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A stochastic vortex structure method for interacting particles
in turbulent shear flows

Farzad F. Dizaji, Jeffrey S. Marshall,a) and John R. Grant
Department of Mechanical Engineering, The University of Vermont, Burlington, Vermont 05405, USA

(Received 2 October 2017; accepted 9 December 2017; published online 3 January 2018)

In a recent study, we have proposed a new synthetic turbulence method based on stochastic vortex
structures (SVSs), and we have demonstrated that this method can accurately predict particle transport,
collision, and agglomeration in homogeneous, isotropic turbulence in comparison to direct numerical
simulation results. The current paper extends the SVS method to non-homogeneous, anisotropic
turbulence. The key element of this extension is a new inversion procedure, by which the vortex
initial orientation can be set so as to generate a prescribed Reynolds stress field. After validating this
inversion procedure for simple problems, we apply the SVS method to the problem of interacting
particle transport by a turbulent planar jet. Measures of the turbulent flow and of particle dispersion,
clustering, and collision obtained by the new SVS simulations are shown to compare well with direct
numerical simulation results. The influence of different numerical parameters, such as number of
vortices and vortex lifetime, on the accuracy of the SVS predictions is also examined. Published by
AIP Publishing. https://doi.org/10.1063/1.5007743

I. INTRODUCTION

Computational modeling of the motion of interacting
particles, droplets, or bubbles subject to subgrid-scale fluc-
tuations in turbulent flows is a long-standing challenge in
multiphase flow simulations. The Reynolds-averaged Navier-
Stokes (RANS) approach remains the most common method
for engineering solution of practical turbulent flows, providing
both manageable computation times and reasonably accurate
prediction of key flow features, such as boundary layer separa-
tion. However, when used in conjunction with the Lagrangian
simulation of particulate fluids, it is necessary to augment
the RANS equations with some model to account for the
effect of the turbulent fluctuations when computing the par-
ticle trajectories. This problem also arises when using the
large eddy simulation (LES) approach with sufficiently small
values of the Kolmogorov-scale particle Stokes number.1 A
number of effective methods exist for dealing with this prob-
lem for non-interacting particles (see Ref. 2 for a review), but
subgrid-scale modeling for transport of interacting particles
in turbulent flows remains an unresolved challenge. Parti-
cle interaction is essential in a wide range of turbulent flow
problems occurring in nature, such as turbulence effects on
collision of rain droplets or snow flakes, contact electrifica-
tion of dust particles in sand storms, and agglomeration of
particles in volcanic plumes or of pollution particulates in the
atmosphere. Particle interaction also plays an important role in
many industrial particulate flow problems, such as pharmaceu-
tical manufacturing, paint production, wastewater treatment,
additive manufacturing processes, 3D printing, flame synthe-
sis of nanoparticles, and fly ash capture from combustion
furnaces.

a)Author to whom correspondence should be addressed: jmarsha1@uvm.edu.
Telephone: 1 (802) 656-3826.

The challenges associated with subgrid-scale modeling
for turbulent transport of interacting particles arise from three
considerations. First, it is critical for simulation of particle
interaction to accurately model small values of the parti-
cle separation distance. However, small separation distances
imply that the nearby particles are experiencing forcing from
the same set of nearby turbulent eddies so that the fluid
fluctuation velocity at the particle positions is highly cor-
related. As a consequence, any model in which each parti-
cle experiences uncorrelated forcing will not be appropriate
for simulation of interacting particles. Second, particle col-
lision and adhesion processes occur over time scales that
are very small, typically much smaller than those associ-
ated with the fluid flow. The numerical calculation conse-
quently becomes numerically stiff when particle interactions
are included, particularly when using methods such as the
soft-sphere discrete-element method (DEM). Synthetic turbu-
lence models commonly used to approximate the subgrid-scale
turbulent fluctuations must therefore be highly efficient in
order to be manageable with small time steps. Third, turbu-
lent eddy structures are known to expel particles with higher
density than the surrounding fluid, leading to formation of
particle clusters in the region in between the eddies that can
have local particle concentrations an order of magnitude or
more above the average concentration.3–7 This phenomenon
leads to the so-called preferential concentration effect, which
can dramatically increase the particle collision rate, agglom-
eration, and other interactions in these high-concentration
regions.8,9

Since particle clustering in turbulent flows occurs due
to interaction of particles with coherent eddies, it is natu-
ral to utilize a vortex structural approach in modeling the
effect of turbulent fluctuations on interacting particles. Vortex
structural models have long been used in turbulence flow mod-
eling, dating back to Townsend’s10 model of homogeneous
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turbulence as a collection of Burger’s vortices and Lund-
gren’s11 spiral vortex model, as well as extensions of these
models by Pullin and Saffman12 and Saffman.13 The scaling
and structure of coherent vortices were studied numerically for
homogeneous turbulence by Jiménez et al.14 and experimen-
tally for turbulent shear flows by Berlin et al.,15 among others.
Both studies found that the turbulent vorticity field is domi-
nated by a set of strong, coherent vortex structures of finite
length and with tubular shape, surrounded by a sea of weak
random (non-coherent) vorticity. The length and core radius of
the coherent vortices were found to scale with the Lagrangian
integral length scale and the Kolmogorov length scale, respec-
tively, and the vortex strength was found to scale with the
square root of the microscale Reynolds number. Theoretical
proof of these scaling observations was provided by Kambe
and Hatakeyama.16 Kivotides and Leonard17 reported a com-
putational study in which homogeneous turbulence is repre-
sented by a set of finite-length vortex structures and showed
that this system generates an energy spectrum that satisfies the
Kolmogorov k−5/3 scaling in the turbulence inertial range. The
effectiveness of vortex structural models for prediction of tur-
bulence structure functions and various velocity and vorticity
probability density functions was discussed by Refs. 18–22.
Extensions of the vortex filament method were successfully
utilized for simulation of a number of turbulent shear flows,
including mixing layers,23 co-flowing jets,24 and boundary
layers.25

Ayyalasomayajula et al.26 proposed a vortex structural
model for transport of particles in homogeneous isotropic tur-
bulence using a two-dimensional array of uniformly spaced
vortices, where a stochastic algorithm is used to determine
the vortex strength. Somewhat surprisingly, given the highly
simplified nature of this model, the predicted particle acceler-
ation statistics and clustering were similar to direct numerical
simulation (DNS) results. Sala and Marshall27 proposed a
three-dimensional stochastic vortex structure (SVS) model,
again for homogeneous isotropic turbulence, where the tur-
bulent eddies are represented by a set of finite-length vor-
tex structures which are randomly positioned and oriented
in the flow field. The vortex length and core radius were
assumed to be proportional to the turbulence integral and
Kolmogorov length scales, respectively. Unlike the vortex
filament method, the SVS method does not use the vortex
structures to evolve the turbulent flow field; instead, the vortex
structures are used only to approximate a subgrid-scale syn-
thetic turbulence to use for particle evolution in a flow with
a given Reynolds stress distribution. An accelerated version
of the SVS method was developed by Dizaji and Marshall28

using both the fast multipole method and a local Taylor series
expansion which speeds up the computations by up to two
orders of magnitude with negligible difference in flow field or
particle interaction statistics. The SVS model was shown to
yield predictions for turbulence energy spectrum, velocity and
acceleration probability density function (PDF), and particle
collision rate that are in close agreement with DNS predic-
tions. Dizaji and Marshall28 also verified that the SVS model
is highly effective at accurately predicting various measures
characterizing agglomerate formation for adhesive particles
in turbulent flows.

