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                             Statistical challenges in null model analysis      

         Nicholas J. Gotelli and Werner Ulrich

  N. J. Gotelli, Dept of Biology, Univ. of Vermont, Burlington, VT 05405, USA.  –  W. Ulrich (ulrichw@umk.pl), Dept of Animal Ecology, 
Nicolaus Copernicus Univ. in Toru ń , Gagarina 9, PL-87-100 Toru ń , Poland.                              

 Th is review identifi es several important challenges in null model testing in ecology: 1) developing randomization algorithms 
that generate appropriate patterns for a specifi ed null hypothesis; these randomization algorithms stake out a middle 
ground between formal Pearson – Neyman tests (which require a fully-specifi ed null distribution) and specifi c process-based 
models (which require parameter values that cannot be easily and independently estimated); 2) developing metrics that 
specify a particular pattern in a matrix, but ideally exclude other, related patterns; 3) avoiding classifi cation schemes based 
on idealized matrix patterns that may prove to be inconsistent or contradictory when tested with empirical matrices that 
do not have the idealized pattern; 4) testing the performance of proposed null models and metrics with artifi cial test 
matrices that contain specifi ed levels of pattern and randomness; 5) moving beyond simple presence–absence matrices to 
incorporate species-level traits (such as abundance) and site-level traits (such as habitat suitability) into null model analysis; 
6) creating null models that perform well with many sites, many species pairs, and varying degrees of spatial autocorrelation 
in species occurrence data. In spite of these challenges, the development and application of null models has continued to 
provide valuable insights in ecology, evolution, and biogeography for over 80 years.   

   ‘ A null model is a pattern generating model that 
is based on randomization of ecological data or ran-
dom sampling from a known or imagined distribution. 
Th e null model is designed with respect to some eco-
logical or evolutionary process of interest ’ .    (Gotelli and 
Graves 1996) 

 From its origins in the analysis of species/genus ratios 
(J ä rvinen 1982), there is a long history of using null models 
to analyze patterns and test hypotheses in ecology, evolution 
and biogeography (Harvey et al. 1983). Although the gen-
eral controversy in the 1970s over null models and compe-
tition has died down (Gotelli and Graves 1996), there are 
still many disputed aspects of testing and implementing null 
models. In this paper, we review some of the more recent 
challenges and controversial issues in the implementation 
and interpretation of null models in ecology. We focus pri-
marily on the use of null models in biogeography, ecology, 
and macroecology.  

 Hypothesis testing and constraints in null 
model analysis 

 Classical Pearson – Neyman hypothesis testing (Graves 1978) 
addresses the dichotomy between a null hypothesis (H 0 ) and 
its alternative (H 1 ). If these hypotheses are mutually exclu-
sive and collectively exhaustive, then the probability that H 0  
is true, given the data ( P (H 0 |data)), is P(H 0 )  �  1  –   P (H 1 ). 

Th e null hypothesis varies depending on the details of the 
test, but it is often a parsimonious expectation that the data 
are drawn from a single distribution, so that any patterns in 
the data arise only from random sampling processes. Th e 
alternative hypothesis is that patterns in the data are not 
the result of random variation generated by H 0 . Erroneous 
rejection of H 0  occurs with probability  α  and represents a 
type I statistical error. Conversely, erroneous acceptance of 
a false null hypothesis is a type II error and occurs with 
probability  β . Th e quantity 1  –   β  is the power of the test, 
the probability of correctly rejecting H 0  given that it is 
false (Sokal and Rohlf 1995). Following standard statistical 
procedure, we equate the calculated  P -value (Fisher ’ s evi-
dential  P -value ( P (data|H 0 ))) with  α  (but see Hubbard and 
Bayari 2003). 

 In ecological null model analysis,   ‘ Null hypotheses enter-
tain the possibility that nothing has happened, that a process has 
not occurred, or that change has not been produced by a cause of 
interest ’   (Strong 1980), so that H 1 , the alternative, eff ectively 
isolates the process of interest. Th is description would seem 
to imply that the null hypothesis is a stochastic process-based 
model that excludes a particular mechanism (Roughgarden 
1983). For example, the neutral model (Hubbell 2001) and 
the equilibrium model of island biogeography (MacArthur 
and Wilson 1963) are two stochastic process-based models, 
neither of which (in their original formulation) incorporates 
species interactions (Fig. 1). In practice, however, ecologists 
have shied away from specifying a particular process model 
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Figure 1.     A conceptual model to show the relationships and diff erences among statistical null hypotheses, null models, and mechanistic 
models.  

because it is usually impossible to collect all the data that 
would be needed to independently fi t the parameters of such 
a model (Gotelli and McGill 2006). Even relatively simple 
process-based models, such as the neutral model, have proven 
extremely diffi  cult to parameterize (Wootton 2005). 

