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Null model analysis has been a popular tool for detecting pattern in binary presence–absence matrices, and previous tests 
have identified algorithms and metrics that have good statistical properties. However, the behavior of different metrics 
is often correlated, making it difficult to distinguish different patterns. We compared the performance of a suite of null 
models and metrics that have been proposed to measure patterns of segregation, aggregation, nestedness, coherence, and 
species turnover. We found that any matrix with segregated species pairs can be re-ordered to highlight aggregated pairs. As 
a consequence, the same null model can identify a single matrix as being simultaneously aggregated, segregated or nested. 
These results cast doubt on previous conclusions of matrix-wide species segregation based on the C-score and the fixed-fixed 
algorithm. Similarly, we found that recently proposed classification schemes based on patterns of coherence, nestedness, 
and segregation and aggregation cannot be uniquely distinguished using proposed metrics and null model algorithms. It 
may be necessary to use a combination of different metrics and to decompose matrix-wide patterns into those of individual 
pairs of species or pairs of sites to pinpoint the sources of non-randomness.
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A major research effort in community ecology has been  
to infer mechanisms of community organization from  
patterns in a binary presence–absence matrix. In such a 
matrix, species are represented by rows, sites are represented 
by columns, and the entries are the presence or absence of 
a species in a particular site (McCoy and Heck 1987). Early 
research (and controversy) focused on the role of inter-
specific competition in producing checkerboard patterns  
(Diamond 1975), species segregation (Stone and Roberts 
1990), and missing species combinations (Pielou and Pielou 
1968). A largely independent focus on species nestedness 
(Darlington 1957, Patterson and Atmar 1986) emphasized 
the role of selective, orderly extinction (and immigration)  
in producing species-poor assemblages whose composition  
is a perfectly nested subset of more species-rich assemblages.

Leibold and Mikkelson (2002) significantly expanded 
this framework by proposing tests for additional patterns 
of Clementsian, Gleasonian, and evenly-spaced gradients. 

Their method involves re-ordering the rows and columns  
of a presence–absence matrix by reciprocal averaging to 
maximize the coherence of species range sizes. A maxi-
mally coherent matrix state is one that contains the greatest 
number of uninterrupted sequences of species occurrences 
within rows of the re-ordered matrix. In such a re-ordered 
matrix, ‘species turnover’ is the replacement of one species 
by another, and ‘boundary clumping’ is the extent to which 
species boundaries are clumped or over-dispersed. Checker-
boards, nestedness, Clementsian gradients, Gleasonian 
gradients, and evenly-spaced gradients are recognized by a 
combination of patterns of coherence, species turnover, and 
boundary clumping.

Presley et al. (2010) further expanded Leibold and  
Mikkelson’s (2002) framework, distinguishing among 
12 different models based on the combination of bound-
ary clumping and turnover patterns for matrices in which 
there is positive coherence. They distinguished three types 
of nested patterns, depending on whether boundary clump-
ing was positive, random, or negative, and they recognized 
six additional ‘quasi-structures’ based on weakly positive or 
negative patterns of species turnover.

The review and decision to publish this paper has been taken by the above noted SE. 
The decision by the handling SE is shared by a second SE and the EiC.
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The identification of distinctive patterns in species x site presence-absence matrices is  important for under-
standing meta-community organisation. We compared the performance of a suite of null models and metrics 
that have been proposed to measure patterns of segregation, aggregation, nestedness, coherence, and species 
turnover. We found that any matrix with segregated species pairs can be re-ordered to highlight aggregated 
pairs, indicating that these seemingly opposite patterns are closely related. Recently proposed classification 
schemes failed to correctly classify realistic matrices that included  multiple co-occurrence structures. We 
propose using a combination of metrics and decomposing matrix-wide patterns into those of individual pairs 
of species and sites to pinpoint sources of non-randomness. 
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Both Leibold and Mikkelson (2002) and Presley et al. 
(2010) also recognized a pattern of ‘randomness’ which 
would imply purely stochastic forces in community assem-
bly. This null model represents a ground state against  
which the other patterns can be meaningfully compared 
and statistically tested (Gotelli and Graves 1996). Mecha-
nistically, such a null model can be thought of as a stochas-
tic colonization model that excludes species interactions  
and abiotic forces that structure communities along gradi-
ents. Island biogeography models (MacArthur and Wilson 
1963), neutral models (Hubbell 2001), and various meta-
community models (Holyoak et al. 2005) can all be inter-
preted this way. However, estimating the parameters of 
these models from empirical data has been very challenging 
(Gotelli and McGill 2006). A more fruitful alternative has 
been to use a statistical null model, in which an observed 
presence–absence matrix is reshuffled or randomized in a 
way that would mimic stochastic assembly of a community 
without specifying all the details of speciation, colonization, 
dispersal and extinction (Gotelli and Ulrich 2012).

Null models are always used in conjunction with metrics 
that quantify the pattern in a presence–absence matrix, usu-
ally as a single number. There have been many such mea-
sures proposed for quantifying pattern in presence–absence  
matrices, including metrics of nestedness (Ulrich et al. 
2009), species segregation (Stone and Roberts 1990),  
turnover and b-diversity (Leibold and Mikkelson 2002, 
Baselga 2010, Tuomisto 2010), coherence (Leibold and 
Mikkelson 2002), and boundary clumping (Clark and 
Evans 1954, Hoagland and Collins 1997). Similarly,  
many algorithms have been proposed for randomizing a 
presence–absence matrix to mimic a pattern of random  
community assembly (Gotelli 2000, Ulrich et al. 2009). 
These algorithms differ in whether the row and column sums 
of the randomized matrix are treated as fixed, equiprobable, 
or varying as a function of independently measured proper-
ties of sites or species.

As a consequence, there is now a plethora of seemingly 
reasonable ways to analyze such matrices. Some of these 
methods can lead to contradictory results when applied to 
the same data matrix (Gotelli and Ulrich 2012), and very 
different conclusions when applied to meta-analyses of sets 
of published data matrices (Wright et al. 1998, Ulrich and 
Gotelli 2010). However, not all combinations of metrics 
and null models perform well in practice. Before null  
models are used to analyze empirical data sets, the perfor-
mance of candidate randomization algorithms and pattern 
metrics should be explored with benchmark testing (Gotelli 
2001, Gotelli and Ulrich 2012). Such tests evaluate the 
behavior of null models and their associated metrics by 
applying them to sets of artificial stochastic matrices that  
have pre-defined mixtures of deterministic pattern and  
random associations. Benchmark analysis (Gotelli and  
Ulrich 2012) can help to identify combinations of null  
models and metrics that are most powerful for detecting 
certain kinds of patterns. Benchmark analysis can also steer 
ecologists away from certain algorithms and indices that  
lead to frequent rejection of the null hypothesis when  
applied to simple random matrices (a type I statistical error).

To date, there have been several benchmark analyses 
of null models for species nestedness (Ulrich and Gotelli 

2007a) and species segregation (Gotelli 2001, Ulrich  
and Gotelli 2007b, 2010), but not for more recently devel-
oped metrics of species coherence, turnover, and bound-
ary clumping. Both Leibold and Mikkelson (2002) and  
Presley et al. (2010) proposed new metrics to be used in 
combination with existing null model algorithms. They 
analyzed patterns in artificial matrices exhibiting idealized 
(extreme) patterns, and they provided examples of differ-
ent empirical matrices that fit different scenarios in their  
proposed frameworks. But in neither case have the metrics 
and null model algorithms been systematically tested against 
sets of artificial matrices created with varying mixtures  
of pattern and randomness. Such tests are important not 
only for finding combinations of metrics and algorithms 
that have good power for detecting pattern and avoiding 
type I statistical errors. In previous analyses, many presence– 
absence metrics for patterns of nestedness and co-occurrence 
have exhibited correlated responses when applied to both 
empirical and artificial data sets, and these correlations 
are sensitive to how the matrices were constructed as well 
as to their size, shape, and percent fill. The frameworks 
proposed by Leibold and Mikkelson (2002), and Presley 
et al. (2010) implicitly assume that metrics of coherence, 
turnover, and boundary clumping describe orthogonal,  
independent properties of matrices. But if the metrics  
are strongly correlated, some of the proposed cells in their 
classification frameworks may be redundant or not achiev-
able. Leibold and Mikkelson (2002) recognized this problem 
and noted that they were able to identify empirical matrices 
that fit each of the five different scenarios they described.

