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ABSTRACT 
Eclampsia is a hypertensive disorder of pregnancy and a leading cause of maternal 

death.  The primary explanation for eclampsia is that it represents a form of hypertensive 
encephalopathy (HTE) with neurological symptoms including headaches, nausea, 
vomiting, visual disturbances, and seizures.  The etiology of HTE involves an acute 
increase in arterial blood pressure that exceeds the autoregulatory capacity of the brain 
leading to forced dilatation of cerebral vessels, decreased cerebrovascular resistance, 
hyperperfusion, blood-brain barrier (BBB) disruption, and vasogenic cerebral edema 
formation.  Due to the central role of the cerebral circulation in mediating these 
symptoms, a better understanding of how pregnancy affects the cerebral circulation is 
important to the treatment and prevention of eclampsia. 

A central goal of this dissertation was to determine pregnancy’s effect on cerebral 
blood flow (CBF) autoregulation, edema formation, and BBB permeability during acute 
hypertension.  Women with eclampsia often seize at lower blood pressures than HTE 
patients.  We hypothesized that pregnancy may predispose the brain to eclampsia by 
lowering the pressure of autoregulatory breakthrough and enhancing cerebral edema 
formation.  Using an in vivo model of HTE, we found that the pressure of autoregulatory 
breakthrough was not different between nonpregnant (NP) and late-pregnant (LP) rats; 
however, cerebral edema formation was significantly increased only in LP animals.  
Nitric oxide synthase inhibition significantly increased the upper limit of autoregulation 
in both NP and LP animals and attenuated cerebral edema formation in LP animals.  BBB 
permeability during acute hypertension was not different between these groups. 

Magnesium sulfate (MgSO4) is widely used to treat eclampsia despite an unclear 
mechanism of action.  A second goal of this dissertation was to determine the 
cerebrovascular effects of MgSO4 during pregnancy.  Specifically, we investigated the 
effect of MgSO4 on in vitro resistance artery vasodilation and in vivo BBB permeability 
during acute hypertension.  We hypothesized that dilation to MgSO4 would be greater in 
mesenteric than cerebral vessels. MgSO4 elicited concentration-dependent vasodilation in 
all arteries, as determined by measuring lumen diameter of isolated and pressurized 
arteries, however, mesenteric arteries were considerably more sensitive than cerebral 
arteries.  In addition, there was no effect of pregnancy on MgSO4 sensitivity in 
mesenteric arteries, whereas pregnancy decreased sensitivity to MgSO4 in cerebral 
arteries.  We further hypothesized that MgSO4 would decrease BBB disruption during 
acute hypertension, thereby protecting the brain in eclampsia.  Using an in vivo model of 
HTE, we showed that MgSO4 treatment decreased BBB permeability during acute 
hypertension in LP rats, with the greatest effect observed in the posterior cerebrum. 

In conclusion, this dissertation determined CBF autoregulation and cerebral edema 
formation during pregnancy, and also the effect of MgSO4 on cerebral resistance artery 
vasodilation and BBB permeability during acute hypertension in LP rats.  Although 
pregnancy did not influence autoregulatory breakthrough, cerebral edema formation was 
enhanced in LP animals and this may potentiate neurological symptoms in eclampsia.  In 
addition, MgSO4-induced cerebral vasodilation is likely not a primary mechanism of 
eclampsia treatment, rather MgSO4 may limit edema formation by attenuating BBB 
permeability during hypertension. 
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CHAPTER 1: COMPREHENSIVE LITERATURE REVIEW 

1.1. Eclampsia 

1.1.1. Introduction 

Since the times of Ancient Greece, it has been observed that "In pregnancy, 

drowsiness with headache, accompanied by heaviness and convulsions, is generally 

bad” (Chadwick and Mann 1950).  Today this condition is known as eclampsia, a 

pregnancy-specific syndrome consisting of preeclamptic symptoms (elevated blood 

pressure and proteinuria) combined with the new onset of seizures (Cunningham et al. 

2001; National High Blood Pressure Education Working Group on High Blood 

Pressure in Pregnancy 2000).  Eclampsia has a range of neurological signs and 

symptoms including nausea, vomiting, headaches, visual disturbances, and seizures and 

coma in the most severe cases (Chames et al. 2002; Douglas and Redman 1994; Katz, 

Farmer, and Kuller 2000; Sibai 2005). 