One criticism of the SVS model is that, to date, all appli-
cations of this model have been for isotropic, homogeneous
turbulence. The objective of the current paper is to extend the
SVS model to non-homogeneous, anisotropic turbulent flows
and to validate this extended model in comparison to direct
numerical simulation (DNS) results. The extension of the SVS
model for anisotropic turbulence is described in Sec. II A, with
particular focus on a proposed inversion algorithm by which
the orientation of the SVS vortex structures can be adjusted to
yield a prescribed Reynolds stress field. This vortex structure
initialization method is examined and validated in Sec. II B
for both homogeneous and inhomogeneous anisotropic flow
fields. Computational methods used for particle transport and
for direct numerical simulation (DNS) for validation of the
SVS model are described in Sec. III. Validation of the SVS
model with comparison to DNS results for particulate turbu-
lent planar jet flow is reported in Sec. IV. Conclusions are
given in Sec. V.

II. STOCHASTIC VORTEX STRUCTURE METHOD
FOR ANISOTROPIC TURBULENCE
A. Anisotropic SVS method

The stochastic vortex structure (SVS) model approxi-
mates the turbulent vorticity field by a collection of vortex
structures placed in the flow field. In its simplest version, the
vortex structures in the SVS model all have the same finite
length L, core radius δ, and strength Γ. The vortex length L is
of the order of magnitude of the turbulence Lagrangian integral
length scale `0 = 0.5 u0

3/ε, where u0 is the turbulence root-
mean-square velocity and ε is the turbulence dissipation rate
per unit mass. The core radius δ of the coherent vortices was
estimated numerically by Jiménez et al.,14 experimentally by
Berlin et al.,15 and theoretically by Kambe and Hatakeyama16

to be 3-4 times the Kolmogorov length scale, η = (ν3/ε)1/4,
where ν is the fluid kinematic viscosity. In the current work,
we use somewhat larger vortex structures with a core radius of
8η so as to ensure sufficient number of grid points to resolve
the velocity variation across the vortex cores; however, SVS
computations were repeated with core radius δ = 4η, and
the results were found to be almost identical to those with
larger core radius. Each vortex structure has a lifetime TV

which is proportional to the integral time scale, T` = q/3ε,
where q = 1.5 u2

0 is the turbulent kinetic energy per unit mass,
although we note that the model results are not sensitive to the
choice of vortex lifetime.

1. Vortex structure initialization

The Reynolds stress tensor R has components in the global
Cartesian coordinate system given by Rij = u′i u

′
j , where a prime

denotes the fluctuating velocity component and an overbar
denotes a time average. In the SVS simulation, the anisotropy
of the turbulent fluctuations is produced via preferential ori-
entation of the vortex structures. It is necessary to develop a
method for specifying the probability distribution of the vor-
tex structure orientation so as to be consistent with the given
Reynolds stress tensor, which is a type of inverse problem. Tur-
bulence anisotropy is related both to differences in value of the
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three normal components of the Reynolds stress and to the off-
diagonal Reynolds stress components. We employ a four-step
approach for setting the vortex orientation in accordance with
a given Reynolds stress tensor, as described below. Prior to
implementing this procedure, we compute a set of M = 642
evenly spaced test points on the surface of a unit sphere by
dividing the faces of an icosahedron a prescribed number of
times and projecting the vertices to the unit sphere.

In the first step, the Reynolds stress tensor is interpolated
from the grid covering the flow field onto the centroid position
of a vortex structure. In the second step, we rotate the coordi-
nate system to a frame in which the Reynolds stress tensor at the
vortex centroid is diagonal. This is achieved by computing the
set of three eigenvalues λ(k) and associated normalized eigen-
vectors x(k) of the Reynolds stress tensor. We define a principal
direction coordinate system as a coordinate frame whose base
vectors are the three eigenvectors of R. The components of the
Reynolds tensor in the principal direction coordinate system,
denoted by R∗ij, are given by

R∗ij =
*.
,

λ(1) 0 0
0 λ(2) 0
0 0 λ(3)

+/
-

. (1)

In the third step, the vortex structure orientation is set in
this principal direction coordinate system. The inverse pro-
cedure by which this is achieved is based on the observation
that a vortex structure oriented in the x-direction, say, would
induce a velocity field in which R11 = 0 and R22 = R33. We
define vortex orientation weighting coefficients c1, c2, and c3,
normalized by c1 + c2 + c3 = 1, such that

c2 + c3 = λ
(1), c1 + c3 = λ

(2), c1 + c2 = λ
(3). (2)

Solving system (2) for the three orientation weighting coeffi-
cients gives

c1 =
1
2

(λ(2) + λ(3) − λ(1)), (3a)

c2 =
1
2

(λ(1) + λ(3) − λ(2)), (3b)

c3 =
1
2

(λ(1) + λ(2) − λ(3)). (3c)

The orientation of a vortex structure is specified at the ini-
tial time step by randomly selecting one of the M test points
on the unit sphere, obtained using the procedure described at
the beginning of this section. The coordinates of the selected
test point in principal direction coordinates are denoted by
(ξ∗1, ξ∗2, ξ∗3). Using the weighting coefficients obtained in (3),
the vortex structure orientation ζ is set in principal direction
coordinates as

ζ∗1 =
c1ξ
∗
1

∆
, ζ∗2 =

c2ξ
∗
2

∆
, ζ∗3 =

c3ξ
∗
3

∆
, (4)

where ∆ ≡ [(c1ξ
∗
1)2 + (c2ξ

∗
2)2 + (c3ξ

∗
3)2]1/2. In isotropic tur-

bulence, the three orientation weighting coefficients are equal
so that (4) results in random vortex orientation with uniform
distribution.

The fourth step of the vortex structure initialization pro-
cess is to rotate the structure back into the global coordinate

system used for the computation. We recall that the com-
ponents of the rotation tensor A from the global Cartesian
coordinates to a principal direction coordinate system form an
orthonormal 3 × 3 matrix whose three columns are the com-
ponents of the three eigenvectors x(k). The components of the
vortex structure orientation vector ζ in the global coordinate
frame can therefore be written in terms of the components in
(4) as

ζi = ζ
∗
j Aji. (5)

2. Velocity calculation

The vortex structures induce a velocity field u, which is
computed on the flow grid using the fast multipole acceleration
method described by Dizaji and Marshall.28 The accelerated
velocity computation method first partitions the computational
domain into a tree-structure composed of uniform-size boxes,
where at every level of the tree structure each box from the
previous level is divided into eight “offspring” boxes by divid-
ing the side lengths in half in each direction. For each of the
smallest “target” boxes in the tree structure, a list of other
“source” boxes with which it interacts “directly” and “indi-
rectly” is developed based on the analytical error estimate for
the multipole expansion by Salmon and Warren.29 For source
boxes on the direct interaction list, we compute the induced
velocity from each vortex structure in the source box on each
grid cell node in the target box by interpolation from a pla-
nar section, where the induced velocity from a unit strength
vortex structure on the plane is pre-computed at the start
of the simulation. For source boxes on the indirect interac-
tion list, the induced velocity from all sources in the box is
computed at the centroid of the target box using multipole
expansion.30,31 The contribution of this induced velocity at
the individual grid cell nodes within the target box is then
determined using a local Taylor series expansion. Induced
velocity from vortex structures from one period of the com-
putational domain in each direction is also included in the
computation. This accelerated method was shown by Dizaji
and Marshall28 to produce very accurate results with compu-
tation times that are nearly two orders of magnitude less than
the direct computation method using only four levels of the box
structure.