 Instead, null model analysis specifi es a statistical distri-
bution or randomization of the observed data, designed 
to mimic the outcome of the random process model with-
out specifying or estimating all of its parameters. Figure 1 
depicts a gradient of models from statistical testing based on 
predefi ned theoretical distributions to mechanistic models 
based on parameters that specify particular ecological pro-
cesses. Null models represent an intermediate point in this 
gradient: they create a null distribution by imposing con-
straints on randomization to preserve some features of the 
empirical data, but they do not specify all the parameters in 
an explicit mechanistic model. 

 However, insuring that these constraints match the 
desired properties of the null hypothesis can be diffi  cult. 
For example, Atmar and Patterson (1993) hypothesized that 
selective, orderly extinction created patterns of nestedness in 
the occurrence of species on islands or habitat fragments. 
Th is mechanism also implies the alternative hypothesis, 
so the null hypothesis would presumably include all other 
mechanisms (such as island size or dispersal ability) that 
might infl uence the distribution of species on islands. How-
ever, Atmar and Patterson ’ s (1993) null model simply ran-
domized the placement of all species on all islands, implying 
that all other processes would lead to a pattern in which all 
species were equally common and all islands were equally 
suitable. 

 Th e challenge here is that this randomization algorithm 
is too unconstrained, and encompasses more than just the 
stated null hypothesis. In particular, even if there is no selec-
tive extinction, species may diff er in their occurrence prob-
abilities (some are common and some are rare), and sites 
may diff er in their suitability (some may be highly suitable 
and support many species, and some may be unsuitable and 
support few species). Extensions of the null model approach 

have tried to specify diff erent statistical universes that 
encompass these possibilities. 

 Th is specifi cation and choice of null model has an impor-
tant eff ect on the result. If all sites and species are treated 
as equivalent, and occurrences are randomized with no 
constraints, then most empirical matrices show signifi cant 
nested structure (Wright et al. 1998). If the randomization 
is constrained to preserve observed matrix row and column 
totals, then only  ∼ 10% of empirical matrices exhibit nested-
ness (Ulrich and Gotelli 2007a). Patterns of apparent nest-
edness in many biogeographic data sets may be generated 
simply by diff erences in site suitability (apparent in column 
totals) and species occurrence probabilities (apparent in row 
totals), but not by an orderly sequence of extinctions. 

 However, imposing too many constraints on null model 
algorithms reduces their power and increases the chances 
of a type II statistical error. Th is tradeoff  between type I 
and type II errors is inevitable in statistical tests, and is not 
unique to null model analysis. Our personal preference in 
null model testing is to favor the control of type I error 
(Gotelli and Ulrich 2011). Th ere are two reasons for this: 
fi rst, the philosophical appeal to parsimony is what pre-
cipitated the use of null models in the fi rst place: is there 
any evidence that biogeographic patterns are more extreme 
than expected by chance (Connor and Simberloff  1979)? 
Most ecologists would not be satisfi ed to invoke a biological 
mechanism when a simple stochastic model that does not 
incorporate the mechanism can generate the same pattern. 
Th e second reason is that biogeographic data are almost 
always observational and often consist of little information 
other than the occurrence matrix itself. Statistical inference 
is less certain without controlled experiments, so it seems 
prudent to use a conservative approach. 

 Not all ecologists agree with this philosophy. One argu-
ment against imposing too many constraints on null models 
is that the procedure may become circular. If the biological 
processes (e.g. competition) aff ect the constrained elements 
(e.g. matrix row totals) then the eff ect of interest has been 
smuggled into the test, which reduces the sample space and 
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leads to excessive type II errors (Grant and Abbott 1980, 
Colwell and Winkler 1984). For this reason, Presley et al. 
(2010) recently advocated the use of the equiprobable –
 equiprobable model for testing for patterns of species distri-
butions. However, the poor performance of this algorithm 
in the context of nestedness (Ulrich and Gotelli 2007a) and 
species co-occurrence (Gotelli 2000, Ladau 2008), suggests 
there is a real danger in overestimating the frequency of 
signifi cant patterns by taking such a liberal approach. 

 Recently Kullback – Leibler information-based model 
choices have become popular as complementary approaches 
to classical hypothesis testing (Akaike 1973, Burnham and 
Anderson 2002). Information criteria assign probabilities 
to competing models with diff erent numbers of free para-
meters and thus allow for a ranking of models from best 
to worst (Anderson 2008). In the context of null model 
analysis, we might ask whether information criteria are 
capable of quantifying the information content of diff er-
ently constrained null models. However, a simplistic use 
of information criteria is problematic because we cannot 
equate the number of null model constraints with the num-
ber of free para meters necessary for calculating information 
metrics. Moreover, null models cannot simply be ranked 
additively by the number of constraints they contain, but 
should instead be chosen on the basis of their simplicity, the 
biological realism of their assumptions, and their perfor-
mance in benchmark tests with artifi cial data. Information 
based approaches might be helpful when comparing more 
complex versions of stochastic neutral models (Fig. 1).
Stochastic mid domain eff ect models (Rangel and Diniz-
Filho 2005), mechanistic models of ecological drift 
(Hubbell 2001), and multispecies metapopulation models 
(Holt 1997) contain many potential parameters and could 
be compared with information criteria, although all of 
these approaches are a bit too complex to qualify as simple 
null models.   