Eclampsia is a serious complication of pregnancy.  The incidence of eclampsia 

was estimated to be 3.0 per 1,000 live births for 2003 in the United States (Martin et al. 

2005), and 1 in 2,000 pregnancies in the United Kingdom in 1992 (Douglas and 

Redman 1994).  The risk of pregnancy complications increases with eclampsia, and 

these complications can include abruptio placentae, preterm birth, fetal growth 

retardation, HELLP (Hemolysis, Elevated Liver enzymes, and Low Platelets) 

syndrome, disseminated intravascular coagulopathy, pulmonary edema, acute renal 

failure, and neurological deficits (Douglas and Redman 1994; Katz, Farmer, and Kuller 

2000; Lopez-Llera 1992; Mattar and Sibai 2000; Sibai 1990, 2005).  Eclampsia is a 
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leading cause of maternal death throughout the world, with a higher mortality rate in 

developing countries compared to Western countries (Berg et al. 2003; Duley 1992; 

Khan et al. 2006).  Worldwide, it is estimated that at least 50,000 women die each year 

from eclampsia (Duley 1992).  Importantly, approximately 40% of eclamptic deaths are 

due to cerebral complications (Berg et al. 2003; Donaldson 1989; MacKay, Berg, and 

Atrash 2001). 

The pathogenesis of the neurological symptoms of eclampsia has been debated 

between two opposing theories.  Eclamptic seizures have been proposed to be caused 

by either vasospasm with decreased cerebral blood flow (CBF), or alternatively by 

hyperperfusion in the cerebrovasculature.  To better comprehend the origins of 

eclampsia and its related neurological complications, the effects of pregnancy, and 

hypertension in pregnancy, on the cerebral circulation must be understood.  The overall 

goal of this dissertation project was to determine how pregnancy affects CBF 

autoregulation and blood-brain barrier (BBB) permeability during acute hypertension, 

and how the common treatment of magnesium sulfate may influence these 

cerebrovascular parameters. 

 

1.1.2. Related Disorders: Posterior Reversible Encephalopathy Syndrome and 

Hypertensive Encephalopathy 

In 1996, Hinchey and colleagues published a report of cases with similar clinical 

signs and neuroimaging findings that resulted from various causes including eclampsia 

and hypertensive encephalopathy (HTE) (Hinchey et al. 1996).  Common presenting 
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symptoms include headaches, nausea, vomiting, altered mental status, visual 

disturbances, and generalized seizures (Hinchey et al. 1996; Schwartz et al. 1992; 

Servillo et al. 2003; Stott, Hurrell, and Anderson 2005).  These patients shared a 

common neuroimaging finding of white matter edema in posterior cerebral regions, 

particularly bilaterally in parietal and occipital areas.  In the authors’ opinion, the acute 

and reversible nature of the white matter abnormalities seen in this cohort was best 

explained by hypertension and an altered BBB, and they termed this syndrome 

Reversible Posterior Leukoencephalopathy Syndrome (RPLS) (Hinchey et al. 1996).  

Alternative names have been proposed for this syndrome, such as Posterior Reversible 

Encephalopathy Syndrome (PRES) (Casey et al. 2000; Lamy et al. 2004) and Posterior 

Leukoencephalopathy Syndrome (Ay et al. 1998), to emphasize the possibility for gray 

matter involvement and irreversible damage to occur (Casey et al. 2000; Schwartz 

1996). 

Advances in neuroimaging techniques have further characterized PRES, and 

thus HTE and eclampsia.  Magnetic resonance imaging (MRI) scans and fluid 

attenuated inversion recovery (FLAIR) images from PRES patients show cerebral 

edema in the posterior cerebral hemispheres (Stott, Hurrell, and Anderson 2005).  

FLAIR sequences allow areas of cerebral edema to appear more prominently and can 

improve cortical lesion detection (Casey et al. 2000).  In one study, the use of FLAIR 

sequences identified cortical involvement in 94% of PRES patients examined in 

addition to white matter lesions (Casey et al. 2000). 
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Imaging technology can also provide pathophysiological information.  