In this paper, we systematically tested indices of coher-
ence, turnover, and range boundaries proposed by Leibold 
and Mikkelson (2002) and Presley et al. (2010), as well 
as some other candidate metrics that might also quantify 
these kinds of properties. We used these metrics in con-
junction with several null model algorithms that have been  
proposed in previous benchmark tests of nestedness (Ulrich 
and Gotelli 2007a) and species co-occurrence (Ulrich and 
Gotelli 2007b). After identifying suitable combinations  
of metrics and null model algorithms, we tested for pat-
terns of community organization in a meta-analysis of three  
sets of empirical presence–absence matrices compiled from 
the published literature and from unpublished sources 
(Ulrich and Gotelli 2010).

Material and methods

Artificial matrices

In order to understand the behavior of different null model 
algorithms and algorithms for detecting species turnover, 
we created two sets of artificial presence–absence matrices 
with specified amounts of randomness and structure. These 
matrices differed in their size (number of rows and columns), 
fraction of the matrix that was filled with species presences, 
and whether the cells were filled independently, or in a way 
that reflected specified patterns of species aggregation, segre-
gation, or nestedness. Once these criteria were established, 
different matrices in each set were created stochastically, to 
generate variation among matrices of a particular type.
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In the construction of these matrices, ‘uniform’ refers 
always to placement probabilities drawn from an equiprob-
able random distribution. ‘Exponential’ refers to placement 
probabilities drawn from an exponential random distri-
bution, which was generated from the multiplication of  
two equiprobable random variables. Both the uniform  
and exponential distributions will generate variability in row 
or column totals, but the variability is more extreme with  
the exponential distribution. This variability reflects the  
intuition of ecologists that there is heterogeneity among 
species in their commonness or rarity (the row sums of the 
matrix), and there is heterogeneity among sites in the num-
ber of species they harbor (the column sums of the matrix). 
This kind of heterogeneity is probably present whether or 
not species interactions are important, so it is useful to  
incorporate it in a set of random null matrices for bench-
mark testing.

We constructed two types of random matrices (Mfixed size 
and Mfixed fill). We generated these matrix types to span the 
range of empirical matrices that are typically generated by 
field ecologists who sample replicated assemblages at local 
and regional spatial scales. The Mfixed size matrices all had 
m  50 rows and n  50 columns. The proportion of cells  
in each matrix that was filled with 1 s was chosen from  
a random uniform distribution with limits of 0.1 and 
0.9. In contrast, the Mfixed fill matrices were all filled with a  
fixed proportion of 0.4, but the number of rows and the 
number of columns for each matrix was determined by  
a draw of two random uniform numbers (m  10 to 100 
rows and n  10 to 100 columns). For both matrix types,  
we generated 100 matrices each using nine different  
placement algorithms (Table 1; Supplementary material 
Appendix A1 contains examples of each matrix type):

Uniform-uniform random matrices1. . We filled the matrix 
cells randomly and independently until the desired matrix 
fill was reached (uniform – uniform random matrices). 
The probability of placing an occurrence in cell cij of  
the matrix was the product of two probabilities, each 
drawn from uniform random distribution, that speci-
fied placement in row i, column j. This matrix type 
represents random colonization in which all species are 
approximately equal in occurrence frequency, and all sites  
are approximately equal in suitability to be colonized.
Exponential-exponential random matrices2. . We filled 
the matrix cells randomly and independently until the 

desired matrix fill was reached. The probability of placing 
an occurrence in cell cij of the matrix was the product 
of two probabilities, each drawn from a random expo-
nential random distribution, that specified placement 
in row i, column j. This matrix type represents random 
colonization in which species differ greatly in occurrence 
frequency, and sites differ greatly in their suitability. The 
algorithm generates highly nested matrices.
Exponential-uniform random matrices3. . We filled the matrix 
cells randomly and independently until the desired 
matrix fill was reached. The probability of placing an  
occurrence in cell cij of the matrix was the product of  
two probabilities, one drawn from an exponential distri-
bution that specified the probability of placement in row 
i, and one drawn from a uniform distribution that speci-
fied the probability of placement in column j. This matrix 
type represents random colonization in which species  
differ greatly in their occurrence frequency, but all sites 
are approximately equal in their suitability.
Uniform-uniform segregated matrices4. . We randomly 
selected two rows (uniform distribution) and two col-
umns (uniform distribution) and filled the four cells  
with a 2  2 checkerboard submatrix {{1,0},{0,1}}. We 
randomly selected additional pairs of rows and columns 
until the desired matrix fill was reached. This matrix  
type represents a pattern of species segregation in which 
all species are approximately equal in occurrence fre-
quency, and all sites are approximately equal in suitabil-
ity, but each species is part of a pair in which the pair 
members exclude one another in a classic checkerboard 
distribution. Note that, with this algorithm, each species 
forms a perfect checkerboard unit with one other species, 
but occurrence patterns should be random within the 
remaining S 2 2 species pairs of which it is a member.

5. Uniform-uniform aggregated matrices. We randomly 
selected two rows (uniform distribution) and two col-
umns (uniform distribution) and filled the four cells 
with a 2  2 aggregated submatrix {{1,1},{1,1}} until 
the desired matrix fill was reached. This matrix type 
represents a pattern of species aggregation in which all  
species are approximately equal in occurrence frequency, 
and all sites are approximately equal in suitability, but 
each species is a member of a pair that tends to occur 
in an aggregated distribution. Similar to algorithm no. 
4, each species belongs to one such aggregated pair, but  
its occurrence should be random with respect to the 
remaining S – 2 species pairs in which it is a member.

6. Exponential-exponential segregated matrices. We randomly 
selected two rows (exponential distribution) and two 
columns (exponential distribution) and filled the four 
cells with 2  2 checkerboard submatrices {{1,0},{0,1}} 
until the desired matrix fill was reached. This matrix 
type represents a pattern of species segregation in which 
species differ greatly in their occurrence frequency, and 
sites differ greatly in their suitability, but species within 
individual pairs tend to exclude one another in a classic 
checkerboard distribution.

7. Uniform-uniform compartmentalized matrices. We  
sequentially filled the matrix with completely filled rect-
angular submatrices until the desired matrix fill was 
reached. At each step, the number of rows and columns 

Table 1. Summary of nine different algorithms used to generate  
a suite of artificial matrices for testing null model algorithms and 
indices of community structure.

 
Algorithm

Heterogeneity 
among species

Heterogeneity  
among sites

Initially hypothesized 
association patterns

1 no no none
2 yes yes none
3 yes no none
4 no no segregation
5 no no aggregation
6 yes yes segregation
7 no no compartmentalized
8 yes yes nested
9 yes yes turnover



5

in the submatrix was determined by drawing a random 
uniform integer between 2 and m/2 and n/2, respectively 
(compartmented matrices). This matrix type represents  
a pattern in which there are aggregated submatrices of 
species and sites in which occurrence is clustered.

8. Proportional-proportional nested matrices. As in algo-
rithm no. 2, we filled the matrix cells randomly and 
independently until the desired matrix fill was reached. 
The probability of placing an occurrence in cell cij of the  
matrix was specified from two exponential random 
distributions. After sorting the matrix according to 
row and column totals, we randomly introduced a 
small number (5 to 10% of matrix fill) of unexpected 
absences in the upper left region of the matrix and a few  
unexpected presences in the lower right region of the 
matrix. Except for random placement, and the intro-
duction of a small number of unexpected absences  
and presences, matrices generated this way should be 
strongly nested.

9. Normal-uniform turnover matrices. We filled the matrix 
until the desired fill was reached. The placement  
probabilities for columns were drawn from a uniform 
distribution. The placement probabilities for rows  
were drawn from a normal distribution with the mean 
centered at the corresponding diagonal cell of the matrix. 
This algorithm generates a pattern in which there is  
turnover of species across sites, expressed as a concen-
tration of presences along a diagonal band when the  
matrix is ordered by reciprocal averaging (Leibold and 
Mikkelson 2002). 