 Metrics for defi ning pattern in null 
model analysis 

 Once a null model algorithm has been specifi ed, the pat-
tern in a matrix needs to be quantifi ed with an appropriate 
metric. Th e distribution of the metric can then be estimated 
by simulating a large number of null matrices, and calculat-
ing the metric for each. As in other randomization tests, it 
is this distribution that is statistically compared to the single 
value of the metric calculated for the empirical data matrix 
(Manly 2009). 

 Recently, some researchers (Ladau 2008, Ladau and 
Schwager 2008) have argued that ecologists should use 
more formal criteria for testing within the Pearson – Neyman 
framework, including robustness (observed type I error rates 
should be close to the preselected ones) and bias ( α   ≠   β ) 
of null model tests. However in much ecological research, 
implementation of the Pearson – Neyman framework may 
be problematic. In simple  t - or  F -tests, the metric and 
the associated null distributions (the respective  t - and  F -
distributions) are naturally linked, because the distribution 
of the test metric is derived directly from the assumptions 
of the null hypothesis (e.g. normality, independence). In 
these cases, the null model assumptions are fully specifi ed, 

and the formal properties of the associated tests can be inves-
tigated, as proposed by Ladau (2008). 

 However, in most ecological applications, the metric for 
quantifying pattern and the null distribution for generating 
random occurrence matrices are uncoupled. Often, investi-
gators create metrics primarily to quantify a pattern and not 
because they necessarily can be used with a particular null 
model. As a consequence, some metrics cannot be used with 
some randomization algorithms. For example, Schluter ’ s 
(1984)  V  ratio tests for species independence by calculating, 
from a presence–absence matrix, the ratio of the sum of the 
variances in species occurrences to the variance of the sum. 
However, this metric is calculated entirely from row and col-
umn totals of the observed matrix, so null model algorithms 
that are conditioned on these totals cannot be used with 
the  V -ratio. Along the same lines, many metrics of similar-
ity, such as the Morisita, Soerensen, and Simpson indices 
(Baselga 2010), as well as the recent NODF (Almeida-Neto 
et al. 2008), use column and/or row totals for calculation. 
A null model that constrains these totals reduces the sample 
space of these metrics and might bias the performance of 
the test. 

 How, then, should these metrics be chosen? In some cases, 
the choice of a metric arises naturally from the hypothesis 
being considered. For example, Diamond (1975) hypothe-
sized that species interactions led to certain species pairs that 
would never co-occur. Counting the number of species pairs 
that form such  ‘ checkerboard distributions ’  in a matrix is a 
natural metric for this question (Gotelli and McCabe 2002). 
But there are many ways to quantify patterns of species dis-
tribution such as nestedness, segregation, aggregation, and 
species home range coherence. Collapsing ecological patterns 
into a single metric is challenging, because ecological pat-
terns are inherently multivariate. Th ere may be associations 
among sets of species, similarities among sets of islands, and 
perhaps diff erent submatrices that exhibit diff erent kinds of 
patterns. 

 However, many metrics of species association repre-
sent an average or a sum of values calculated for individual 
pairs of species. A long-standing objection to null model 
analyses of competitive interactions is that patterns among 
particular sets of species will be obscured by a metric that 
averages over all possible pairs ( ‘ dilution eff ect ’ ; Diamond 
and Gilpin 1982). One approach is to analyze the distribu-
tion of metrics for all of the  S ( S  –   1)/2 unique species pairs 
(Sfenthourakis et al. 2006, Gotelli and Ulrich 2010). 
However, this introduces new problems because there are 
so many statistical tests that must be conducted. Similar 
problems arise in genomic and proteomic analysis, in which 
large numbers of genes are simultaneously screened. Bayesian 
approaches developed for genomics (Efron 2005) can be 
adapted to testing for species pairs in ecological analyses 
(Gotelli and Ulrich 2010). Initial tests for pattern in the 
entire matrix followed by pair-wise analyses with adjusted 
 P -values may be an eff ective strategy to uncover non-random 
species pairs and avoid a dilution eff ect. 

 A fi nal challenge in defi ning an appropriate metric is 
ensuring that the metric uniquely quantifi es the pattern of 
interest, and does not also measure other sorts of patterns. In 
many cases, metrics are implicitly equated with the patterns 
they are intended to describe, which can lead to a mismatch 
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between the formal defi nition of a pattern and the working 
defi nition based on the index. 

 Th e history of the nestedness concept (Almeida-Neto 
et al. 2007, 2008, Ulrich et al. 2009) is a good example of 
how this mismatch of pattern and metric can cause confu-
sion. Patterson and Atmar (1986) originally defi ned nested-
ness as  ‘  that   the species comprising a depauperate fauna should 
constitute a proper subset of those in richer faunas  ’ . Th is defi ni-
tion of nestedness focuses on the species composition among 
sites, but does not consider the site composition among 
species. A proper nestedness metric should measure the 
degree to which species poor sites appear to be random 
subsamples of species rich sites. Th e discrepancy metric of 
Brualdi and Sanderson (1999) conforms to this defi nition 
(Fig. 2) because it quantifi es only discrepancies in nestedness 
among sites. 