3. Vortex time evolution

Each of the NV vortex structures are advected in time by
moving the two endpoints of the vortex structure by solving

dxn,i

dt
= u(xn,i, t), (6)

where the index n identifies the vortex structure and i (=1,2)
identifies the endpoint of the structure under consideration.
After moving the end points, the vortex length is reset to L.
The centroid position xn and unit tangent vector λn for each
structure are then recomputed from the positions of the new
endpoint locations.

The initial age of the nth vortex structure, τ0n, is specified
as a random variable, where the ratio τ0n/TV has a uniform
distribution between 0 and 1. If t0n denotes the time at which
the vortex structure is initiated, then the current age of the
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vortex structure τn(t) is given by

τn = τ0n + t − t0n. (7)

When τn(t) exceeds the specified lifespan TV , the vortex struc-
ture is removed and a new vortex structure is introduced
with random position xn and orientation given by the same
four-part procedure as used to initialize the vortex structure
orientation.

B. Reynolds stress consistency test
1. Limitations of inversion method

The inverse method for initialization of the SVS vortex
structures described in Sec. II A is validated in this section
for different test computations in which the vortex structures
are initialized using a prescribed Reynolds stress field, and
then the Reynolds stress is evaluated from the computed SVS
velocity field and compared to the prescribed field. In con-
ducting this validation, it is important to bear in mind that the
inversion procedure described in Sec. II A is subject to limi-
tations, which can be ultimately associated with the fact that
we are attempting to generate a turbulence field using only the
induced velocity from tubular vortex structures. Mathemati-
cally, these restrictions require that the three coefficients c1,
c2, and c3 defined in (3a)–(3c) must all be positive. This in turn
introduces the following three restrictions on the values of the
eigenvalues λ(k):

λ(2) + λ(3) − λ(1) > 0, (8a)

λ(1) + λ(3) − λ(2) > 0, (8b)

λ(1) + λ(2) − λ(3) > 0. (8c)

If we now consider the special case of a two-dimensional
turbulent mean flow, such as a plane jet or channel flow, the
Reynolds stress tensor Rij has the form

Rij =
*.
,

R11 R12 0
R12 R22 0
0 0 R33

+/
-

. (9)

Solving for the eigenvalues of the Reynolds stress tensor gives

λ(1) =
1
2

(R11 + R22) +
1
2

[
(R11 − R22) 2 + 4R2

12

] 1/2
, (10a)

λ(2) =
1
2

(R11 + R22) −
1
2

[
(R11 − R22) 2 + 4R2

12

] 1/2
, (10b)

λ(3) = R33. (10c)

Using R33 for normalization, Reynolds stress ratios can be
defined as

r11 =
R11

R33
, r22 =

R22

R33
, r12 =

|R12 |

R33
, (11)

which are all positive by definition. From the solutions (10),
we find that the limitation (8b) is always satisfied and the
limitations (8a) and (8c) become, respectively,

r11 + r22 − 1 > 0, (12a)

1 −
[
(r11 − r22)2 + 4r2

12

] 1/2
> 0. (12b)

TABLE I. Special cases for limiting values of the Reynolds stress ratios for
two-dimensional turbulent mean flow.

Special case Prescribed values Limitation

A r22 = 1 r12 = 0 r11 < 2
B r22 = r11 r12 = 0 r11 > 1/2
C r11 = 1 r22 = 1 r12 < 1/2

Specific limitations for several special cases, as computed from
(12), are listed in Table I.

2. Validation for homogeneous turbulence

The inversion method described in Sec. II A was validated
first for the case of homogeneous turbulence, in which the
Reynolds stress is uniform in space. The Reynolds stress tensor
is assumed to be anisotropic so that the diagonal components
are not equal to each other and the diagonal component R12 in
(9) does not vanish. While it is unlikely that an anisotropic
Reynolds stress would actually develop in a homogeneous
turbulent flow, this is still a useful special case in which to
examine the performance of the inverse procedure before going
to fully inhomogeneous, anisotropic turbulence in Subsection
II B 3. The tests were performed using a rectangular domain
with side lengths Lx = 4 and Ly = Lz = 2 on a compu-
tational grid with 128, 64, and 64 points in the x-, y-, and
z-directions, respectively. The computations assumed triply
periodic boundary conditions, which were enforced by includ-
ing one period of the SVS vortex structures in each direction,
including the diagonal directions, in the velocity computation
as vorticity sources. The computed Reynolds stresses were
averaged over all computational points and over 10 different
runs with different random vortex positions.

A listing of different prescribed Reynolds stress values
used for the validation tests for homogeneous turbulence is
given in Table II. Results are plotted in Fig. 1 both for cases
with R12 = 0 [Fig. 1(a), for cases H.1-H.3] and for cases
with R12 , 0 [Fig. 1(b), for cases H.4-H.6]. In each case,
we plot the ratio Rij/q for each non-zero Reynolds stress com-
ponent, with the predicted components on the y-axis and the
prescribed components on the x-axis. The turbulent kinetic
energy q was computed separately from the prescribed and
predicted diagonal components of the Reynolds stress as

q =
1
2

(R11 + R22 + R33). (13)

The predicted Reynolds stresses shown in Fig. 1 are in good
agreement with the prescribed values for all cases examined,

TABLE II. Listing of specified Reynolds stress values used for validation of
the inversion method for homogeneous turbulence, shown in Fig. 1.

Case R11 R22 R33 R12 q Symbol in Fig. 1

H.1 0.0603 0.0403 0.0353 0 0.067 95 Open
H.2 0.0553 0.0453 0.0353 0 0.067 95 Gray
H.3 0.0653 0.0403 0.0303 0 0.067 95 Black
H.4 0.0603 0.0403 0.0353 0.010 0.067 95 Open
H.5 0.0553 0.0453 0.0353 0.015 0.067 95 Gray
H.6 0.0653 0.0403 0.0303 0.005 0.067 95 Black
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FIG. 1. Plots showing the prescribed Reynolds stresses (x-axis) and the pre-
dicted Reynolds stresses (y-axis) for SVS simulation of homogeneous tur-
bulence, with Rij = uiuj normalized by the square of the root-mean-square
velocity u0. Plots are for cases (a) with R12 = 0 (cases H.1-H.3) and (b) with
R12 , 0 (cases H.4-H.6), where the prescribed Reynolds stress values are listed
in Table II. Values of dimensionless Reynolds stress are plotted with R11/u2

0
denoted by squares—�, R22/u2

0 denoted by gradients—∇, R33/u2
0 denoted by

deltas—∆, and R12/u2
0 denoted by circles—©. The open, gray (shaded), and

black-filled symbols correspond to the cases indicated in Table II.

demonstrating success of the inversion procedure described in
Sec. II A for homogeneous turbulence.