In summary (Table 1), our set of artificial matrices include 
three algorithms in which species colonization is indepen-
dent, but there are varying degrees of heterogeneity in spe-
cies occurrences and site suitability (1, 2, 3), two algorithms 
which should generate segregated pairs of species (4, 6), 
and one algorithm each that should generate matrices that 
are aggregated (5), compartmentalized (7), nested (8), and 
exhibit turnover (9). Thus, our 1800 artificial matrices, with 
varying degrees of randomness and structure, were con-
structed to test the performance of different metrics and dif-
ferent null model algorithms. Examples of each matrix type 
are contained in Supplementary material Appendix A1.

Empirical matrices

We analyzed three collections of empirical matrices that 
have previously been studied in species co-occurrence  
analysis (Wright et al. 1998, Ulrich and Gotelli 2007a, b, 
2010). The first is the set of 288 biogeographic presence– 
absence matrices compiled by Atmar and Patterson (1995). 
The second is a set of 147 abundance matrices contained in 
Supplement A of Ulrich and Gotelli (2010). The third is a 
set of 36 interaction matrices (species  species) that includes 
abundance data from the NCEAS database ( www.nceas.
ucsb.edu/interactionweb/html/datasets.html#anemone_
fish ). In total, we analyzed 471 empirical species  sites  
matrices. We classified these matrices as large scale (land-
scape to continental), small scale (local to landscape), and 
interaction matrices. Additionally, we sorted the matrices of 

the first two sets into eight taxonomic groups (fishes, herp-
tiles [Amphibia and Reptilia], mammals, birds, insects, other 
invertebrates, plants, and protozoa). 

Metrics
We considered a set of 13 possible metrics (Table 2) that 
potentially can detect patterns of species segregation (4a, 4b, 
4c, 12), species aggregation (4a, 5, 8, 9, 10, 12, 13), nestedness 
(1, 2, 3), turnover (6), range coherence (7), and clustering 
of species’ range boundaries (11). Some metrics of species 
segregation, aggregation, and compositional dissimilarity  
(4, 5, 12, 13) do not depend on the ordering of the rows  
and columns of the matrix. Metrics of nestedness (1, 2, 3)  
are calculated from matrices that have been arranged in 
order of decreasing row and columns sums. Metrics of 
turnover (6), range coherence (7), clustering (11), and 
some metrics of species aggregation (4b, 8, 9, 10), and 
species segregation (4c) are calculated from a matrix that 
is ordered on the basis of reciprocal averaging (correspon-
dence analysis). Following the proposal of Leibold and  
Mikkelson (2002), the first axis from a correspondence 
analysis orders the rows and columns of a presence–absence 
matrix in a way that maximizes uninterrupted strings of 
presences (coherence) in both the rows and columns of  
the matrix. Soerensen’s and Simpson’s indices have recently 
been proposed for use as metrics of species turnover and 
nestedness (Baselga 2010, Podani and Schmera 2011, but 
see Almeida-Neto et al. 2012). However, the indices are 
calculated using the row and column sums of a presence– 
absence matrix. We did not consider these indices, because 
we wanted to compare all indices with a fixed – fixed null 
model, which preserves row and column sums, and has per-
formed well in previous analyses of species co-occurrence 
(Gotelli 2000) and nestedness (Ulrich and Gotelli 2007a).

Metrics independent of matrix sorting

We estimated matrix wide species segregation by the  
C-score (Stone and Roberts 1990) that is a normalized  
count of the number of checkerboard submatrices 
({{1,0},{0,1}} or {{0,1},{1,0}}). The original normalization 
of the C-score was an average calculated over the number 
of species pairs (Stone and Roberts 1990). This normaliza-
tion causes the raw C-score to be positively correlated with  
the number of sites (Ulrich and Gotelli 2007b). An addi-
tional scaling should therefore also account for the number 
of site combinations [n(n 2 1)/2]. We hence use a modified 
C-score of the form

C  score

4
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where Ni and Nj denote total number of occurrences of  
species i and j and Nij is the number of joint occurrences.



6

Table 2. Summary of 15 indices for co-occurrence analysis used in this paper. 

Index Name Description Matrix ordering Pattern Reference

1 NODF normalized count of species overlap along the gradient of 
decreasing species richness of sites and species

row and column 
totals

nestedness Almeida-Neto 
et al. 2008

2 BR normalized count of shifts in occurrences to get a 
perfectly nested matrix

row and column 
totals

nestedness Brualdi and 
Sanderson 1999

3 BRturn normalized count of shifts in occurrences to get a 
perfectly nested matrix

reciprocal 
averaging

nestedness this work

4a modified  
C-score

normalized number of 2  2 checkerboard units unordered aggregation/
segregation

Stone and Roberts 
1990, this work

4b CTurn normalized number of 2  2 checkerboard units with 
occurrences in the turnover region of the sorted matrix

reciprocal 
averaging

segregation this work

4c CSeg normalized number of 2  2 checkerboard units with 
occurrences not in the turnover region of the sorted 
matrix

reciprocal 
averaging

segregation this work

5 Clumping normalized number of clumped 2  2 submatrices unordered aggregation this work
6 R2 rank correlation of row and column position for occupied 

cells in an ordered matrix
reciprocal 

averaging
turnover this work

7 EmAbs number of embedded absences within rows reciprocal 
averaging

range 
coherence

Presley et al. 2010

8 NND average nearest neighbor distance of occupied cells reciprocal 
averaging

aggregation 
(low 
values)

Clark and Evans 
1954

9 JoinOcc number of occupied adjacent grid cells reciprocal 
averaging

aggregation Moran 1948

10 Block blocked quadrat variance reciprocal 
averaging

aggregation Hill 1973

11 Morista relative abundance distribution of range boundaries 
among sites

reciprocal 
averaging

clustering of 
species 
range 
boundaries

Hoagland and 
Collins 1997

12 Chao relative abundance distribution among sites unordered segregation Chao et al. 2008
13 Togetherness normalized number of paired 2  2 submatrices  

(togetherness score)
unordered aggregation Stone and Roberts 

1992, this work

Chao et al. (2008) extended the Morisita index of simi-
larity for two communities to a matrix-wide metric for n  
communities of the form

Chao

p p

n p
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where pij is the relative abundance of species i in site j. 
Low values of Chao indicate dissimilarity of species rela-
tive abundance distribution among sites, which can be 
inter preted as a measure of negative covariance in relative 
abundances. The metric is independent of the ordering of 
the matrix.

A simple metric for aggregation that is independent of 
matrix order is a count of the total number of 2  2 sub-
matrices of the form {{1,1},{1,1}}. The Clumping metric is 
therefore the aggregation equivalent to the C-score. As in the  
case of the C-score we calculate Clumping in the normal-
ized form divided by the total number of 2  2 submatrices  
[mn (m 2 1) (n 2 1)/4].

The togetherness score (Tog) of Stone and Roberts  
(1992) is a complement of the C-score and defined  
from 2  2 submatrices of the form {{1,0},{1,0}} or 
{{0,1},{0,1}}. The metric Tog is a count of the total num-
ber of these submatrices. It is standardized with regard to 
matrix size by

Tog

i j
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Tog can range from 0.0 to 1.0, with high values of Tog  
indicating positive species association. We note that Tog dif-
fers from the previous metrics in that it is column centered 
and scores of a matrix and its transpose differ.