Traditional MRI cannot distinguish between edema caused by hypoxia (cytotoxic) and 

edema caused by BBB disruption (vasogenic) (Ebisu et al. 1993).  However, diffusion-

weighted imaging (DWI) and apparent diffusion coefficient (ADC) images are sensitive 

to microscopic random motion of water molecules and can potentially differentiate 

between cytotoxic and vasogenic edema (Ebisu et al. 1993; Mukherjee and McKinstry 

2001; Provenzale et al. 2001; Schwartz et al. 1998; Sevick et al. 1992).  Increased ADC 

values, consistent with vasogenic edema, have been found in PRES and HTE patients 

(Ahn et al. 2004; Gocmen, Ozgen, and Oguz 2007; Provenzale et al. 2001; Schaefer et 

al. 1997; Schwartz et al. 1998).  These imaging modalities provide clinical support for 

the hyperperfusive theory of PRES, and thus eclampsia, in which CBF autoregulation is 

overcome by elevated blood pressure causing cerebral vasodilation, BBB disruption, 

and vasogenic cerebral edema (Mukherjee and McKinstry 2001; Provenzale et al. 

2001). 

A major cause of PRES is HTE, an acute brain syndrome that occurs when the 

upper limit of cerebral autoregulation is exceeded by a sudden elevation in blood 

pressure, also known as autoregulatory breakthrough (Phillips and Whisnant 1992; 

Vaughan and Delanty 2000).  (Particular features of the cerebrovasculature, including 

CBF autoregulation, will be described in detail in following sections.)  In 1928, 

Oppenheimer and Fishberg introduced the term “hypertensive encephalopathy” to 

describe the cerebral changes associated with arterial hypertension, and associated the 

severity of HTE clinical manifestations with increased water in the brain (Oppenheimer 
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and Fishberg 1928).  Clinically, HTE is characterized by headaches, altered mental 

status, nausea, vomiting, visual disturbances (including blindness), and seizures in the 

setting of elevated blood pressure (Hauser, Lacey, and Knight 1988; Johansson 1997; 

Phillips and Whisnant 1992).  If left untreated, HTE can progress to more serious 

complications such as cerebral hemorrhage, coma, and death (Dinsdale 1978).  

Fortunately, the neurological signs of HTE are largely reversible if blood pressure is 

promptly lowered (Johansson 1997). 

The pathophysiology of HTE is relevant because eclampsia is thought to be a 

form of HTE (Easton 1998; Phillips and Whisnant 1992).  The more recent controversy 

over the etiology of eclampsia echoes a similar difference of opinion over the 

pathogenesis of HTE decades ago.  The debate involved two diametrically opposed 

etiologies, cerebrovascular vasospasm and ischemia versus excessive vasodilation of 

the cerebral circulation and hyperperfusion of the brain (Byrom 1969; Lassen and 

Agnoli 1972).  Historically, it was thought that an acute and severe increase in arterial 

blood pressure (ABP) caused excessive vasoconstriction in the cerebrovasculature with 

resulting areas of infarction (Johansson 1997; Paulson et al. 1989).  Experimentally, 

Byrom observed alternating areas of constriction and dilation in the cerebral arteries of 

rats fitted with cranial windows following experimental renal hypertension, and these 

areas of focal contraction were shown to completely normalize when hypertension was 

abolished (Byrom 1954).  This pattern of alternating regions of constriction and dilation 

has been referred to as a “sausage-string” (Auer 1978; Goldby and Beilin 1972; 

MacKenzie, Strandgaard et al. 1976), and has been observed in different vascular beds, 
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both cerebral and systemic, in a variety of animal models of hypertension (Giese 1973; 

Rodda and Denny-Brown 1966; Werber and Heistad 1984).  Byrom also reported that 

87% of rats showed trypan-blue staining (indicative of BBB disruption) in the cerebral 

cortex in response to hypertension, and edema was increased in the stained areas.  

Byrom stated that “spasm of the cerebral arteries and focal edema are closely correlated 

with acute cerebral symptoms” (Byrom 1954), and hypothesized that hypertension-

provoked vasospasm caused cerebral ischemia with subsequent BBB disruption and 

edema formation.  This hypothesis was later supported by other studies (Dinsdale, 

Robertson, and Haas 1974; Meyer, Waltz, and Gotoh 1960; Rodda and Denny-Brown 

1966). 

Byrom interpreted the narrower cerebral artery segments he observed as the 

pathological condition, and the areas of dilation between them the normal state.  