3. Validation for inhomogeneous turbulence

In actuality, anisotropic turbulence tends to form under
non-homogeneous turbulent flow conditions. In this section,
we examine the performance of the SVS concept and of the
inversion procedure described in Sec. II A for two examples
of inhomogeneous turbulent flows. In both cases, the mean
flow is two-dimensional so that the Reynolds stress has the

form (9), and the flow is assumed to be periodic only in the
x- and y-directions. The tests were performed using a rectan-
gular domain with side lengths Lx = 4 and Ly = Lz = 2 on a
computational grid with 128, 64, and 64 points in the x-, y-,
and z-directions, respectively. The predicted Reynolds stress
values were averaged over the x-y plane for each z value, as
well as over 20 repeated runs with different vortex positions.

The first test was for a case with isotropic prescribed
Reynolds stress (R11 = R22 = R33, R12 = 0) which varies
as a top-hat distribution in y, as shown by the solid black line
in Fig. 2(a). Comparison of the predicted Reynolds stresses

FIG. 2. Plots showing the distributions of prescribed Reynolds stresses (black
lines) and the predicted Reynolds stresses (colored lines), normalized by the
square of the root-mean-square velocity u0, for (a) a top-hat Reynolds stress
distribution with prescribed Reynolds stress components R11 = R22 = R33
and R12 = 0 and (b) a Reynolds stress field typical of an idealized planar
jet with prescribed Reynolds stresses R11 = R22 = R33 and R12 , 0. The
predicted Reynolds stress is plotted for R11 (red line), R22 (green line), R33
(blue line), and R12 (orange line), and the prescribed Reynolds stresses are
denoted using a solid black line for the diagonal components and a dashed
black line for R12.
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with the prescribed distribution illustrates the nonlocal char-
acteristics of the SVS method. The normal components of
the predicted Reynolds stresses, plotted using the three color
lines in Fig. 2(a), appear similar to a diffused (or filtered)
form of the original profile. All three normal components
are close to equal for the predicted Reynolds stress, and
the predicted off-normal (shear) component (R12) is close to
zero.

The second test was for a case similar to an idealized
turbulent planar jet, with R11 = R22 = R33 and R12 , 0,
as shown by the solid and dashed black curves in Fig. 2(b)
for the normal and shear Reynolds stresses, respectively. For
simplicity, the normal stresses were prescribed as a quadratic
function of y and the R12 component was prescribed as one
period of a sine wave. The predicted Reynolds stresses are in
very good agreement to the prescribed values, although there is
observed to be a slight flattening of the peak normal Reynolds
stresses in the predicted values as compared to the prescribed
values.

III. COMPUTATIONAL METHODS USED
FOR VALIDATION TEST

Validation tests of the SVS method for the transport of
interacting particles in anisotropic, inhomogeneous turbulence
are reported in Sec. IV for turbulent planar jet flows. The
current section briefly describes the computational methods
used for direct numerical simulation of the fluid flow and
for simulating interacting particle transport in the validation
computations.

A. Computational method for direct
numerical simulations

Direct numerical simulations (DNS) of turbulent planar
jet flows were used to validate the SVS predictions. The
DNS computations were performed using a fractional-step
method,32–34 with time advancement performed using a third-
order Runge-Kutta method for convective terms and the 2nd
order Crank-Nicolson method for viscous terms. Algorithms
for all spatial derivatives except the convective terms are
approximated using second-order centered finite differences
(three point stencil) on a non-staggered grid. The discretized
equations for the kth Runge-Kutta step are given by

ũ = uk−1 + ∆t
(
2αkν∇

2uk−1 − 2αk∇pk−1

−γk[(u · ∇)u]k−1 − ζk[(u · ∇)u]k−2
)

, (14a)

∇2u∗ −
u∗

αkν∆t
= −

ũ
αkν∆t

+ ∇2uk−1, (14b)

∇ ·
(
∇φk

)
=
∇ · u∗

2αk∆t
, (14c)

uk = u∗ − 2αk∆t∇φk , (14d)

pk = pk−1 + φk − αkν∆t∇2φk , (14e)

where u and p are the fluid velocity and pressure and the coef-
ficients αk , γk , and ζk are given by Rai and Moin.32 Continuity
is enforced by a projection method leading to Eq. (14c) for the

pseudo-pressure, denoted by φ. In the multigrid solution of
this equation, the five-point stencil produced by successive
application of the gradient operation followed by the diver-
gence operation was employed rather than a numerical approx-
imation to the Laplacian. The Crank-Nicolson method was
used to solve the Helmholtz problem, given in (14b). A tenth-
order approximation was used for the convective terms, requir-
ing an 11-point stencil. To control non-linear instabilities, at
the end of each time step, the velocity components were filtered
using a tenth-order filter (again using an 11-point stencil).35,36

After filtering to obtain u filtered , the velocity u was replaced
by (1 − q)u + qu filtered , with q = 0.05. The mean flow was
initialized in the x-direction with cross-directional variation in
the z-direction. A very weak initial turbulence was introduced
using a synthetic turbulence generator, similar to the work of
Smirnov et al.,37 with initial turbulent kinetic energy of 10�5.
The turbulent flow was assumed to be periodic in the x- and y-
directions, and a symmetry boundary condition was imposed
in the z-direction. A layer of five ghost points in each direction
surrounded the computational domain so that no adjustment
of the differentiation schemes was needed near the domain
boundaries.

B. Discrete element method for particle transport

Particle transport and collisions were computed in both
the DNS and SVS computations using a soft-sphere discrete-
element method (DEM) for a set of Np colliding non-adhesive
particles of finite diameter d and mass m. The computations
evolve the particle velocity v and rotation rate Ω by the solu-
tion of the momentum and angular momentum equations for
individual particles, given by

m
dv
dt
= FF + FA, I

dΩ
dt
=MF + MA, (15)

where m = πρpd3/6 and I = (1/10) md2 are the particle
mass and moment of inertia. The momentum and angular
momentum equations include fluid-induced forces and torques
on the particle (FF and MF) and forces and torques result-
ing from particle collision (FA and MA). The computations
employ a multiple-time step algorithm to accurately resolve
numerical stiffness problems introduced by the different time
scales associated with the fluid flow, particle transport, and
particle collisions. The time steps, including the fluid time
step ∆t = O(L/U), the particle time step ∆tp = O(d/U),
and the collision time step ∆tc = O(d(ρ2

p/E
2
pU)1/5), satisfy

∆t > ∆tp > ∆tc, where L and U are the characteristic length
and velocity scales of the fluid flow. Here, ρp and Ep are the
particle density and elastic modulus.