 However, the original temperature metric fi rst proposed 
Atmar and Patterson (1993) is based on weighted discrep-
ancies that refl ect deviations of both individual sites and of 
individual species from a pattern of maximum nestedness 
(Fig. 2). Although the temperature metric performs well 
in most biogeographical applications (Ulrich and Gotelli 
2007a), it measures something more than just deviations 
of individual sites from nestedness. Recently Almeida-
Neto et al. (2007, 2008) introduced a metric, NODF, that 
is close to the original Atmar and Patterson (1993) defi ni-
tion of nestedness, but regards discrepancies among both 
sites and species. Even when used with an identical null 
model algorithm, these three popular metrics have the 
potential to classify the same matrix (Fig. 2) as nested (dis-
crepancy index), anti-nested (NODF), or random (matrix 
temperature). Subtle diff erences in pattern defi nition can cause 
signifi cant diff erences in matrix classifi cation and there-
fore in the ecological interpretation. Similar contradictory 
behavior can be found for various diversity and evenness 

1 2 3 4 5 6 S
1 0 5
2 5
3 0 5
4 0 5
5 0 5
6 0 5
7 0000 2
8 00000 1
9 00000 1

10 00000 1 1
S 7 7 6 6 6 3 35

T

D

N

  

Figure 2.     Th ree popular metrics of nestedness perform diff erently 
on a matrix of ten species and six sites. Temperature (T) is a 
symmetric measure of squared distances from a predefi ned isocline. 
Discrepancy (D) counts the minimal number of gaps to be fi lled 
to achieve a perfectly fi lled upper-right part of the matrix. NODF 
(N) is the averaged number of row and column gaps within the 
sequence of decreasing marginal totals. Both under the conservative 
fi xed  –  fi xed null model and under the most liberal equiprobable –
 equiprobable null model, these metrics give contradictory patterns. 
Discrepancy identifi es the matrix as being signifi cantly nested 
(D  �  3, P(H 0 )  �  0.01); temperature identifi es the matrix as being 
neither signifi cantly nested nor anti-nested (T  �  27.3, P(H 0 )  �   
0.15); NODF points to signifi cant anti-nestedness (NODF  �  41.1, 
P(H 0 )  �  0.01).   

metrics (Tuomisto 2010, Chao et al. 2010, Loehle 2011, 
Almeida-Neto et al. 2011).   

 Benchmark metric and algorithm 
performance in null model analysis 

 In null model and Monte Carlo analysis, randomizations 
are intended to provide a random sample of metric values 
when H 0  is true. Th e problem with any such null hypothesis 
testing is that the rejection of H 0  with probability  α  does 
not imply that H 1  is true with probability 1  –   α . Such a 
conclusion would be allowed only if H 0  and H 1  were mutu-
ally exclusive (only one of the hypotheses is true) and col-
lectively exhaustive (there are no other hypotheses possible). 
Both assumptions are often not fulfi lled. Further, it is never 
certain whether a particular null model suffi  ciently captures 
the range of patterns specifi ed by the null hypothesis. For 
instance, if we want to test whether species pairs have nega-
tive associations, our null hypothesis would be that species 
occurrences are independent, so that associations are ran-
dom. However, very diff erent types of association might 
be called random with respect to certain factors. Even with 
a precisely stated null hypothesis about randomness, it is 
still uncertain whether an associated randomization ade-
quately approximates the pattern predicted by the null 
hypothesis (Navarro-Alberto and Manly 2009). 

 Diff erent algorithms that are reasonable candidates for 
a null hypothesis may generate diff erent distributions of 
test metrics. For example, there are at least three reasonable 
algorithms (knight ’ s tour, swap, sums of squares reduction) 
that generate randomized matrices retaining marginal totals 
(Sanderson et al. 1998, Connor and Simberloff  1979, Mikl ó s 
and Podani 2004), but not all of these algorithms generate 
a truly random sample of the (large) set of all matrices with 
the same row and column totals. 

 For these reasons, it is necessary to expand the traditional 
Neyman – Pearson testing framework to evaluate the empiri-
cal performance of any proposed null model-metric com-
bination against a battery of artifi cial test matrices (Fig. 3). 
Although many investigators introduce new null models and 
metrics, and then apply them to empirical data sets, this is 
premature (Gotelli 2001). Th e performance of null models 
cannot be evaluated by comparing patterns with real data 
matrices, which contain unknown amounts of structure 
or randomness. By constructing a set of artifi cial matrices, 
investigators can control the amount of signal and noise in 
the data, and then evaluate the behavior of any candidate 
null model algorithm and test metric. 