However, these observations can also be considered in reverse.  In later studies, direct 

observations of pial arteries during acute hypertension revealed that the narrow 

segments of the sausage-string pattern represented maximal autoregulation.  The dilated 

segments were abnormal and had force dilated due to rising intraluminal pressure, and 

with time the constricted segments of pial arteries would also dilate (Auer 1978; 

MacKenzie, Strandgaard et al. 1976).  This supported a new hypothesis that forced 

vasodilation of the cerebrovasculature leads to BBB disruption, edema formation, and 

the symptoms of HTE (Lassen and Agnoli 1972).  This theory is supported by work 

showing increased vascular permeability in dilated, but not constricted, arterial 

segments during induced hypertension to both colloidal carbon (Giese 1964; Goldby 
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and Beilin 1972, 1972) and Evan’s blue (EB) tracers (Auer 1978).  It was also observed 

that vessel segments with vascular permeability have “widely patent lumens” 

(Giacomelli, Wiener, and Spiro 1970).  Studies have also suggested that BBB 

disruption preceded or occurred independently of cerebral ischemia in animals with 

symptoms of encephalopathy (Sadoshima and Heistad 1982; Tamaki et al. 1984).  

Additionally, CBF was shown to be increased in regions with BBB disruption (Tamaki 

et al. 1984), not decreased as would be predicted by the vasospasm theory of HTE.  

Many studies have shown that severe and acute hypertension leads to a passive 

dilatation of cerebral vessels and BBB disruption (Heistad and Marcus 1979; Johansson 

et al. 1970; Kontos et al. 1981; MacKenzie, Strandgaard et al. 1976; Nag, Robertson, 

and Dinsdale 1979).  In fact, Byrom himself later reversed his interpretation and 

supported forced vasodilation as the key event in the pathogenesis of HTE (Byrom 

1969). 

Increasingly, human studies also support a vasodilatory mechanism for HTE.  

Direct measurements of CBF in a patient with HTE symptoms demonstrated 

autoregulatory breakthrough (Skinhøj and Strandgaard 1973), and studies have also 

shown no evidence of cerebral vasospasm in patients at high blood pressures 

(Strandgaard et al. 1973).  Computed tomography (CT) scans of a HTE patient show 

widespread low density areas in the cerebrum with a particularly defined area of low 

density in the occipital region indicating intracerebral edema (Jespersen, Rasmussen, 

and Hennild 1989).  T2-weighted MRI scans of HTE patients show focal high-intensity 

lesions involving the cortex and white matter, especially the occipital lobes, with lesion 
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resolution on follow-up imaging (Hauser, Lacey, and Knight 1988; Schwartz et al. 

1992).  These high-intensity lesions on MRI were interpreted as protein and fluid 

extravasation across the BBB caused by breakthrough of cerebral autoregulation.  

Single-photon emission computed tomography (SPECT) studies during hypertensive 

crisis have shown increased vascular perfusion adjacent to areas with abnormal signals 

on MRI scans (Schwartz et al. 1992), suggesting increased CBF in the abnormal areas 

following a hypertensive insult. 

Due to the emergence of more effective anti-hypertensive medications, HTE is 

no longer as comprehensively studied.  It has been said that the brain is the “organ that 

has benefited most unequivocally from modern antihypertensive treatment”(Paulson, 

Strandgaard, and Edvinsson 1990).  However, studies on the pathogenesis of cerebral 

HTE symptoms offer important clues about the etiology of neurological symptoms in 

eclampsia. 

 

1.1.3. Hemodynamics during Pregnancy and Eclampsia 

Eclampsia is considered to be a form of both PRES and HTE in which acute 

elevations in blood pressure cause autoregulatory breakthrough and a subsequent 

decrease in cerebrovascular resistance (CVR) (Easton 1998; Phillips and Whisnant 

1992).  These hemodynamic changes increase hydrostatic pressure and lead to 

increased BBB permeability and edema formation, which may cause neurological 

complications due to pathologically increased intracranial pressure (ICP) and brain 

compression (Hatashita, Hoff, and Ishii 1986; Kimelberg 1995; Kongstad and Grande 
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2001).  Seizures often occur at lower blood pressures in eclamptic women compared to 

HTE patients (Douglas and Redman 1994; Leveno and Cunningham 1999), suggesting 

that there are important differences in the effect of acute hypertension on the 

cerebrovasculature during pregnancy.  The overall goal of this project was to gain a 

better understanding of the effects of pregnancy on the cerebral circulation that may 

predispose the brain to eclampsia. 