The fluid velocity u was interpolated from the Cartesian
grid onto the particle locations with cubic accuracy using
the M4′ method of Monaghan.38 The dominant fluid-induced
force is the drag force, given by the Stokes drag law for low
particle Reynolds numbers as

Fd = −3π dµ (v − u). (16)

Particle rotation relative to the fluid gives rise to a torque acting
on the particles,

MF = −πµd3(Ω −
1
2
ω), (17)
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where ω is the local fluid vorticity vector. Additional fluid-
induced forces included in the computation include both
the Saffman and Magnus lift forces,39,40 added mass force,
and pressure gradient force, as discussed by Maxey and
Riley.41

The collision forces and torques include the normal
Hertzian elastic force Fnen, the normal dissipative force Fndn,
the force and torque resulting from resistance to sliding [FstS

and aFs(n× tS), respectively], and a torque Mtn associated
with resistance to twisting, where a denotes the particle radius.
The unit normal vector n is defined by n = (xj − xi)/|xj − xi |,
where xi and xj are the centroids of particles i and j, and the
unit vector tS indicates the direction of relative motion of the
particle surfaces at the contact point projected onto the contact
plane. The Hertzian expression42 for elastic normal force of
two colliding particles is

Fne = −Kδ3/2
N , (18)

where the particle overlap δN = ai + aj − |xi − xj | is written
in terms of the radii ai and aj of particles i and j. The nonlin-
ear spring coefficient K can be expressed as K = (4/3) E

√
R,

where the equivalent radius R and elastic modulus E are
defined by

1
R
≡

1
ai

+
1
aj

,
1
E
≡

1 − σ2
i

Ei
+

1 − σ2
j

Ej
. (19)

Here, Ei and Ej are Young’s moduli andσi andσj are Poisson’s
ratios of the two particles. The normal damping force Fnd is
approximated by

Fnd = −ηN vR · n, (20)

where vR = vi−vj is the relative particle velocity, vi and vj are
the particle centroid velocities, and the normal damping coef-
ficient ηN can be related to the restitution coefficient e using
an expression due to Tsuji et al.43 The current computations
are performed with a fixed, small value of the restitution coef-
ficient (e = 0.10), which is consistent with the observation that
particle collisions occur in this problem with small values of
the Stokes number, St = ρpd2U/18 µL.

A spring-dashpot-slider model is used to approximate the
sliding resistance.44 In this model, the sliding force Fs is first
absorbed by the spring and dashpot until its magnitude reaches
a critical value Fcrit = µf |Fn |. The friction coefficient µf is
selected to have a value of 0.3, which is in approximately the
middle of the range of typical values for dry surfaces discussed
by Johnson.45 If |Fs | > Fcrit , then the colliding particle sur-
faces slip relative to each other and the friction coefficient is
given by the Amonton expression,

Fs = −Fcrit . (21)

For the subcritical case |Fs | < Fcrit , the sliding resistance due
to the spring and dashpot for particle i is given by

Fs = −kT (

t∫
t0

vS(ξ) dξ) · tS − ηT vS · tS , (22)

where the slip velocity vS(t) is defined by

vS = vR − (vR · n)n + aiΩi × n + ajΩj × n (23)

and the slip direction is tS = vS/|vS |. The time integral in
the first term in (22) gives the tangential elastic displacement
of the material before slipping occurs, where t0 is the time
of initial particle impact. The expression for the tangential
stiffness coefficient kT derived by Mindlin46 can be expressed
as

kT = 8G
√

RδN , (24)

where G−1 ≡
2−σi

Gi
+

2−σj

Gj
is the equivalent shear modulus

and Gi = Ei/2(1 + σi) and Gj = Ej/2(1 + σj) are the shear
moduli of the two particles. We follow Tsuji et al.43 in assum-
ing that the tangential dissipation coefficient is of the same
order as the normal viscous damping coefficient, and thus set
ηT = ηN .

Twisting occurs when the two colliding particles have dif-
ferent rotation rates in the direction n. The relative twisting rate
ΩT is defined by

ΩT = (Ωi −Ωj) · n. (25)

The twisting resistance force is given by

Mt = −kQ

t∫
t0

ΩT (ξ) dξ − ηQΩT , (26)

where the time integral represents the angular displacement
prior to torsional sliding. Expressions for the torsional stiffness
and viscous friction coefficient are similarly given by Ref. 47,
kQ = kT δN R/2 and ηQ = ηT δN R/2. The particles begin to spin
relative to each other when the torque exceeds a critical value,
given by

Mt,crit =
2
3

Fcrit

√
δN R. (27)

When |Mt | > Mt,crit , the torsional resistance is given by

Mt = −Mt,critΩT/|ΩT |. (28)

IV. VALIDATION TEST OF SVS FOR TURBULENT
PLANAR JET FLOW
A. Direct numerical simulation

Direct numerical simulations were conducted for a partic-
ulate turbulent planar jet flow with one-way coupling between
the fluid and particles, and the results were compared to
SVS simulations of the same problem. The computational
domain was discretized using a Cartesian grid over the inter-
vals −2 ≤ x/H ≤ 2, −3 ≤ y/H ≤ 3 and −2 ≤ z/H ≤ 2,
where 2H is the initial jet width. The use of a uniform grid
with (Nx, Ny, Nz) = (129, 193, 129) points for DNS led to grid
increments that were nearly the same in all directions. The ini-
tial jet Reynolds number is given by ReH = U0H/ν = 3200,
where U0 is the nominal jet velocity and ν is the kinematic
viscosity. The initial mean velocity profile U(z) was chosen to
be of the hyperbolic tangent form

U(z) =
U0

2
+

U0

2
tanh

[
H

4θ0

(
1 −

2 |y|
H

)]
, (29)

where θ0 is the initial momentum thickness and the centerline
of the jet corresponds to y = 0. For the current computations,
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FIG. 3. Plots showing the time varia-
tion of the (a) turbulent kinetic energy
q, (b) dissipation rate ε, (c) enstrophy
Ω, and (d) integral time scale T0 from
the DNS computation.

we select H/θ0 = 35, for which value da Silva and Pereira48

showed that the most unstable Kelvin-Helmholtz instabil-
ity wavelength is λKH = 0.87H, which is less than one-
quarter the grid domain length in the streamwise direction.
The DNS simulations were performed using a fixed time step
of ∆t = 0.005H/U0, which was selected to yield a Courant-
Friedrichs-Lewy (CFL) number less than 0.1. In the following,
length, velocity, and time are nondimensionalized by H, U0,
and H/U0, respectively.

Results for time variation of the turbulent kinetic energy
q, the dissipation rate per unit mass ε, and enstrophy per unit
volume Ω for the jet flow are shown in Fig. 3, defined by

E =
1

2Vave

∫
V

u · u dv, ε =
2ν

Vave

∫
V

DijDij dv,

Ω =
1

2Vave

∫
V

ω · ω dv, (30)

where Dij are the components of the rate of deformation tensor,
u andω are the velocity and vorticity vectors, respectively, and
Vave is the averaging volume. Since we want these measures
to be independent of the size of the computational domain,
we performed the averaging only over the region −1 ≤ y ≤
1 initially occupied by the jet. The turbulent kinetic energy

FIG. 4. Time series of contour plots
of the velocity magnitude illustrate the
flow field for DNS (top row) at t = 0,
5, 10, 15, 20, and 25 and SVS case S
(bottom row) at t = 10, 15, and 20.
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initially increases as the turbulence develops in the jet, up to
a time of t � 10.5, at which the peak value of q is observed.
It then gradually decreases as the turbulence within the jet
decays. The time variation of the dissipation rate and enstrophy
also exhibits an increase at the beginning of the computation,
a peak, and then a gradual decrease, although the peak values
for enstrophy and dissipation rate occur a little later than for
kinetic energy (close to t ≈ 12).