 We begin this benchmark testing procedure (Fig. 3) by 
defi ning a set of  x  candidate null models. Th ese are statis-
tical randomization algorithms that generate matrices that 
are generally similar to those that might arise from a specifi c 
process-based null model. We also defi ne a set of  y  candidate 
metrics. Each metric provides a single number that can be 
calculated from a matrix and quantifi es a particular pattern 
of interest (such as nestedness or species segregation). Th e 
performance of each of the  xy  metric – algorithm combina-
tions must then be tested against artifi cial matrices that have 
specifi ed levels of randomness and structure. 

 We can imagine a set of  ‘ random ’  matrices and a set of 
 ‘ structured ’  matrices. For the set of artifi cial random matrices, 
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 Figure 3.     A conceptual model to illustrate the steps of standard null model testing and benchmark testing of proposed null models and metrics.  

we want to quantify how frequently each matrix – algorithm 
combination rejects H 0 . If this frequency is too high (by 
conventional standards,  �  0.05), we should avoid this com-
bination because it is prone to type I errors (operationally 
defi ned as frequent rejection of H 0  for the set of artifi cial 
random test matrices). For the set of artifi cial structured 
matrices, we also want to quantify how frequently each 
matrix–algorithm combination rejects H 0 . If this frequency 
is too low, we should avoid this combination because it 
is prone to type II errors (operationally defi ned as infre-
quent rejection of H 0  for a set of artifi cially structured test 
matrices). 

 How should these test matrices be generated? Th e arti-
fi cial random matrices should exhibit properties that are 
associated with the null hypothesis. If the null hypothesis 
is that species interactions are not important, the algorithm 
should place species occurrences in sites independently of 
other species occurrences and at random. For example, in 
previous tests (Ulrich and Gotelli 2007a, b) we have used 
a log-normal distribution of species abundances and a 
random uniform distribution of species per site to gener-
ate random matrices that would be expected with neutral 
metacommunity dynamics (Hubbell 2001). We randomly 
varied the parameters in these statistical distributions within 
specifi ed ranges, as well as the matrix dimensions and fi ll, to 
generate a heterogeneous suite of artifi cial random matri-
ces.  ‘ Random ’  is here defi ned by the neutrality assumption 
of species equivalence and a lack of ecological interactions. 
Th ese matrices are all random with respect to species co-
occurrences, but they also incorporate heterogeneity in spe-
cies incidences (row totals) and numbers of species per site 
(column totals). 

 It is more challenging to construct artifi cially structured 
matrices for benchmark testing. Th e two strategies used have 
been to begin with a highly organized matrix, and randomly 

swap elements in the matrix rows to introduce increasing 
levels of noise and species independence (Gotelli et al. 1997, 
Gotelli 2000). Alternatively, one can begin with a random 
matrix and introduce one or a few species pairs with non-
random structure (Ulrich and Gotelli 2007a, b). Th is kind 
of matrix tests whether the null model algorithm can suc-
cessfully recover the embedded pattern, or whether the algo-
rithm suff ers from a  ‘ dilution eff ect ’ . It also reveals how large 
an eff ect size is necessary for statistical detection. 

 Th is benchmark testing procedure is not fool-proof, 
and certainly the results depend on the ways in which the 
artifi cial random and structured matrices are generated. 
Even for models that pass this screening, some structured 
matrices may appear as random (Colwell and Winkler 
1984), and some random matrices may cause the null 
hypothesis to be rejected (Ulrich 2004). If one could spec-
ify a particular process-based null model and estimate its 
parameters, then other kinds of tests may be more powerful 
and robust, and could be analyzed with more formal statis-
tical methods. But in the absence of such information, the 
operational defi nitions of the frequency of type I and type 
II errors provide reasonable benchmark criteria for evaluat-
ing and comparing the performance of diff erent null model 
algorithms (Fig. 3).   

 Sample size effects in null model analysis 

 Most data sets for the analysis of metacommunity structure 
are of small or intermediate size. Th ey contain rarely more 
than 100 species and/or 100 sites. Th e limit on the number 
of sites refl ects the considerable time and labor that is needed 
for fi eld ecologists to sample communities at multiple 
locations over reasonably large spatial scales. Th e limit on 
the number of species refl ects the considerable taxonomic 
expertise needed to correctly identify fi eld samples, and the 
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things, critics objected to the random placement of ranges 
within a bounded range because real ranges refl ect species 
interactions with the environment (Hawkins and Diniz-
Filho 2002). 

 However, the MDE served as a very eff ective null 
model because it excluded geographical gradients in histori-
cal eff ects or contemporary climate and demonstrated that 
species richness gradients can arise entirely from simple geo-
metric constraints (Colwell et al. 2004). Th ese constraints 
are a realistic alternative to the implicit null hypothesis in 
many correlative studies where species have no dispersal con-
straints and can occur in any grid cell within a domain that 
has appropriate climatic conditions (Gotelli et al. 2009). 
More recent analyses have used the range cohesion eff ect 
embodied in MDE in stochastic models that also include 
environmental eff ects (Rahbek et al. 2007). 