Among the many maternal physiological adaptations to pregnancy, there are 

significant changes in the cardiovascular system.  Early in gestation, peripheral 

vascular resistance begins to decrease (Clapp and Capeless 1997; Robson et al. 1989).  

During a normal singleton gestation, maternal plasma volume increases approximately 

40% (Pritchard 1965; Pritchard, Cunningham, and Pritchard 1984), and cardiac output 

increases 30-50% (Clapp and Capeless 1997; Monga 2004; Robson et al. 1989).  The 

increased cardiac output is distributed among many maternal organs.  Most notably 

uterine blood flow increases ten-fold (Gant and Worley 1989), and renal blood flow 

increases approximately 50% (Dunlop 1981; Lindheimer and Katz 1970).  In contrast 

to other organs, relatively little is known about changes in the cerebrovasculature and 

CBF during pregnancy. 

Transcranial Doppler (TCD) ultrasonography has been widely used to study 

cerebral hemodynamics during pregnancy.  TCD is a non-invasive method that can 

measure changes in blood flow velocity, but cannot directly determine vessel diameter 

(Kassab et al. 2007).  Thus, changes in CBF and vessel caliber are inferred (Clyde et al. 

1996), and concerns about the validity of extrapolating CBF from TCD studies have 
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been expressed (Kontos 1989).  In healthy pregnant women, decreased blood flow 

velocity has been measured in the middle cerebral artery (MCA) with advancing 

gestation by several groups (Belfort et al. 2001; Serra-Serra et al. 1997; Sherman et al. 

2002; Williams and Wilson 1994), though the interpretation of these common results 

varied.  These data were taken as evidence of physiological cerebral vasodilation, thus 

decreased CVR, in late gestation by some authors, presumably limiting data 

interpretation to the insonated vessel versus downstream arterioles (Serra-Serra et al. 

1997).  Others have reasoned that if ABP remained constant, decreased arteriolar 

resistance would cause an increase in both arterial blood volume and velocity (Belfort 

et al. 2001).  (Following this reasoning, the decreased velocities observed in normal 

pregnancy would seem to suggest increased downstream CVR (Kassab et al. 2007).)  

However, the final conclusion from this study was that because pregnancy caused a 

decrease in systolic and mean velocities, without changes in diastolic velocity, these 

data indicated an increase in arteriolar distensibility and a decrease in CVR with 

pregnancy (Belfort et al. 2001).  In the internal carotid artery, mean blood flow velocity 

was also found to decrease during the third trimester, and this was interpreted as 

decreased CBF based on the assumption that the internal carotid, a large extracranial 

artery, would not change diameter during pregnancy (Ikeda and Mori 1990).  It is 

recognized that TCD cannot determine if increased mean velocities are related to 

vasospasm or hyperemia (Romner et al. 1996; Clyde et al. 1996).  Velocity-encoded 

phase-contrast MRI can measure vessel diameter, and potentially determine absolute 

CBF (Morriss et al. 1997).  Using this technique, absolute CBF was shown to be 
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decreased ~20% in normal pregnancy due to a decrease in blood flow velocity (similar 

to TCD studies) not a change in vessel diameter (Zeeman, Hatab, and Twickler 2003).  

However, this study used postpartum values for comparison, which may not be the 

most appropriate data evaluation. 

Other measures of cerebral hemodynamics can be determined from TCD 

studies.  Cerebral perfusion pressure (CPP) can be calculated from TCD and ABP 

measurements (Belfort et al. 2000), and has been shown to increase up to 50% during 

gestation (Belfort et al. 2001; Sherman et al. 2002; Williams and Wilson 1998).  The 

resistance index (calculated as [velocitysystolic – velocitydiastolic] / velocitysystolic) is 

thought to represent the resistance of vessels distal to the location of TCD 

investigation; an increased resistance index implies increased resistance in downstream 

vessels and a decreased resistance index indicates lowered resistance downstream 

(Belfort, Saade, Grunewald, Dildy, Varner et al. 1999).  During normal pregnancy, the 

MCA resistance index decreases significantly in the third trimester (Belfort et al. 2001; 

Williams and Wilson 1994), supporting cerebral vasodilation during pregnancy.  In a 

study where the CPP and resistance index were determined simultaneously, it was 

concluded that the increased CPP observed together with decreased CVR, as suggested 

by a lower resistance index, likely increased CBF during pregnancy (Belfort et al. 