Contours of the velocity magnitude at a series of times
during the jet development are shown for both the DNS com-
putation and the comparison SVS computation over a series of
times in Fig. 4. These contours illustrate the development of
instability and turbulence at the beginning of the run (t ≤ 10),
followed by decay of both the mean jet velocity and the turbu-
lence within the jet at later times (t ≥ 15). The turbulence
decay is accompanied by outward spreading of the turbu-
lent velocity field and decrease in velocity magnitude values
within the central region of the jet. The jet decay is often
characterized in the similarity theory by two time-varying
parameters—the centerline velocity Uc and the distance δ1/2

from the centerline at which the mean velocity equals one-half
the centerline value. The former of these parameters char-
acterizes the jet strength, and the latter characterizes the jet
width. It is recalled that in their experiments with a spatially
varying planar jet, Gutmark and Wygnanski49 observed that
δ1/2 and 1/U2

c both vary approximately linearly with distance.
This observation suggests that by replacing the downstream

FIG. 5. Plot of the DNS predictions for the inverse square of the centerline
velocity U−2

c (deltas) and jet width measure δ1/2 (circles) as functions of
time. The solid lines are best-fit lines. The observation of linear variation
of these parameters agrees with experimental observations of Gutmark and
Wygnanski.49

coordinate of the spatially varying jet in experiments of
Gutmark and Wygnanski with the product U0t, where U0 is the
initial centerline velocity, a linear variation for δ1/2 and 1/U2

c

FIG. 6. Comparison of our DNS results
for the planar jet flow (black line)
with results of other investigators for
(a) mean velocity, (b) Reynolds stress
R11, (c) Reynolds stress R22, and (d)
Reynolds stress R33. The comparison
data include experimental results from
Gutmark and Wygnanski49 (blue deltas)
and Ramaprian and Chandrasekhara50

(solid diamonds) and computational
results from da Silva and Pereira48

(red circles), Stanley et al.51 (orange
squares), and Thomas and Prakash52

(green gradients).
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with time might be observed for the current problem of a tem-
porally varying jet. Figure 5 plots time variation of both δ1/2

and 1/U2
c , exhibiting nearly linear variation in time in both

cases.
A comparison of the mean velocity and normal Reynolds

stresses from our DNS computations with results from pre-
vious experimental and numerical studies is given in Fig. 6.
The values are non-dimensionalized using Uc(t) and δ1/2(t)
to write them in similarity form, and we have confirmed that
the results are nearly independent of time during the simi-
larity regime of the computation (10 ≤ t ≤ 20). The mean
velocity curve from our DNS results is very close to the mean
velocity in the comparison studies. The normal Reynolds stress
results are also reasonably close to the values in the com-
parison studies, although the Reynolds stresses exhibit more
scatter among the different studies than do the mean flow
results.

B. Comparison of DNS flow field to SVS results

The grid used for the SVS computations had (Nx, Ny, Nz)
= (128, 128, 128) points. It is a requirement of the accelerated
method used for the SVS method that the number of points on
each side be a multiple of two. The SVS simulations were con-
ducted using the DNS Reynolds stress results over the interval
10 ≤ t ≤ 20 for which the similarity solution was found to
be valid in the DNS results. Before this time period, the DNS
results show that the turbulence is still developing, and after
this time period, the turbulence exhibits rapid dissipation. The
Reynolds stress predictions from DNS were written in dimen-
sionless similarity form (as shown in Fig. 6) and averaged over
the computational time period 10 ≤ t ≤ 20, in order to smooth
out temporal fluctuations. These averaged Reynolds stresses in
similarity form were then read into the SVS simulations, along
with the DNS predictions for Uc(t) and δ1/2(t) shown in Fig. 5,
and used to generate time-varying prescribed Reynolds stress
profiles for use during the SVS computation. The SVS compu-
tation was initialized with a prescribed number NV of vortices
positioned randomly in the SVS domain. The vortex strength
and orientation were set using the prescribed Reynolds stress
field at t = 10, obtained from the DNS results as described
earlier, using the inversion method described in Sec. II A. A
plot showing the initial strength distribution and initial orien-
tation of the SVS vortices is given in Fig. 7. While the vortices
were located throughout the computational domain, the vor-
tices with significant strength were located primarily within
the interval −1 ≤ y ≤ 1. All initial vortices were randomly
assigned an initial “age,” which advanced with time during
the computation. When a vortex age exceeded the prescribed
vortex lifespan TV , the vortex was removed and a new vortex
was introduced at a random location within the computational
domain. The strength and orientation of the new vortex were
again set using the procedure described in Sec. II A using the
prescribed Reynolds stress field for the time that the vortex
is introduced. Consequently, as the turbulence decays in time
during the SVS computation, the strength of the newly initi-
ated SVS vortices generally decreases at a given position in
the flow field. A series of SVS computations with different
values of NV and TV were performed, as listed in Table III.
The “standard” SVS computation (case S) was selected as one

FIG. 7. (a) Scatter plot showing SVS vortex locations, with size of the scatter
symbol proportional to the vortex strength. (b) Vector plot showing the vortex
orientation vector in the x-y plane, colored to identify the vortex strength.

with NV = 1024 and TV equal to the integral time scale T0 at
t = 10.

A comparison of the time variation of the velocity mag-
nitude contours for the SVS generated flow field at t = 10,
15, and 20 is given in Fig. 4 immediately below the DNS
plot at the same time (and using the same color scale). We
do not expect exact agreement since the SVS vortex struc-
tures are randomly distributed in space, but it is noted that

TABLE III. Computational parameters used for the SVS simulations.

Case Number of vortices (NV ) Vortex life time (TV/T0)

S 1024 1
NV.1 256 1
NV.2 512 1
NV.3 2048 1
NV.4 4096 1
T.1 1024 0.25
T.2 1024 0.5
T.3 1024 1.5
T.4 1024 2
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the velocity magnitudes and general tendencies of the SVS
generated flow field are similar to the DNS flow. In both
cases, the simulated jet turbulence gradually spreads in the
y-direction and decays over this time interval. As would be
expected from the uniform vortex size used in the SVS formu-
lation, we observe that the DNS flow field results in Fig. 4
exhibit more small-scale structures than do the SVS flow
fields.

A plot showing the time variation of the jet centerline
velocity Uc and the jet width measure δ1/2 is given in Fig. 8.
The value of Uc decreases during the time interval and the
value of δ1/2 increases, as expected for decaying turbulence.
The SVS predictions for Uc and δ1/2 are observed to be sig-
nificantly noisier than the DNS predictions. This noise in the
SVS predictions is associated with the “death” of some vor-
tices and the “birth” of new vortices at random positions in
the flow field. The SVS predictions for Uc fluctuate closely
about the DNS results. The SVS predictions for δ1/2 are also
close to the DNS predictions in the beginning part of the
computation (t ≤ 14), but by the end of the computation,
the predicted jet width measure for SVS is about 10% lower
than that for DNS. Similar fluctuations in the SVS predictions
are shown in Fig. 9(a), in which we compare the time vari-
ation of the turbulent kinetic energy for the DNS and SVS
computations. The SVS result is again observed to fluctuate
around the smoother DNS prediction, with a root-mean-square
value that decreases when the value of the vortex lifetime TV

is reduced. The power spectrum is plotted in Fig. 9(b) at time
t = 15 for both the DNS and SVS computations. Both com-
putations exhibit a k−5/3 Kolmogorov spectrum in the inertial
range, with DNS and SVS spectra in close agreement. At a high
wavenumber, the SVS spectrum reduces much faster than the
DNS spectrum as a consequence that SVS contains only vor-
tices with the length and velocity scaled to the integral scale
eddies.