Metric depending of matrix sorting

With perfect spatial turnover, species occurrences should 
be concentrated along the diagonal of the matrix after 
ordination by reciprocal averaging (Leibold and Mik-
kelson 2002). Such a matrix can be subdivided into a 
nearly completely filled region (AT, area of turnover) and  
two empty regions (AC, areas of co-occurrence) (Fig. 1, 
2: maximum species turnover). The area of AT equals  
the matrix fill defined as fill  w*S, where S is the num-
ber of species and w is the width of this sub-region of the 
matrix. For calculations, all cells that were intersected by 
the margins of the filled region were included in the AT 
region.
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S 1 2 3 4 5 6 7 8 Species Score
1 1 1 1 1 0 0 0 0 4 –1.581
2 1 1 1 0 1 0 0 0 4 –0.913
3 1 1 0 1 0 1 0 0 4 –0.913
4 1 0 1 1 0 0 1 0 4 –0.913
5 1 1 0 0 1 0 0 1 4 –0.002
6 0 0 1 1 0 1 1 0 4 0.002
7 0 0 1 0 1 1 0 1 4 0.913
8 0 1 0 0 0 1 1 1 4 0.913
9 0 0 0 1 1 0 1 1 4 0.913

10 0 0 0 0 1 1 1 1 4 1.581

Species 5 5 5 5 5 5 5 5
Score –1.414 –0.817 –0.816 –0.816 0.816 0.817 0.817 1.414

R
2 0.347 C-score 0.198 C

Turn
0.235

NND 1 Clumping 0.036 C
Segr

0.073
Morisita 1.011 JoinCount 1.525 Chao 0.429
NODF 0 EmbAbs 0.425 Block 0.396
BR 0.5 Togetherness 0.135

AT

AC

AC

Figure 1. Ordinated example matrix with raw scores of the 14 metrics used in this study (Table 2). AT and AC: matrix areas used for  
calculating the CTurn (AT) and the CSegr (AC) scores, respectively.

S 1 2 3 4 5 6 7 8 S 1 3 5 7 2 6 4 8 S 1 2 3 4 5 6 7 8 S 1 2 3 4 5 6 7 8
1 1 0 1 0 1 0 1 0 1 1 1 1 1 0 0 0 0 1 1 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0
2 0 1 0 1 0 1 0 1 3 1 1 1 1 0 0 0 0 2 1 1 0 0 0 0 0 0 2 1 1 0 0 0 0 0 0
3 1 0 1 0 1 0 1 0 5 1 1 1 1 0 0 0 0 3 0 0 1 1 0 0 0 0 3 0 0 1 1 0 0 0 0
4 0 1 0 1 0 1 0 1 7 1 1 1 1 0 0 0 0 4 0 0 1 1 0 0 0 0 4 0 0 1 1 0 0 0 0
5 1 0 1 0 1 0 1 0 9 1 1 1 1 0 0 0 0 5 0 0 0 1 1 0 0 0 5 0 0 0 1 1 0 0 0
6 0 1 0 1 0 1 0 1 6 0 0 0 0 1 1 1 1 6 0 0 0 1 1 0 0 0 6 0 0 0 1 1 0 0 0
7 1 0 1 0 1 0 1 0 4 0 0 0 0 1 1 1 1 7 0 0 0 0 0 1 1 0 7 0 0 0 0 0 1 1 0
8 0 1 0 1 0 1 0 1 8 0 0 0 0 1 1 1 1 8 0 0 0 0 0 1 1 0 8 0 0 0 0 0 1 1 0
9 1 0 1 0 1 0 1 0 2 0 0 0 0 1 1 1 1 9 0 0 0 0 0 0 1 1 9 0 0 0 0 0 0 1 1

10 0 1 0 1 0 1 0 1 10 0 0 0 0 1 1 1 1 10 0 0 0 0 0 0 1 1 10 0 0 0 0 0 0 1 1

S 1 2 3 4 5 6 7 8 S 1 4 6 2 5 7 3 8 S 1 2 3 4 5 6 7 8 S 1 2 3 6 7 8 5 4
1 1 1 1 0 0 0 0 0 1 1 0 0 1 0 0 1 0 1 0 0 0 1 1 0 0 0 4 1 1 1 1 1 1 0 0
2 1 1 1 0 0 0 0 0 5 0 1 0 0 1 0 1 0 2 0 0 0 1 1 0 0 0 5 1 1 1 1 1 1 0 0
3 1 1 1 0 0 0 0 0 8 0 0 1 0 0 1 0 1 3 0 0 0 1 1 0 0 0 6 1 1 1 1 1 1 0 0
4 0 0 1 1 1 0 0 0 2 1 0 0 1 0 0 1 0 4 1 1 1 0 0 1 1 1 7 0 0 0 0 0 0 1 1
5 0 0 1 1 1 0 0 0 6 0 1 0 0 1 0 1 0 5 1 1 1 0 0 1 1 1 2 0 0 0 0 0 0 1 1
6 0 0 1 1 1 0 0 0 9 0 0 1 0 0 1 0 1 6 1 1 1 0 0 1 1 1 3 0 0 0 0 0 0 1 1
7 0 0 1 1 1 0 0 0 7 0 1 0 0 1 0 1 0 7 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 1 1
8 0 0 0 0 0 1 1 1 3 0 0 1 0 0 1 0 1 8 0 0 0 1 1 0 0 0 8 0 0 0 0 0 0 1 1
9 0 0 0 0 0 1 1 1 4 0 1 0 0 1 0 1 0 9 0 0 0 1 1 0 0 0 9 0 0 0 0 0 0 1 1

10 0 0 0 0 0 1 1 1 10 1 0 0 1 0 0 1 0 10 0 0 0 1 1 0 0 0 10 0 0 0 0 0 0 1 1

S 1 2 3 4 5 6 7 8 S 1 3 7 5 6 2 8 4 S 1 2 3 4 5 6 7 8 S 8 1 7 4 6 5 2 3
1 0 0 0 1 0 0 0 0 4 1 1 1 1 0 0 0 0 1 1 0 0 1 0 0 0 1 7 1 0 0 0 0 0 0 0
2 0 0 0 0 1 0 0 0 6 1 1 1 1 0 0 0 0 2 1 0 0 0 0 1 1 0 1 1 1 0 1 0 0 0 0
3 0 0 0 1 0 0 0 0 2 0 0 0 1 0 0 0 0 3 0 1 1 1 0 1 0 0 10 0 1 1 0 0 0 0 0
4 1 0 1 0 1 0 1 0 8 0 0 0 1 0 0 0 0 4 0 1 1 0 0 0 0 0 2 0 1 1 0 1 0 0 0
5 0 1 0 1 0 1 0 1 10 0 0 0 1 0 0 0 0 5 0 0 0 1 0 0 0 0 5 0 0 0 1 0 0 0 0
6 1 0 1 0 1 0 1 0 5 0 0 0 0 1 1 1 1 6 0 0 1 0 1 0 1 0 8 1 0 0 1 1 1 1 0
7 0 0 0 1 0 0 0 0 7 0 0 0 0 0 0 0 1 7 0 0 0 0 0 0 0 1 9 0 0 1 1 0 1 1 0
8 0 0 0 0 1 0 0 0 3 0 0 0 0 0 0 0 1 8 0 1 0 1 1 1 0 1 3 0 0 0 1 1 0 1 1
9 0 0 0 1 0 0 0 0 9 0 0 0 0 0 0 0 1 9 0 1 0 1 1 0 1 0 6 0 0 1 0 0 1 0 1

10 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 10 1 0 0 0 0 0 1 0 4 0 0 0 0 0 0 1 1

Checkerboard matrix

Turnover compartmented matrix

Turnover independent segregation

Maximum species turnover

Segregative compartmented matrix

Matrix with spatial turnover and turnover independent segregation

Figure 2. Six theoretical presence–absence matrices showing different degrees of co-occurrence. Left side: raw matrix; right side: ordinated 
matrix (order reversed for the compartmented matrix). 

Based on this spatial partitioning of the ordered matrix, 
the global C-score Ctotal can be decomposed into three  
components. The first component CTurn is calculated for 
those checkerboard pairs for which both occurrences fall 
within AT. CTurn measures the part of segregation that 

stems from species turnover. The second component CSegr is  
calculated only for those occurrences that fall outside AT  
(AC in Fig. 2). CSegr measures the part of segregation that  
does not stem from species turnover. The third compo-
nent CMixed is calculated for checkerboards for which one  
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and fill is the total number of occurrences. Small values of 
NND indicate an aggregated pattern.

The join-count statistic (Moran 1948) is similar to  
the nearest neighbour method and uses sums of entries of  
all occupied cells in the vicinity of a given focal cell (Cliff and 
Ord 1973). We used the presence–absence version JoinOcc 
of this metric and counted the occurrences within a 3  3 
quadrate surrounding each occupied cell in the matrix.