 For very large matrices, and for matrices sampled at large 
spatial scales, the homogeneity assumption cannot be justi-
fi ed and traditional null models should be applied with cau-
tion. Recently Navarro-Alberto and Manly (2009) showed 
that any diff erence either in occurrence probabilities of spe-
cies across sites (non-uniform column degree distributions) 
or species (non-uniform row degree distributions) causes 
some degree of spatial autocorrelation. Null models that do 
not correct for autocorrelation may therefore too often point 
to non-randomness. To our knowledge, the eff ect of autocor-
relation on matrix structure has not been studied system-
atically, although Ulrich (2004) demonstrated that a neutral 
model with limited spatial dispersal can generate binary 
presence–absence matrices that are statistically segregated. 
Autocorrelation in species occurrences should cause a ten-
dency towards matrix compartments with regions of higher 
and lower fi ll. For large matrices, even very small degrees 
of autocorrelation will be identifi ed as being signifi cant 
(Burnham and Anderson 2002). 

 A second type of autocorrelation is the repetition of 
submatrix patterns as shown in Fig. 4A. A uniform 100  �  10 
random matrix is not identifi ed as being structured by 
the common C-score using the fi xed  –  fi xed null model. 
However, repeated juxtaposition of this matrix generates a 
100  �  100 matrix that appears highly structured and is iden-
tifi ed as being signifi cantly segregated. Repetition of struc-
ture might pose a problem in pseudoreplicated sampling 
designs (Hurlbert 1984) in which all contiguous sampling 
plots (or sites in a gridded macroecology map) are used to 
generate a matrix for pattern analysis. 

 Autocorrelation poses particular problems in pattern 
interpretation. Many patterns, for instance patterns of 
co-occurrence and nestedness, are inevitably linked to non-
random cell occupancies and are therefore a special case 
of autocorrelation. Autocorrelation due to matrix inhomo-
geneity and due to non-random species associations may 
be indistinguishable. Th e development of null models for 
large matrices that can accommodate a moderate amount 
of autocorrelation is needed. Such null models should 
incorporate information on environmental variables that 
infl uence occurrence probabilities (Peres-Neto et al. 2001). 
It might be that large heterogeneous matrices need explicit 
process based simulations to generate appropriate null distri-
butions (Gotelli et al. 2009).   

conscious or unconscious decisions of collectors to limit 
their collecting to a particular guild, taxonomic group, or 
trophic level, rather than attempting a comprehensive survey 
of an entire food web. 

 Th ese limitations are easily seen in the data sets that 
ecologists have laboriously accumulated over the past several 
decades. For instance only four matrices of the well-known 
compilation of Atmar and Patterson (1995) had more than 
100 sites. However, the recent prominence of macroecologi-
cal studies based on extensive data bases of gridded maps 
of terrestrial species occurrence (Rahbek et al. 2007, Keil 
and Hawkins 2009), as well as small- and large-scale studies 
of taxon-rich microbial diversity (cf. Green and Bohannan 
2006) have led to a substantial increase in the size of data 
matrices. 

 But null model analysis may not be well-suited to such 
large data sets. Th e general statistical problem is that with 
very large data sets, the null hypothesis will always be rejected 
unless the data were actually generated by the null model 
process itself. So, large data sets may often deviate signifi -
cantly from null models in which row and column sums are 
fi xed, regardless of whether species occurrences are random 
or not (Fayle and Manica 2010). Th is was not a problem in 
the early history of null model analysis, when ecologists wor-
ried that apparent patterns in relatively small data sets might 
refl ect random processes. 

 A related problem with large matrices is in the statistical 
analysis of pair-wise species associations. For instance, in 
a matrix of 50 species there are 50  �  49/2  �  1225 distinct 
species pairs. If all pairs are independent of one another, 
we still expect with a 1% two-tailed test 12  ‘ non-random ’  
associations just by chance. Th us maximally 24 species 
(48%) might be involved in false positives. Having 500 
species we have already 124 750 pairs and 1248  ‘ signifi -
cant ’  pairs just by chance. Th us it is quite probable that 
each of the 500 species is at least one time engaged in a 
false positive pair. A simple frequentist null model analysis 
of pair-wise association is impossible; other methods, for 
instance Bayesian techniques (Gotelli and Ulrich 2010), 
are needed. 