A comparison of the time-averaged Reynolds stresses,
nondimensionalized using the similarity variables, is given for

FIG. 8. Predicted values of centerline velocity Uc(t) (red, lower curves) and
jet width measure δ1/2(t) (blue, upper curves) as functions of time for DNS
(dashed lines) and SVS case S (solid lines).

FIG. 9. Comparison of (a) the prescribed turbulent kinetic energy q and
(b) the power spectrum from direct numerical simulation (dashed line)
and the predicted value using the SVS method (solid line) for case S in
Table III.

DNS and SVS in Fig. 10. The DNS values of Uc and δ1/2

are used to write the Reynolds stresses and lateral distance
in similarity form for both computations. The three normal
Reynolds stress values are very close for the DNS and SVS pre-
dictions. The SVS prediction for the dimensionless Reynolds
shear stress R12/U2

c exhibits lower peak values than the DNS
predictions but otherwise has the same form.

C. Comparison of DNS particle transport to SVS results

An initial DNS flow computation was conducted out to a
time of t = 10 with no particles in order to allow the turbu-
lence to develop and to achieve a self-similar state. The DNS
computation was then restarted with particles present and con-
tinued out to a time t = 20. A total of Np = 32 000 particles of
diameter d = 0.04 and density ratio χ = ρf /ρp = 1 were used.
The particles were initially placed randomly within the region
−1 ≤ y ≤ 1 covering the jet. The particle Stokes number based
on the jet width scaling, StH , is given by

StH =
ρpd2U0

18µH
=

1
18χ

ReH (d/H)2 = 0.28. (31)

Particle initial positions were identical for both the DNS and
SVS simulations.
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FIG. 10. Comparison of the DNS
results (dashed line) and the similarity
solution with case S (solid line) for
dimensionless Reynolds stresses Rij ,
plotted using similarity scaling and
averaged over the time period (10,20).
Plots are for (i,j) values of (a) (1,1), (b)
(2,2), (c) (3,3), and (d) (1,2).

The particle concentration profile in y was computed by
dividing the flow field into bins and then adding the volume of
particles contained in each bin. For particles that straddle the
boundary between bins, the particle volume is divided along
the bin boundary and only that portion of the volume lying
in each bin is included in the sum. The concentration field
for SVS and DNS is identical at the initial time t = 10 and
has a top-hat form as shown in Fig. 11(a). During the time
period of the flow computation 10 ≤ t ≤ 20, the concentra-
tion field spreads outward into the lateral regions around the
jet due to forcing by the jet turbulence. The resulting con-
centration field for both DNS and SVS computations at time
t = 20 is plotted in Fig. 11(b), exhibiting excellent agreement
between the two methods. This comparison demonstrates that
the SVS method accurately simulates dispersion of the particle
field.

Another way to examine particle dispersion is to calculate
the root-mean-square particle position yrms, defined by

yrms =

√√√
1

Np

Np∑
n=1

y2
n,par , (32)

where yn,par denotes the y-position of particle n. A compari-
son of yrms as a function of time for DNS and for a variety of
SVS computations with different parameter values is plotted
in Fig. 12. Figure 12(a) shows the effect of number of vortices
NV on the lateral particle dispersion in cases with TV = T0.

As the number of vortices decreases, the strength of each vor-
tex is increased so as to hold the turbulent kinetic energy fixed.
As can be seen, cases with smaller number of vortices (e.g.,
NV = 256) exhibit slower lateral dispersion, resulting in lower
values of yrms at the given time than the DNS predictions. At
higher number of vortices, the predictions of the various SVS
computations appear to converge to a value of yrms that is close
to the DNS prediction up to a time of about t = 17, after which
the SVS predictions are somewhat less than that for DNS.
Figure 12(b) shows the effect of vortex lifetime on lateral par-
ticle dispersion. Increase in vortex lifetime is found to increase
the rate of particle dispersion from the center of the jet, up to
a lifetime value of about TV = 1.5T0, above which the parti-
cle dispersion rate remains close to the DNS prediction. This
increase in dispersion rate occurs because longer residence of
strong vortices near the jet center allows them longer time to
repel particles via centrifugal force. We also note that the tur-
bulent kinetic energy in the SVS computation increases (above
the DNS prediction) as the vortex lifetime is increased signif-
icantly above the integral time scale T0, which also increases
the lateral dispersion rate.

The total number of particle collisions is plotted as a func-
tion of time in Fig. 13 for DNS and for a variety of SVS
computations with different values of NV and TV . Figure 13(a)
shows that the number of collisions in SVS computations is
lower than that for DNS for small numbers of vortices but that
the collision number increases to close to the DNS results as
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FIG. 11. Particle positions (a) at the start of the particle runs at t = 10 and
(b) at the end of the run at t = 20 for DNS (red) and SVS case S (blue). (The
particle positions at t = 10 are the same for DNS and SVS.)

the number of vortices increases. The variation of vortex life-
time is seen in Fig. 13(b) to have little effect on the number of
particle collisions, which we believe to be a consequence of
two opposing influences. As discussed previously, increasing
the vortex lifetime tends to disperse the particles more rapidly
in the y-direction, consequently decreasing particle concentra-
tion and leading to lower numbers of collisions. On the other
hand, increasing the vortex lifetime also introduces a lag that
increases the turbulent kinetic energy slightly in a decaying
turbulent flow, resulting in an increase in number of parti-
cle collisions. These two phenomena counteract each other so
that little change in collision number with vortex lifetime is
observed in Fig. 13(b).

The tendency of particles to cluster can be characterized
by the radial distribution function (RDF), g(r), which is defined
by

g(r) =
1

4πρ0r2

dN
dr

, (33)

FIG. 12. Time variation of the root-mean-square particle position in the lateral
y-direction for DNS (dashed line) and for SVS with (a) different number of
vortices and (b) different vortex lifetime. Plot (a) is for cases NV.1 (pink),
NV.2 (orange), S (red), NV.3 (green), and NV.4 (blue). Plot (b) is for cases
T.1 (pink), T.2 (orange), S (red), T.3 (green), and T.4 (blue).

where the average number of particles per unit volume ρ0 is
related to the particle volume fraction Cp by ρ0 = 6Cp/π and
N(r) is obtained by computing the average number of neigh-
boring particles whose centroids are located within a radial
distance r from a given particle centroid. In order to smooth
the RDF values, we have averaged the predicted RDF for both
DNS and SVS over the time interval 14 ≤ t ≤ 16, which
was selected because this time interval is in the middle of
the computational interval (10 ≤ t ≤ 20). It is sufficiently
small that the turbulence kinetic energy does not change by a
large amount, and yet it is also sufficiently large that noticeable
smoothing of the data is observed. The radial distribution func-
tion is plotted in Fig. 14 for both DNS and SVS computations
and found to compare well. The RDF peak in the SVS compu-
tations is a little higher than the DNS result, which might be a
consequence of the observation that DNS was observed to dis-
perse particles a little more rapidly in the lateral y-direction,
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FIG. 13. Time variation of the number of collisions for DNS (dashed line) and
for SVS with (a) different number of vortices and (b) different vortex lifetime.
Plot (a) is for cases NV.1 (pink), NV.2 (orange), S (red), NV.3 (green), and
NV.4 (blue). Plot (b) is for cases T.1 (pink), T.2 (orange), S (red), T.3 (green),
and T.4 (blue).