JoinOcc
x x

x

ij i j
j j

j j

i i

i i

j

n

i

m


 

 

 

 









1 1
1 1

1 1

1 1
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ijj
j

n

i

m
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(7)

where xij and xi1j1 denote abundances (presence–absence)  
in cells (i,j) and (i1,j1) and the denominator is the total 
abundance in the matrix. High values of JoinOcc denote an 
aggregated pattern.

Blocked quadrate variances (Hill 1973, Dale 1999) are  
a diverse group of metrics that use the variances of contig-
uous submatrices of similar or differing size to infer non- 
random structure. We used a blocked quadrate variance 
index of the following form:

Block
x x x x x xij i j ij i j ij i j

j

n



       




[( ) ( ) ( ) ], , ,2 2
2

2 2
2

1

3
2∑

ii

m





1

3

8

∑

L

(8)

where xij denotes the sum of entries of the 2  2 submatri-
ces (xij,xi  1,j,xi,j  1,xi  1,j  1) and L  3(m 2 3)(n 2 3) is the  
total number of summands. High values of Block indicate 
species aggregation.

We used NODF (nestedness based on overlap and decreas-
ing fill, Almeida-Neto et al. 2008) and discrepancy BR (Brualdi 
and Sanderson 1999) to estimate the degree of nestedness. For 
this analysis, matrices were sorted according to row/columns 
totals. If a perfectly nested matrix is ordinated by reciprocal 
averaging, it retains its nested structure, but with a reversed 
ordering of either rows or columns (Fig. 3). Thus we tested 
whether the appropriately rescaled metric BR (termed BRturn) 
also works using ordinated matrices.

In all cases, random expectations were obtained from 
1000 null matrices each that were either randomized using a 
null model that retains row and column totals (fixed – fixed  
null model, FF) or a null model that assigned occurrences 
equiprobably random to matrix cells (equiprobable –  

occurrences is within AT and the other is within AC. CMixed 
is calculated as the remaining fraction:

CMixed  Ctotal 2 CTurn 2 CSegr (4)

In a matrix ordinated by reciprocal averaging, the posi-
tion of the non-empty cells is specified by the row and col-
umn numbers. We calculated the coefficient of correlation 
r of the row and column numbers of non-empty cells. In 
this context, r2 is an index of how orderly the pattern is of 
the non-empty cells along the matrix diagonal. The index 
will be nearly 1.0 when the matrix has maximum coherence 
in combination with high turnover, and will be lower if the 
matrix has less structure. We compared the observed r2 with 
the r2 calculated for the randomized matrices, which were 
also ordinated by reciprocal averaging.

Presley et al. (2010) proposed a count of the number 
of embedded absences EmbAbs within rows in the ordi-
nated matrix as a metric of coherence of species range 
sizes (Leibold and Mikkelson 2002), with low numbers of 
embedded absences with respect to the null distribution  
indicating strong matrix-wide coherence (Fig. 3). We nor-
malized EmbAbs by dividing it by the matrix fill. As in  
the case of Tog, EmbAbs scores differ from those calculated 
after matrix transposition.

Hoagland and Collins (1997) proposed to use the  
Morisita index to assess clumping of species range boun-
daries in an ordinated matrix. Morisita is calculated as

Morisita n
k
N

ki

i

n






i

N
1
11

∑
 

(5)

where ki denotes the number of starting and stopping boun-
daries at site i. N is the total number of starting and stopping 
boundaries and equals therefore two times the number of 
species. Large values of Morisita denote clustered boundaries 
of species occurrence.

To quantify patterns of species aggregation, we used a 
common member of the Clark and Evans (1954) nearest-
neighbor class of metrics for spatial aggregation o the form

NND
d

fill

ij
j

n

i

m




2

11

2

∑∑

 

(6)

where dij is the distance to the nearest neighbor ( occu-
pied cell) in the ordinated matrix for each species occurrence  

S 1 2 3 4 5 6 7 8 9 10 11 12 S 1 2 3 4 5 6 7 8 9 10 11 12
1 11
2 12
3 10
4 9
5 8
6 6
7 7
8 5
9 4

10 3
11 2
12 1

Original matrix Ordinated matrix

Figure 3. A perfectly nested matrix remains nested with reversed ordering of either species or sites after reciprocal averaging.
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euqiprobable null model, EE). Randomization of the fixed –  
fixed null model was done with the independent swap 
algorithm (Gotelli and Entsminger 2003) using 10*n*m 
swaps for each randomized matrix. Statistical significances 
came from the respective tail distributions at the two- 
sided 5% error level. Additionally we calculated Z-trans-
formed scores (Z  Obs 2 Exp)/StDevExp; Obs and Exp: 
observed and expected scores, StDevExp: standard deviation 
of expectation). Z-scores should have values below 21.96 
and above 1.96 at the two-sided 5% error level under  
the assumption that the respective null distribution is 
approximately normal.

Results

Metric and null model performance on random 
matrices

Regardless of the null model used, all of the metrics had a 
low frequency of rejection (type I error) when tested against 
random-uniform matrices (first row in Table 3 and 4).  
However, if the null model was EE (Table 3), all of the met-
rics had high frequencies of rejection when tested against 
random matrices with heterogeneous row and/or column 
totals (exponential-exponential random and exponential-
uniform random). If the null model was FF (Table 4),  
type I errors were again low for exponential-exponential 
random matrices, but somewhat elevated for exponential-
uniform random matrices. For this type of random matrix, 
the BR, Morisita, and NND indices performed best, and 
Clumping performed the worst (Table 4). When used  
with FF C-score and Togetherness identified all matrices in 
an identical manner. Regardless of whether the pattern was 
random, segregated, or aggregated both indices were consis-
tently in the upper tail of the null distribution (Table 4).

Overall, FF controlled best for type I errors in purely ran-
dom matrices with heterogeneous row and column totals. 
There was little difference in performance on matrices of 
fixed size (upper panel, Table 3 and 4) versus fixed fill (lower 
panel, Table 3 and 4). Because of the consistently poor per-
formance of EE on random matrices, we restrict the descrip-
tion of results for structured matrices to tests with FF.

Metric performance on segregated matrices

For uniformly and exponentially segregated matrices, 
three metrics that are independent of matrix sorting 
(C-score, Togetherness and Clumping) had the best power 
for detecting non-randomness regardless of the type of 
null model (Table 3, 4). However, Clumping detected at 
least 62% of the uniformly segregated and turnover matri-
ces as being aggregated while C-score and Togetherness 
always performedidentically. For the fixed-size matrices, 
C-score and Togetherness were less powerful at detect-
ing non-randomness when the patterns were created by 
inserting segregated elements into a random matrix with 
exponential row and column totals (exponential segre-
gated). In this case, the Clumping and Chao indices had 
better power. With the exception of BR, BRturn, and NND, 
all metrics had very good power to detect turnover matrices 

as being non-random. With these matrices, CTurn and R2 
performed equally well.

Metric performance on aggregated matrices

C-score, Togetherness, Clumping and R2 detected at least  
76% of the aggregated matrices as being non-random.  
(Table 4), whereas the other metrics performed much worse. 
For the nested matrices, the C-score identified all but one 
of the simulated matrices as non-random, but Chao, R2, 
EmbAbs and JoinOcc also performed well for fixed size matri-
ces. For fixed fill matrices, C-score, Togetherness, Clumping, 
Chao, CSegr, R2, BR, EmbAbs and JoinOcc were all equally 
powerful in detecting pattern. BRturn, CSegr, Morisita, NND 
and Block detected less than 50% of the aggregated matri-
ces (Table 4, Supplementary material Appendix A1) as being 
non-random. NODF performed worse than BR in detecting 
a nested pattern. In the fixed fill matrices with an intermedi-
ate fill of 40%, NODF correctly detected 73% of the nested 
matrices (fixed – fixed null model), but detected only 35% of 
the nested fixed size matrices (Table 4). This difference shows 
the low power of NODF at high or low matrix fill. Com-
partmentalized matrices were detected most frequently by 
the C-score, Togetherness, Clumping, CTurn and NODF, with 
minor differences between fixed fill and fixed size matrices. 
R2 and, to a lesser degree, CTurn identified most aggregated 
matrices as having significant turnover (Table 4).