2001). 

Preeclamptic and eclamptic women have been studied with TCD in an attempt 

to better understand the cerebral pathophysiology of these disorders.  Increased MCA 

mean velocities have been found in preeclamptic and eclamptic women versus those 
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with uncomplicated pregnancies (Demarin, Rundek, and Hodek 1997; Naidu et al. 

1997; Ohno et al. 1997; Vliegen et al. 1993; Zunker et al. 1995; Zunker et al. 2000).  

Velocities are more greatly increased in severe preeclampsia, cases with neurological 

symptoms or higher blood pressures, and eclampsia (Belfort, Grunewald et al. 1999; 

Demarin, Rundek, and Hodek 1997; Ohno et al. 1997; Qureshi et al. 1996; Zunker et al. 

1995; Zunker et al. 2000).  Indications of hyperperfusion have been observed in a 

preeclamptic patient with increased MCA velocities (Vliegen et al. 1993).  Elevated 

CPP is more common in patients with severe preeclampsia than those with mild 

preeclampsia (Belfort, Grunewald et al. 1999; Belfort et al. 2002), and severe 

preeclamptics also have a lower resistance index (P=0.06) (Belfort, Grunewald et al. 

1999), suggesting higher CBF and impaired CBF autoregulation.  These findings agree 

with other reports suggesting impaired autoregulation in preeclamptic women in both 

the MCA (Belfort, Saade, Grunewald, Dildy, Varner et al. 1999) and renal circulations 

(Kublickas et al. 1996).  Impaired autoregulation, suggested by increased CPP or mean 

arterial pressure (MAP) with a decreased resistance index, is present in preeclamptic 

women with headache, a common precursor to seizure, but not in preeclamptic women 

without headache (Belfort, Saade, Grunewald, Dildy, Varner et al. 1999).  These data 

may suggest that a headache (a neurologic symptom) coincides with the loss of MCA 

autoregulation (Belfort, Saade, Grunewald, Dildy, Varner et al. 1999).  Headache in 

preeclamptic women is also strongly associated with abnormally high CPP, suggesting 

that severe headache may be linked to hyperperfusion (Belfort, Saade, Grunewald, 

Dildy, Abedejos et al. 1999).  Using MRI, women with severe preeclampsia were found 
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to have significantly greater CBF with no changes in vessel diameter compared to 

normotensive pregnant women (Zeeman, Hatab, and Twickler 2004), suggesting that 

increases in CBF likely precede the onset of eclamptic convulsions. 

There are other findings in eclampsia that suggest disordered autoregulation and 

support a hyperperfusive pathogenesis.  During normal pregnancy, cerebral 

autoregulation is similar to non-pregnant patients, as assessed by transient hyperemic 

response and TCD (Sherman et al. 2002).  However, preeclamptic women exhibit 

decreased cerebrovascular reactivity to carbon dioxide (CO2) inhalation and isometric 

hand-grip tests (Riskin-Mashiah et al. 2001).  In addition, a diffuse loss of 

autoregulation in preeclamptic and eclamptic patients is suggested by dynamic cerebral 

autoregulation studies (Oehm et al. 2003; Oehm et al. 2006).  Similar to studies of 

HTE, both CT and MRI brain scans in eclamptic patients suggest edema formation 

(Crawford et al. 1987; Dahmus, Barton, and Sibai 1992; Fredriksson et al. 1989; 

Manfredi et al. 1997; Raroque, Orrison, and Rosenberg 1990; Vandenplas et al. 1990).  

A classic description of eclamptic imaging findings is high signal intensity bilaterally 

on T2-weighted MRI with marked involvement of the parietal and occipital lobes 

(Manfredi et al. 1997).  As with HTE and PRES, in eclamptic patients DWI has shown 

the presence of vasogenic edema (Apollon et al. 2000; Kanki et al. 1999; Schaefer et al. 