 Simple statistical analyses assume that data are randomly 
and independently sampled; community structure on iso-
lated islands or habitat patches is regularly treated this way. 
But many macroecological data sets consist of gridded con-
tiguous observations, and it is not clear that they should 
be analyzed as a set of random, independent samples. Null 
models that randomize occurrences within a matrix assume 
that occurrence probabilities are independent of sample 
position, so they ignore spatial autocorrelation in spe-
cies occurrences. For example, null models that randomly 
place species occurrences in a grid of equiprobable cells will 
generate a uniform distribution of species richness values. 
But if the spatial coherence of species individual ranges is 
preserved in a simple  ‘ spreading dye ’  null model (Jetz and 
Rahbek 2001), the distribution of species richness values 
exhibits a peak near the center of the map (the mid-domain 
eff ect; Colwell and Lees 2000), which is very diff erent from 
a uniform distribution of richness across the domain. Th e 
mid-domain eff ect (MDE) proved to be a surprisingly con-
troversial null model (Colwell et al. 2005). Among other 
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 Figure 4.     Four examples of matrices with seemingly contradictory patterns as detected by common metrics under the fi xed – fi xed null model 
(species occurrences are in grey; all P(H 0 )  �  0.001). (A) A presence – absence matrix of 20 species and fi ve sites (sorted according to marginal 
totals) generated by a uniform random placement (the highlighted part) is not identifi ed as being structured by the C-score (Stone and 
Roberts 1990) and the NODF nestedness metric (Almeida-Neto et al. 2008; fi xed – fi xed null model: P(H 0 )  �  0.3). However, a 5  �  replica-
tion and juxtaposition of this random matrix generated a 20  �  25 matrix that was identifi ed by the C-score as being highly segregated 
(P(H 0 )  �  0.001) and by NODF as being highly anti-nested (P(H 0 )  �  0.001). (B) Th e herpetofauna of land bridge islands in the Sea of 
Cortez (Murphy 1983) is identifi ed by temperature and discrepancy as being nested and by NODF as being antinested. (C) Th e Canary 
Island birds matrix (Bacallado 1976) appears to be segregated (C-score), nested (temperature) and as having turnover (correlation of occur-
rence ranks). (D) Bats along an elevation gradient (Atmar and Patterson 1995), are identifi ed as being segregated (C-score), aggregated 
(nearest neighbor distance), nested (discrepancy), antinested (NODF, temperature), coherent (embedded absences), and as having turnover 
(correlation of occurrence ranks).  
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is a typical example of a matrix that is simultaneously nested 
and exhibits turnover. Our screening also showed that larger 
matrices seem to be especially prone to exhibiting multiple 
structures that are detected by null model tests. Each of 
the seven multiple structure matrices had more than 1000 
cells, which exceeds signifi cantly (U-test,  P   �  0.001) the 
average matrix size of the Atmar-Patterson and Ulrich-
Gotelli data sets. Th ese multiple structured matrices do not 
fi t into any simple static classifi cation scheme and may 
require a multivariate approach to pattern description 
(Podani and Schmera 2011). 

 Surprisingly, as many as 40 matrices were detected by 
discrepancy and NODF as being signifi cantly nested and 
anti-nested, respectively. Only one matrix was jointly identi-
fi ed by the three popular nestedness metrics (NODF, discrep-
ancy, and temperature) as being nested. Eighteen matrices 
were jointly detected by the nearest neighbor distance and 
the Morisita index (advocated by Leibold and Mikkelson 
2002 and Presley et al. 2010) as being aggregated (Ulrich 
and Gotelli unpubl.). All of these 18 matrices are identifi ed 
by the C-score as being segregated and (with one exception) 
by the correlation-of-occurrence-ranks metrics as having 
signifi cant turnover. Th ese analyses suggest that the inter-
play of species segregation, aggregation, and turnover in real 
metacommunities may be too complex and interwoven to 
generate discrete patterns that can be organized into a simple 
static classifi cation scheme. 

 Our examples also show how diffi  cult it may be to defi ne 
patterns implicitly via metrics (see also Almeida-Neto et al. 
2007, 2008). Incongruence in the assessment of structure 
between metrics is frequently met in ecological analyses 
and must be considered when proposing new patterns and 
classifi cation schemes. Imprecise defi nitions of patterns and 
ad hoc introductions of metrics and algorithms that have 
not been subject to benchmark screening and analysis 
can introduce more confusion than clarity (Gotelli 2001). 
Relating complex patterns in presence–absence matrices to 
explicit ecological mechanisms remains a diffi  cult challenge.   

 Going beyond presence – absence data 

 To date most biogeographic data sets only contain infor-
mation on presences and absences that were obtained from 
fl oristic or faunistic surveys, and most null model tests use 
only the data contained within those matrices. However, 
additional information on both sites and species can be 
readily incorporated into null model analysis. For example, 
rather than assuming all sites of being equiprobable or fi x-
ing species richness per site, null models can place species on 
sites with probabilities determined by patch area (Connor 
et al. 2000, Jenkins 2006) or habitat suitability (Peres-
Neto et al. 2001). Similarly, colonization potential of spe-
cies can be estimated independent of occurrence by using 
estimates of body size, population size, or biomass (Gotelli 
et al. 2010). It is somewhat surprising how little extra 
biological information has so far been incorporated into 
null model analysis. Benchmark testing of null models that 
incorporate additional information can be challenging. 
However, a systematic comparison of model results with and 
without particular factors included can be very informative. 
Null models that incorporate independent information 

 Matrix classifi cation 

 Quantitative analysis of presence–absence matrices implies 
that we can position any matrix along a gradient encompassing 
diff erent extremes of pattern, with random patterns occupy-
ing an intermediate position. For instance, metrics of nested-
ness defi ne a gradient from nested to random to antinested 
(cf. Almeida-Neto et al. 2007 for the use of antinestedness). 
Th e C-score (Stone and Roberts 1990) and other metrics of 
species associations (cf. Leibold and Mikkelson 2002, Baselga 
2010, Podani and Schmera 2011) defi ne a gradient from spe-
cies segregation to random patterns to species aggregation. 