The exponential – exponential algorithm produced  
highly nested and therefore aggregated matrices. Such a 
matrix structure leaves a too low effective sample space for 
the FF null model and consequently FF was not able to 
detect this pattern (Table 4).

Correlations among metrics

When tested against the set of all 1800 artificial matri-
ces, many of the 15 indices were highly correlated in their  
performance (Z-scores), particularly for EE (Table 5,  
upper panel). The strongest positive correlations were 
between BR and Clumping (r  0.98) and between BR and 
EmbAbs (r  0.86). The strongest negative correlations were 
between EmbAbs and JoinOcc (r  20.97) and between 
C-score and Clumping (20.96). Of the 105 pairwise correla-
tions among the indices, 28 had correlations  |0.7|.

For FF, there were only 13 such correlations (Table 5, 
lower panel). The largest positive correlations were between 
R2 and JoinOcc (r  0.94), and between C-score and  
Togetherness (r  0.80). The largest negative correlations 
were between JoinOcc and EmbAbs (r  20.90) and between  
R2 and EmbAbs (20.89). Although they should identify 
opposite patterns, there was a positive correlation (r  0.55) 
between C-score and Clumping. Z-scores of Chao, NND and 
Morisita were only weakly correlated with other metrics 
(Table 5), particularly with those designed to detect aggre-
gation. These metrics and the also weak performing Block 
metric are not considered further.

Performance of metrics on idealized matrices

Seven indices (Clumping, C-score, CSegr, CTurn, EmbAbs,  
R2 and NODF ) were used to test for patterns in the six 
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idealized matrices (checkerboard, maximum turnover, 
compartmented turnover, compartmented segregation, 
turnover-independent segregation, and a mixed matrix, 
Table 6, Fig. 2). In all comparisons, there were usually more 
significant results with the fixed – fixed null model than with 
the equiprobable – equiprobable null model, except for the 
mixed matrix, which did not differ from random for any of 
the indices with either null model (Table 6). For all com-
parisons, whenever an index was statistically significant with 
both null models, it deviated from the null hypothesis in the 
same direction, regardless of the matrix pattern.

Empirical matrices

Of the 471 empirical matrices, 138 (29%) and 107  
(23%), respectively, were detected by the C-score and the 
Clumping score as having a non-random structure when 
applied with FF (Table 7, 8). In 65 (14%) cases, both met-
rics jointly had scores above the upper two-sided 95% confi-
dence limit, thus indicating simultaneous aggregation and  
segregation under a traditional interpretation of these scores 
(Table 8). Thirty-one percent of the matrices exhibited  
significant species turnover as measured by CTurn or R 2. 
Both of these metrics jointly classified 102 of 191 significant 
matrices as being spatially segregated (Table 8). The fact that 
only two matrices were classified differently (Table 8) shows  
that both metrics capture the same pattern. Of the 91 matri-
ces that were jointly identified by the C-score and R 2 as being 
segregated and having turnover, 49 were also identified by 
Clumping and 30 by JoinCount as being aggregated. These 
are matrices in which species occurrences were aggregated 
along the matrix diagonal after ordination. These patterns did  
not differ for matrices of different taxa or for matrices sam-
pled at different spatial scales (Table 7). CSegr identified about 
3% of the matrices as having turnover-independent segre-
gation (Table 7). The NODF metric identified only seven 
matrices (1.5%) as being significantly nested (not shown). 
BR, in contrast, identified 98 matrices (21%) as being sig-
nificantly nested (Table 7).

A scale-specific analysis (Table 7) revealed greater frequen-
cies of nested, turnover and segregated/aggregated patterns 
for matrices assembled at the biogeographic scale versus the 
local scale. Compared to the standard presence–absence matri-
ces (biogeographic, local), the interaction matrices had lower 
proportions of segregated and turnover patterns, but higher 
proportions of aggregated matrices. There were moderate  
differences among taxa in patterns of species co-occurrences 
(Table 7). Based on the CTurn and R 2 scores, bird and plant 
matrices exhibited higher degrees of species turnover than 
herptile and invertebrate matrices. In contrast, fish, herptile, 
and mammal matrices appeared to have stronger patterns of 
checkerboard segregation than matrices for other taxa.

Discussion

The statistical performance of null models

Null models became popular in the late 1970s, when ecolo-
gists began to ask whether patterns of species co-occurrence Ta
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discriminate among different kinds of non-random patterns 
(Presley et al. 2010, Gotelli and Ulrich 2011)? Our results 
(Table 3, 4) are relevant to earlier analyses of species co- 
occurrence (Gotelli and McCabe 2002, Lehsten and  
Harmand 2006) and more recently proposed theoretical 
frameworks for analyzing patterns of coherence, species 
turnover, and boundary clumping (Leibold and Mikkelson 
2002, Presley et al. 2010).

Species co-occurrence

The combination of Stone and Robert’s (1990) C-score  
with the fixed-fixed randomization algorithm (Gotelli 2000) 
has become a standard method for testing for patterns of  
species co-occurrence. Several studies have shown that this 
combination rejects the null hypotheses infrequently when 
tested against random matrices with heterogeneous row 

might be explained by chance, rather than by species interac-
tions (Connor and Simberloff 1979). During the 1980s and 
the 1990s, ecologists began using null model methodology 
to test for other empirical community patterns, including 
body size ratios (Simberloff and Boecklen 1981), species 
nestedness (Patterson and Atmar 1986), favored states (Fox 
and Brown 1993), and, most recently, community phylo-
genetics (Webb et al. 2002). During the 2000s, some of these 
earlier analyses were re-assessed as ecologists began comparing 
the statistical performance of null models and metrics to 
artificial data sets with specified amounts of randomness and 
structure (Gotelli 2000, Ulrich and Gotelli 2007a, b, Ladau 
2008). These tests used randomly constructed matrices to 
screen for algorithms with low type I errors and good  
power for detecting non-randomness (Gotelli 2001). 
This paper addresses an additional statistical issue that has  
only recently been considered: can null model tests uniquely 

Table 6. Scores of important metrics of co-occurrence and lower and upper 95% confidence limits of the fixed – fixed and the  
equiprobable – equiprobable null models for the six idealized matrices of Figure 2. Statistically significant scores in bold face.

Fixed – fixed null model Equiprobable null model

Matrix type Metric Observed value
Lower 95% 

confidence limit
Upper 95% 

confidence limit
Lower 95% 

confidence limit
Upper 95% 

confidence limit

Checkerboard Clumping 0.095 0.031 0.040 0.044 0.079
C-score 0.317 0.189 0.208 0.083 0.167
CSegr 0.050 0.060 0.150 0.006 0.096
CTurn 0.480 0.170 0.270 0.101 0.235
EmbAbs 0.000 0.325 0.500 0.100 0.425
R2 0.577 0.240 0.417 0.200 0.413
NODF 0.000 0.000 0.000 0.382 0.623

Maximum turnover Clumping 0.004 0.000 0.002 0.001 0.007
C-score 0.108 0.100 0.105 0.044 0.090
CSegr 0.000 0.000 0.040 0.000 0.040
CTurn 0.490 0.048 0.450 0.065 0.305
EmbAbs 0.000 0.100 0.600 0.000 0.350
R2 0.907 0.590 0.883 0.405 0.819
NODF 0.055 0.014 0.055 0.148 0.357

Turnover  
compartmented

Clumping 0.029 0.007 0.013 0.010 0.028
C-score 0.188 0.145 0.156 0.075 0.146
CSegr 0.027 0.032 0.109 0.007 0.079
CTurn 0.527 0.151 0.376 0.104 0.323
EmbAbs 0.000 0.300 0.600 0.000 0.500
R2 0.746 0.394 0.645 0.312 0.612
NODF 0.048 0.079 0.109 0.270 0.502

Segregative 
compartmented

Clumping 0.052 0.025 0.035 0.015 0.033
C-score 0.200 0.073 0.098 0.078 0.151
CSegr 0.169 0.000 0.068 0.000 0.062
CTurn 0.134 0.092 0.153 0.097 0.242
EmbAbs 0.000 0.125 0.469 0.000 0.469
R2 0.515 0.242 0.482 0.278 0.557
NODF 0.000 0.279 0.374 0.299 0.534

Turnover  
independent 
segregation

Clumping 0.005 0.001 0.006 0.000 0.006
C-score 0.070 0.044 0.058 0.040 0.086
CSegr 0.037 0.000 0.049 0.000 0.032
CTurn 0.090 0.043 0.179 0.057 0.305
EmbAbs 0.000 0.000 0.211 0.000 0.316
R2 0.718 0.490 0.770 0.368 0.849
NODF 0.219 0.267 0.356 0.130 0.325

Mixed matrix Clumping 0.009 0.006 0.013 0.007 0.021
C-score 0.123 0.121 0.134 0.071 0.137
CSegr 0.025 0.012 0.077 0.007 0.074
CTurn 0.265 0.143 0.358 0.104 0.319
EmbAbs 0.321 0.143 0.464 0.000 0.500
R2 0.503 0.392 0.679 0.326 0.639
NODF 0.331 0.273 0.334 0.247 0.482
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and column totals, and has good power to detect checker-
board pairs embedded in noisy data matrices (Gotelli 2000, 
Ulrich and Gotelli 2007a). By this criterion, many empirical 
matrices exhibit significantly more species segregation than 
expected by chance (Gotelli and McCabe 2002).

