t) = − 1
4π


V

s × ω∗(x′, t)
s3 dv ′ − 1

4π


V

s × ∇′ζ(x′, t)
s3 dv ′. (A1)

Making use of the identity s/s3 = −∇(1/s) = ∇′(1/s) and the vector identity ∇ × ∇ζ = 0, Green’s
theorem can be used to write the integral in the second term on the right-hand side of (A1) as

1
4π


V

s × ∇′ζ(x′, t)
s3 dv ′ =

1
4π


V

∇′ ×
(

1
s
∇′ζ ′

)
dv ′ =

1
4π


S

n′ ×
(

1
s
∇′ζ ′

)
da, (A2)

where S is the bounding surface of V . At large distances, |x| >> L, the gradient field ∇ζ has the
form of a dipole that decays with distance r as O(1/r3). Consequently, the surface integral in (A2)
approaches zero as S → ∞, leading to the conclusion that the velocity field is entirely induced by
the non-gradient part ω∗ of the vorticity field.
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