1997), ruling out cerebral infarction or transient ischemia as the primary insult in 

eclampsia.  The reversibility of cerebral lesions and abnormalities on follow-up 

imaging also supports edema caused by hyperperfusion and BBB disruption because 

lesions caused by ischemia or hemorrhage do not resolve quickly, if at all (Crawford et 
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al. 1987; Fredriksson et al. 1989; Raroque, Orrison, and Rosenberg 1990; 

Schwaighofer, Hesselink, and Healy 1989).  Additionally, clinical reports demonstrate 

increased CBF, determined by TCD and MRI, both before and after the onset of 

eclamptic seizures (Belfort 2005; Oehm et al. 2003; Ohno et al. 1999; Zeeman, Hatab, 

and Twickler 2004; Zunker et al. 2000), further supporting eclampsia as a 

hyperperfusive disorder. 

Eclampsia has many similarities to HTE and is probably best classified as a 

subset of this syndrome or as a subcategory with HTE within PRES.  However, a 

notable difference between HTE and eclampsia is the blood pressure at which seizures 

occur.  Clinical evidence demonstrates the onset of seizures at relatively low MAP 

when compared to HTE patients (Donaldson 1989; Ohno et al. 1999), suggesting that 

the autoregulatory curve may shift to lower pressures during pregnancy.  When blood 

pressure was measured within one hour of seizure onset, the average diastolic blood 

pressure was 97 mmHg (Douglas and Redman 1994).  This same study found that only 

19% of eclamptic women cared for in the United Kingdom in 1992 had a diastolic 

blood pressure that was considered high ( ≥120 mmHg) before seizure onset (Douglas 

and Redman 1994).  In vitro studies in our lab have shown that cerebral vessels from 

late-pregnant (LP) animals force dilatated at significantly lower pressures than vessels 

from nonpregnant (NP) animals (Cipolla, Vitullo, and McKinnon 2004).  However, our 

in vivo studies have shown that there is no difference in cerebral autoregulation 

between NP and LP rats as measured by laser Doppler (Euser and Cipolla 2007).  

While autoregulation may not differ with normal gestation, it is possible that 
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generalized endothelial dysfunction associated with eclampsia may also contribute to 

the onset of seizures. 

Because most women who develop eclampsia are normotensive prior to 

pregnancy, we had previously hypothesized that pregnancy alone predisposes the 

maternal cerebral circulation to eclampsia by lowering the pressure at which 

autoregulatory breakthrough occurs and by enhancing vascular permeability and 

cerebral edema formation.  Therefore, a primary goal of this dissertation was to further 

investigate CBF autoregulation, cerebral edema formation, and BBB permeability in 

vivo using a model of HTE in the pregnant rat.  Although vascular changes during 

pregnancy have been well-studied in other organs, changes in cerebrovascular 

autoregulation and BBB function remained largely unknown prior to this dissertation.  

A better understanding of the effects of pregnancy, and hypertension during pregnancy, 

on the cerebral circulation is important to the treatment and prevention of eclampsia. 

 

1.2. Cerebral Blood Flow and Autoregulation 

1.2.1. Cerebral Circulation and Cerebral Blood Flow 

The blood supply of the brain is delivered by two paired arteries, the right and 

left internal carotid arteries and the right and left vertebral arteries, and the latter 

combine to form the basilar artery (Sokoloff 1997).  At the base of the brain these 

arteries form a complete ring of anastomoses called the circle of Willis (Figure 1), and 

the major arteries of the cerebral circulation originate here (Augustine 2001).  The 

cerebral cortex is supplied by three pairs of arteries, the anterior cerebral arteries,   
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Figure 1: Ventral view of brain showing the cerebral circulation and circle of Willis, taken from 
Augustine 2001 and used with the permission of Sinauer Associates, Inc. 
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middle cerebral arteries, and the posterior cerebral arteries (PCA, which also supply the 

midbrain) (Augustine 2001; Brust 1991).  The cerebral circulation must provide the 

brain with adequate oxygen, glucose, and other nutrients, as well as remove metabolic 

byproducts.  The brain has a high metabolic rate and typically receives 15% of total 

cardiac output despite accounting for only 2% of total body weight (Brust 1991; 

Sokoloff 1997).  Total CBF is estimated to be 50 mL per 100 g brain tissue per minute 

provided that CPP is between 50 and 150 mmHg (Agnoli et al. 1968; Hurn and 

Traystman 1997; Kety and Schmidt 1948). 