However, Stone and Roberts (1990) warned that matri-
ces with segregated species pairs must necessarily contain  
some species pairs that are aggregated. Indeed, in any  
presence–absence matrix positive and negative species asso-
ciations are intimately linked. Consider three 4  4 sub-
matrices of the form

M

A
B
C
D

N

A
B
C
D





1 0 1 0
0 1 0 1
1 0 1 0
1 0 1 0

1 0 1 0
0 1 0 1
0 1 1 0
1 0 1



















and

00

1 0 1 0 0 0
0 1 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1




































and

O

A
B
C
D





where two species A and B form a checkerboard pair. In 
matrix M, any new species C that avoids either A or B will 
form a positive association with the complementary species 
of the form {{1,1},{1,1}} as does any new species D that is 
either linked with C or occurs everywhere. In matrix N, 
segregation of A, B, and C is not perfect. Nevertheless, any 
new species D, which is at least as abundant as A, B, or C 
will add at least one new positive association. Only new spe-
cies with fewer occurrences than A and B might not add 
new positive associations as shown by matrix O. Hence, 
in equiprobably-filled matrices with a fill of less than 0.5, 
raw scores of the C-score and Clumping will always be posi-
tively correlated (Fig. 4A). Because the C-score has is theo-
retical maximum at 50% matrix fill matrices with higher  
fill will inevitably add more positive than negative associa-
tions and positive and negative associations will be negatively 
correlated (Fig. 4A). This correlation will be less apparent  
in matrices where species highly differ in the total numbers 
of occurrences (Fig. 4B). Nevertheless the C-score has always 
a tendency to be also a metric for positive species association 
(aggregation).

Specifically, any sufficiently filled perfect checkerboard 
matrix can be reordered by reciprocal averaging to reveal  
a perfectly aggregated pattern (Stone and Roberts 1990). 
Such a matrix has also a high degree of species turnover  
(Table 8). Irrespective of null model, the C-score identifies 
such a matrix as having far more checkerboard pairs than 
expected by chance while the Clumping score, CSegr, and 
EmbAbs identify the same matrix as being aggregated. The 
significant R2 value points to turnover (Table 8, Fig. 2). Hence Ta
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such a matrix can be viewed as combining three seemingly 
exclusive patterns (segregation, aggregation, turnover).

While this link is apparent for raw scores it holds also 
when comparing scores with those obtained from a null 
distribution that constraints row and column totals.  
The fixed – fixed null model does not eliminate the intimate 
link between the numbers of aggregated and checkerboard 
2  2 submatrices. As a result, the significance levels of 
the C-score and Clumping will still be positively correlated 
(Fig. 5). With the exception of the nested and proportion-
ally segregated matrices (with their limited null spaces)  
high Z-scores of Clumping were in all cases combined with 
respective high C-scores irrespective of matrix size and fill.

The same holds for the relationship between the C-score 
and Togetherness. The latter was designed to measure joint 
occurrences and therefore niche similarity (Stone and  
Roberts 1992), and the raw scores of both metrics do  
behave properly. Dormann et al. (2009) showed that these 
metrics capture the antagonistic patterns of negative and 
positive association in ecological interaction matrices.  
However, when applied in combination with the fixed – 
fixed null model (Table 4) both metrics give identical results 
that do not allow for an unequivocal matrix classification.

Perhaps the most useful step forward is to recognize that 
the C-score represents an average calculated over all possi-
ble species pairs. Analysis of which individual species pairs 
show aggregation or segregation provides insight into the 
performance of the index. Although the interpretation of 
the C-score is complicated when it is applied to all the  
species pairs in a matrix, it is straightforward when applied 
to a single pair of species. In a meta-analysis of the Patterson 
and Atmar empirical matrices, Gotelli and Ulrich (2010) 
found that consistent non-randomness (as measured by the 
C-score) was caused by a preponderance of negatively associ-
ated species pairs. Even using the most conservative crite-
rion (based on an empirical Bayes approach) for classifying  
species pairs as statistically significant, there were approxi-
mately four times as many species pairs exhibiting segrega-
tion as aggregation. At least for these empirical matrices, the 
frequencies of aggregation and segregation measured among 
species pairs were consistent with the overall C-score. How-
ever, future analyses should dissect the C-score pattern of 
non-randomness to identify particular pairs of species with 
positive and negative associations.

Table 8. Pair wise comparisons of seven co-occurrence and nestedness scores to identify patterns in 471 empirical presence–absence matri-
ces. Note that for the EmbAbs score values above the upper two-sided 95% confidence limit indicate scatter of range. For R2 and Cturn values 
above upper 95% confidence limits indicate species turnover.

Metric pair No. of significant scores No. of significant scores

C-score Clumping joint indication 
of segregation/
aggregation

C-score Clumping joint indication of 
aggregation/
segregation

Contrasting 
results

C-score - Clumping 138 107 65 3 8 0 5

R2 CTurn joint indication 
of turnover

R2 CTurn joint indication of 
no turnover

Contrasting 
results

R2 - CTurn 149 145 102 6 10 2 2

R2 C-score joint indication 
of turnover

R2 C-score joint indication of 
no turnover

Contrasting 
results

R2 - C-score 149 138 91 6 3 0 1

EmbAbs Clumping joint indication 
of aggregation

EmbAbs Clumping joint indication of 
segregation

Contrasting 
results

EmbAbs - Clumping 100 107 58 6 8 0 3

EmbAbs C-score joint indication 
of coherence/
segregation

EmbAbs C-score joint indication of 
scatter/
aggregation

Contrasting 
results

EmbAbs - C-score 100 138 64 6 3 0 2

EmbAbs R2 joint indication 
of coherence/
turnover

EmbAbs R2 joint indication of 
scatter

Contrasting 
results

EmbAbs - R2 100 149 75 6 6 1 0

NODF BR joint indication 
of nestedness

NODF BR joint indication of 
antinestedness

Contrasting 
results

NODF - BR 7 93 1 98 5 1 40

0

0.1

0.2

Sc
or

e

Matrix fill

(A)

0

0.02

0.04

0.06

0 0.2 0.4 0.6 0.8 1
Matrix fill

0 0.2 0.4 0.6 0.8 1

Sc
or

e

(B)

Figure 4. (A) In uniform – uniform matrices raw scores of the 
C-score (open dots) and the clumping score (black dots) are posi-
tively linked up to a matrix fill of 50%. Above 50% fill the clump-
ing score increases with fill while the C-score decreases. (B) In 
proportional – proportional matrices the region of fill where  
both scores are positively linked is shifted towards low fill. Results 
from 100 Mfixed size matrices. 
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Coherence, species turnover and boundary clumping

Our analysis in general demonstrated that metrics that 
use marginal totals for calculation such as NODF, Chao 
or Morisita perform poorly when used with null models  
that constrain these totals (Table 4). Recently, these met-
rics (Almeida-Neto et al. 2008, Chao et al. 2008, Leibold  
and Mikkelson 2002, Presley et al. 2010) and multispe-
cies extensions of the Soerensen and Jaccard indices of spe-
cies overlap (Baselga et al. 2007, Baselga 2010) have been 
proposed to quantify patterns of nestedness or species co- 
occurrence. These authors showed that the metrics behave well 
as raw scores and with null models that assume equiprobable 
occurrence probabilities. However, these metrics have not 
been tested rigorously with more constrained null models 
and should be used with caution (Almeida-Neto et al. 2012) 
in combination with the fixed – fixed null model.