FIG. 14. Comparison between our DNS results (dashed line) and SVS case S
(solid line) for the radial distribution function (RDF) as a function of distance
r. The data are averaged over the time interval from t = 14 to 16.

and so the resulting concentration is slightly lower, but the
effect is small.

V. CONCLUSIONS

The paper presents a novel inverse method by which
the orientation and strength of a set of finite-length vortices
can be set to reproduce a prescribed anisotropic Reynolds
stress field. This inverse method was incorporated into the
stochastic vortex structure (SVS) algorithm to generate a
time-varying synthetic turbulence field for transport of inter-
acting particles in anisotropic, non-homogeneous turbulent
flows. The proposed SVS method is well suited for simu-
lation of interacting particles since the statistics of the gen-
erated synthetic turbulence is both structurally and tempo-
rally consistent with the original turbulence and it can be
computed rapidly with use of the fast multipole acceler-
ated method.28 It has been previously demonstrated27,28 for
homogeneous, isotropic turbulence that the SVS method accu-
rately reproduces the turbulence energy spectrum, the proba-
bility density function of the acceleration, velocity and vor-
ticity fields, the collision rate of advected particles, and a
variety of agglomeration measures (fractal dimension, size
distribution, etc.) for adhesive particles. The current paper
extends the SVS approach to make it a viable method for
arbitrary turbulent flows and not only for homogeneous
turbulence.

The effectiveness of the proposed inverse method was
demonstrated in a series of computational experiments. We
first examined the accuracy of the inverse method for an
anisotropic, but homogenous, turbulent field with different
prescribed values of the Reynolds stresses. Next, we exam-
ined the performance of the inversion procedure for setting the
initial vortex orientation and strength in two different nonho-
mogeneous turbulent shear flows. Prescribed and predicted
Reynolds stresses were compared for the above cases and
showed good agreement. Finally, the SVS predictions for flow
and particle transport in a planar turbulent jet flow were com-
pared with direct numerical simulation (DNS) results. The
SVS computations used the Reynolds stress profiles computed
from DNS together with our inverse procedure to specify the
initial orientation and strength of the stochastic vortices, both
at the start of the computation and when new vortices were
introduced during the computation. The Reynolds stress pro-
files of both DNS and SVS computations were normalized
in similarity form and averaged over the duration of the SVS
computation and found to compare well. Measures of parti-
cle dispersion, clustering, and collision during the SVS and
DNS computations were also found to be in good agreement.
The effect on the SVS predictions of variation of the num-
ber and lifetime of vortices was also investigated, as these are
two important numerical parameters that must be specified in
the SVS computations. Computations with small numbers of
vortices yield too low collision rate and weak dispersion, but
the results approach the DNS predictions as the number of
vortices is increased. The particle dispersion predictions were
poor when the vortex lifetime was significantly below the tur-
bulence integral time scale, but values near the integral time
scale up to about twice the integral scale yielded acceptable
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results. The number of particle collisions was not sensitive to
the vortex lifetime.

With the extension to anisotropic, nonhomogeneous tur-
bulence described in the current paper, the stochastic vortex
structure method offers an accurate, viable method for simula-
tion of the subgrid fluctuation effects on interacting particles in
a large range of turbulent flows. However, we should note that
the method in its current form does have a number of restric-
tions which arise from the fact that all turbulence fluctuations
are generated by a set of tubular vortices in the SVS formula-
tion. Consequently, the method is not well suited for simulating
the near-wall region of wall bounded turbulent flows and would
not be able to satisfy the no-slip condition on the wall, although
the method might be expected to perform well in the boundary
layer wake region. Second, the SVS method has to date only
been used for problems with one-way coupling between the
fluid and the particles. It is possible that Stokesian dynamics
methods, or related methods based on Oseenlet solutions,53–56

could be used to account for two-way coupling (e.g., within
agglomerates) within the framework of the SVS method, but
this has not yet been attempted. As mentioned in Sec. II B 1,
the method also has some limitations for the inversion pro-
cedure used to set the initial vortex orientation, which stem
from restrictions on the amount of anisotropy that one can
achieve using only vortex tubes to generate the fluctuating tur-
bulence field. In the current formulations, the SVS method
is designed to be used together with a RANS simulation, for
which only the mean flow and averaged measures of turbu-
lent fluctuations are known. A similar problem of accounting
for the effect of sub-grid scales on particle transport exists for
large-eddy simulations, but in this case, it is not clear whether
injection of stochastic subgrid-scale vortices or other methods,
such as the approximate deconvolution method of Shotorban
and Mashayek,57 would be the most suitable approach.

ACKNOWLEDGMENTS

The authors are grateful for the assistance of Mr. Xing
Jin and Mr. Ran Tao during the early stages of the paper.
This research was supported by the U.S. National Science
Foundation under Grant No. CBET-1332472.

1G. Jin, G. W. He, and L. P. Wang, “Large-eddy simulation of turbulent
collision of heavy particles in isotropic turbulence,” Phys. Fluids 22, 055106
(2010).

2E. Loth, “Numerical approaches for motion of dispersed particles, droplets
and bubbles,” Prog. Energy Combust. Sci. 26, 161–223 (2000).

3J. Bec, L. Biferale, M. Cencini, A. Lanotte, S. Musacchio, and F. Toschi,
“Heavy particle concentration in turbulence at dissipative and inertial
scales,” Phys. Rev. Lett. 98, 084502 (2007).

4L. R. Collins and A. Keswani, “Reynolds number scaling of particle
clustering in turbulent aerosols,” New J. Phys. 6, 119 (2004).

5G. Falkovich and A. Pumir, “Intermittent distribution of heavy particles in
a turbulent flow,” Phys. Fluids 16(7), L47–L50 (2004).

6B. Grits, M. Pinsky, and A. Khain, “Investigation of small-scale droplet
concentration inhomogeneities in a turbulent flow,” Meteorol. Atmos. Phys.
92, 91–204 (2006).

7K. D. Squires and J. K. Eaton, “Preferential concentration of particles by
turbulence,” Phys. Fluids A 3, 1169–1178 (1991).

8W. C. Reade and L. R. Collins, “A numerical study of the particle size
distribution of an aerosol undergoing turbulent coagulation,” J. Fluid Mech.
415, 45–64 (2000).

9S. Sundaram and L. R. Collins, “Collision statistics in an isotropic particle-
laden turbulent suspension. I. Direct numerical simulations,” J. Fluid Mech.
335, 75–109 (1997).

10A. A. Townsend, “On the fine scale of turbulence,” Proc. R. Soc. A 208,
534–542 (1951).

11T. S. Lundgren, “Strained spiral vortex model for turbulent fine structure,”
Phys. Fluids 25(12), 2193–2203 (1982).

12D. I. Pullin and P. G. Saffman, “On the Lundgren-Townsend model of
turbulent fine scales,” Phys. Fluids A 5(1), 126–145 (1993).

13P. G. Saffman, “Vortex models of isotropic turbulence,” Philos. Trans. R.
Soc., A 355, 1949–1956 (1997).
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