 Recently Presley et al. (2010) proposed a more elaborated 
classifi cation that extended the widely-cited approach of 
Leibold and Mikkelson (2002) to metacommunity struc-
ture. Th e key argument of both papers is that metacommu-
nities can be classifi ed into several distinct categories based 
on the particular patterns exhibited in presence – absence 
matrices. Presley et al. (2010) start with the distinction 
between species segregation (checkerboardiness) and coher-
ence (species aggregation) as representing aspects of com-
munity structure. Th en they subdivide coherence into 12 
diff erent types of species aggregation. 

 However, as noted early on by Stone and Roberts (1990), 
species segregation and species aggregation may be diff erent 
sides of the same coin. Above a threshold matrix fi ll (which 
depends on the number of species in the matrix) any per-
fectly segregated (checkerboarded) presence – absences matrix 
can be rearranged to appear perfectly aggregated (cf. matrix 
 U  in Stone and Roberts 1990), simply by re-ordering the 
rows and the columns of the matrix. Th is re-ordering does 
not alter any of the underlying information on species occur-
rences in the matrix. In turn, any matrix that is strongly 
compartmentalized (that is having several clusters of nested 
species) can also be re-ordered to appear strongly segregated
(checkerboarded). Any perfect checkerboarded matrix 
exhibits also strong species turnover (Stone and Roberts 
1990), which is a change in composition across sites in a 
matrix that has been rearranged using ordination (reciprocal 
averaging) to achieve maximum turnover (Leibold and 
Mikkelson 2002). Indeed, turnover is always positively linked 
to species segregation, while it remains to be shown whether 
segregation necessarily implies turnover. 

 To assess the scatter in matrix patterns we screened 
the compilations of biogeographic matrices of Atmar and 
Patterson (1995) and Ulrich and Gotelli (2010) for matrices 
with seemingly contradictory patterns. Of the 435 matrices, 
seven were simultaneously signifi cantly segregated (C-score 
metric of Stone and Roberts 1990;  P   �  0.001 as inferred 
from the null distributions of the fi xed  –  fi xed null model), 
aggregated (nearest neighbor distance test of Clark and 
Evans 1954 applied to a matrix ordinated by reciprocal aver-
aging to maximize turnover), nested (discrepancy metric of 
Brualdi and Sanderson 1999), and exhibited turnover (mea-
sured by the coeffi  cient of correlation of species occurrence 
ranks in the ordinate matrix; Ulrich and Gotelli unpubl.). 

 Figure 4B – D shows three typical examples of matrices 
with such a multiple structure. Figure 4B and 4C indicate 
that aggregation, segregation, turnover and coherence pat-
terns arise in matrices with at least one compartment of 
higher fi ll and a high degree of spatial turnover. Figure 4D 
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occupy a worthwhile middle ground on the spectrum from
standard randomizations tests (Manly 2009) to pattern-
oriented modeling (Grimm et al. 2005) of detailed mecha-
nistic processes (Gotelli et al. 2009). 

 Moreover, ecologists are starting to generate quantitative 
data matrices based on counts or estimates of abundance, 
biomass, or percent cover of each species. Abundance based 
matrices potentially contain more information on species 
associations than presence – absence matrices and might be 
better suited to infer patterns of matrix structure and the 
underlying processes that generate these patterns (Ulrich and 
Gotelli 2010, Almeida-Neto and Ulrich 2010). Abundance 
data might be particularly helpful to resolve questions con-
nected to the long-lasting debate about the existence and 
importance of ecological assembly rules (Diamond 1975, 
Hubbell 2001). 

 Recently, Ulrich and Gotelli (2010) and Almeida-Neto 
and Ulrich (2010) developed and tested metrics and null 
model algorithms for the study of species associations and 
nestedness in abundance matrices. Both papers also high-
lighted three potential challenges in the use of these matrices. 
First, abundance matrices are based on counts of individu-
als, not species. Th us familiar metrics of nestedness, species 
segregation, or species turnover need precise redefi nitions 
and new metrics that incorporate information from abun-
dance. Th e subtle diff erences in pattern defi nition between 
presence – absence and abundance data should be taken into 
account when comparing patterns across matrix types. Sec-
ond, abundance matrices allow for a much wider scope of 
potential randomization algorithms to obtain null distribu-
tions (reviewed by Ulrich and Gotelli 2010). Th ird, it is not 
yet clear how to incorporate underlying population-level 
processes, such as density-dependence, migration, and espe-
cially aggregation, which can potentially aff ect patterns in 
abundance matrices. More research and data collection is 
needed for the analysis of abundance matrices. 
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