We also showed that metrics based on nearest neighbor 
distances (NND) and local variances differences (JoinCount, 
Block) appeared also to be of little value. In matrices of 
higher fill ( 50%) most occurrences have at least one direct 
neighbor. As a consequence, metrics of the NND family 
(Clark and Evans 1954) achieve their minimum value and 
therefore lose any statistical power. These nearest-neighbor 
metrics appear to be of value only in very large matrices of 
relatively low fill. At least in presence–absence matrices, met-
rics of the JoinCount and Block family suffer from the same 
restrictions.

Our analysis did not point to any simple classifica-
tion schemes of ecological presence–absence matrices. In  
comparison to the fixed – fixed null models, NODF  
detected 241 of the 1800 Mfixed fill and Mfixed size matrices 
as being significantly nested. Of these matrices, 133 were  
also detected by R2 as having significant species turnover  
and 208 by the C-score as being segregated. Only 14 of  
these 241 significantly nested matrices were detected by 
Clumping as being aggregated. In turn, 205 of these 241 
nested matrices were identified as being significantly not 
aggregated. Further, CSegr detected 238 matrices as having 

turnover independent (checkerboard) segregation and R2 iden-
tified 877 has having significant turnover. As many as 194 of 
these matrices were jointly detected by CSegr and R2 as having 
significant turnover and turnover independent segregation. 
These were mainly matrices of a high degree of nestedness 
(not shown). This mix of classifications in combination 
with the apparent differences in the power of certain met-
rics makes any clear-cut classification scheme for ecological 
matrices challenging.

Previous attempts to classify ecological presence–absence 
matrices and to link this classification with ecological pro-
cesses (Leibold and Mikkelson 2002, Presley et al. 2010, 
Podani and Schmera 2011, but see Gotelli and Ulrich 2011, 
2012) were largely based on idealized artificial matrices. These 
approaches particularly focused on the gradient between nest-
edness and species turnover and aggregation and segregation. 
Our results highlight the intimate link between an aggre-
gated and a segregated pattern. A matrix might be highly 
aggregated and segregated (Fig. 2) as had been demonstrated 
previously for a perfect checkerboard matrix (Stone and  
Roberts 1990). Because a nested subset pattern is a special  
form of species aggregation, nestedness may not be really  
distinct from species segregation. Almeida-Neto et al.  
(2007) and Podani and Schmera (2011) focused on the gra-
dient from nestedness to antinestedness and equated anti-
nestedness with species segregation. We showed that species 
segregation can be divided in true species turnover and turn-
over independent (diffuse) segregation. Thus classification 
schemes that focus on the aggregation–segregation dichot-
omy might miss important aspects of matrix structure.

Species turnover is intimately linked to b-diversity  
(Tuomisto 2010) and refers to the replacement in species 
composition across sites. Temporal turnover is an explicit 
component of the theory of island biography (MacArthur 
and Wilson 1963, Simberloff 1976) but spatial turnover 
(among sites) is more often linked to environmental gradi-
ents, and to vicariant speciation triggered by environmen-
tal barriers. For these reasons, spatial turnover is a common 
pattern in biogeography (Tuomisto 2010). The second,  
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Figure 5. Relationship between Z-scores (fixed – fixed null model) of the Clumping score and the C-score (Mfixed size and Mfixed fill combined). 
Open squares: Turnover matrices, Stars: nested matrices, plus signs: proportionally segregated matrices, black dots: all other matrices.  
Quadratic regression for black dots: R2  0.79.
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Connor, E. F. and Simberloff, D. 1979. The assembly of  
species communities: chance or competition? – Ecology 60: 
1132–1140.

Dale, M. R. T. 1999. Spatial pattern analysis in plant ecology.  
– Cambridge Univ. Press.

Darlington, P. J. 1957. Zoogeography: the geographical distribu-
tion of animals. – Wiley.

Diamond, J. M. 1975. Assembly of species communities. – In: 
Cody, M. L. and Diamond, J. M. (eds), Ecology and evolution 
of communities. Harvard Univ. Press, pp. 342–444.

Dormann, C. F. et al. 2009. Indices, graphs and null models:  
analysing bipartite ecological networks. – Open Ecol. J. 2: 
7–24. 

Fox, B. J. and Brown, J. H. 1993. Assembly rules for functional 
groups in North American desert rodent communities.  
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Gaston, K. J. and Blackburn, T. M. 2000. Pattern and process in 
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Gotelli, N. J. 2000. Null model analysis of species co-occurrence 
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Gotelli, N. J. 2001. Research frontiers in null model analysis.  
– Global Ecol. Biogeogr. 10: 337–343.

Gotelli, N. J. and Entsminger, G. L. 2003. Swap algorithms in null 
model analysis. – Ecology 84: 532–535.

Gotelli, N. J. and Graves, G. R. 1996. Null models in ecology.  
– Smith. Inst. Press, Washington D.C.

Gotelli, N. J. and McCabe, D. J. 2002. Species co-occurrence:  
a meta-analysis of J. M. Diamond’s assembly rules model.  
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Gotelli, N. J. and Ulrich, W. 2010. The empirical Bayes distribu-
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– Oecologia 162: 463–477.

Gotelli, N. J. and Ulrich, W. 2011. Over-reporting bias in null 
model analysis: a response to Fayle and Manica (2010). – Ecol. 
Modell. 222: 1337–1339.

Gotelli, N. J. and Ulrich, W. 2012. Statistical challenges in null 
model analysis. – Oikos 21: 171–180.

turnover-independent, part of species segregation has  
gained much less attention, although it is the classical pat-
tern on which most discussions on the assembly rule concept 
focused (Diamond 1975, Weiher and Keddy 1999). Within 
the competition framework, we might speculatively think of 
CSegr as capturing the effect of actual competition as a force 
towards species segregation and of CTurn as quantifying ‘the 
ghost of competition past’ (Connell 1980). Our analysis of 
empirical presence–absence matrices clearly points to turnover 
as the dominant pattern of species segregation (Table 6).

Irrespective of spatial scale (local or regional) and type  
of matrix (biogeographic – interaction) less than 6% of 
matrices were significantly diffusely segregated but more 
than 20% showed significant turnover. In accordance with 
expectation the degree of turnover was highest for matrices 
at regional to continental scales.

Our results point to a gradient from a nested subset 
pattern to a turnover pattern (Table 5) as has been previ-
ously hypothesized (Gaston and Blackburn 2000, Baselga 
2010). Nestedness was originally interpreted as an ordered 
sequence of species extinction (Atmar and Patterson 1993, 
Ulrich et al. 2009) whereas turnover has been interpreted  
as an ordered sequence of species replacement across an  
environmental gradient (Tuomisto 2010). In combination 
with the fixed – fixed null model CSegr identified at least  
58% of the nested matrices as being also checkerboarded 
(Table 5). CSegr is not strongly correlated to BR and NODF 
(Table 6). Thus, a nestedness metric in combination with  
the C-score that does not differentiate between the two types 
of segregation might give an incorrect classification.

Summary

Our analysis showed that metrics designed to quantify dif-
ferent and sometimes exclusive matrix properties are often 
correlated (Table 5). Undesired correlations, even if statisti-
cally not significant, might strongly influence the interpreta-
tion of pattern. Such undesired correlations are particularly 
obvious using the fixed – fixed null model. For instance 
Clumping correlated positively with the C-score, Tog, R 2 and  
negatively with NODF, while EmbAbs was negatively cor-
related with the C-score and Clumping. This seemingly con-
tradictory behavior casts further doubts on the utility of 
simple classification schemes (Leibold and Mikkelson 2002,  
Presley et al. 2010). The use of multiple metrics – perhaps 
dissected for pairs of individual species or sites – may be  
necessary for valid pattern identification.
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