It is known that CBF is dependent on CPP (the difference between ABP and 

ICP) and CVR, defined by the relationship CBF = CPP/CVR (Paulson et al. 1989; 

Skinhøj 1977).  Under normal conditions, arterial blood pressure (ABP) at the level of 

the head adequately represents CPP (Lassen 1959), and CPP varies in parallel with 

ABP (Paulson et al. 1989).  Thus, in order to maintain a constant CBF, CVR must vary 

inversely with changes in ABP.  Poiseuille’s Law determines CVR, such that R = 

(8ηl)/(πr4), where R represents resistance to blood flow, η represents blood viscosity, l 

is the length of the vessel, and r is radius of the vessel (Hurn and Traystman 1997).  In 

general, the length of any vessel is virtually constant, and the viscosity of blood may 

vary slightly with changes in the hematocrit.  Therefore, vessel diameter greatly 

influences CVR, and small adjustments in diameter can cause major changes in CVR.  

Consequently, because CBF is inversely related to CVR, small changes in luminal 

diameter can also lead to considerable changes in flow (Ku and Zhu 1993). 
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1.2.2. Autoregulation 

The ability of any vascular bed to maintain relatively constant blood flow 

despite changes in blood pressure is termed autoregulation, and this mechanism is 

tightly controlled in the brain (Lassen 1959; Paulson, Strandgaard, and Edvinsson 

1990).  Originally, it was thought that CBF was passively dependent on arterial and 

venous pressures (Bayliss, Hill, and Gulland 1895).  This theory was partly based on 

the Monro-Kellie doctrine which stated that the cranium was a rigid structure 

containing a "nearly incompressible" brain with a total constant volume.  The Monro-

Kellie doctrine predicted that any increase in the volume of cranial contents, i.e. blood, 

would elevate intracranial pressure, and reasoned that no significant changes in 

intracranial blood volume or vascular diameter were likely to occur (Bayliss, Hill, and 

Gulland 1895; Lassen 1959; Weed 1929).  However, subsequent studies challenged this 

belief and suggested that the cerebral circulation did have intrinsic control of CBF.  

Regulation of CBF was first suggested by observations that changes in CPP elicited 

changes in arterial diameter in feline pial arteries, and these alterations in arterial 

diameter were independent of the method used to decrease or elevate blood pressure 

(Fog 1937, 1939).  Fog concluded that the active regulation of cerebrovascular tone 

with variations in blood pressure was a form of autoregulation, possibly due to an effect 

of intravascular pressure on the pial arterial wall (Fog 1939).  The concept of pressure-

dependent activity in resistance vessels through a direct effect on vascular smooth 

muscle has been termed the Bayliss effect (Folkow 1989), and was first observed in the 

canine peripheral circulation (Bayliss 1902).  A review of multiple studies in patients 
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with various conditions suggested that CBF is similarly independent of ABP within a 

wide range of pressures in humans (Lassen 1959). 

Autoregulation in the brain can be defined in terms of diameter changes and 

vascular resistance, such that CBF autoregulation is the occurrence of vasodilatation as 

ABP decreases and vasoconstriction as ABP increases (Heistad and Kontos 1983).  

Cerebral vessels operate in a state of myogenic tone that provides a set point from 

which arteries can either constrict or dilate to modulate blood flow (Osol, Osol, and 

Halpern 1989).  Animal studies have demonstrated that large cerebral arteries 

contribute substantially to vascular resistance and CBF autoregulation control (Harper, 

Bohlen, and Rubin 1984; Heistad, Marcus, and Abboud 1978; Kontos et al. 1978; 

Stromberg and Fox 1972).  In the canine and feline cerebral circulation, ~40-50% of the 

total vascular resistance takes place between the aorta and the cerebral pial arterioles 

(30-40 μm) (Heistad, Marcus, and Abboud 1978; Heistad and Kontos 1983; Shapiro et 

al. 1971).  This segmental vascular resistance accounts for an arterial pressure 

difference from 122 mmHg at the aorta to 63 mmHg in a 400 μm pial artery as 

determined in cats (Shapiro et al. 1971).  The resistance of large cerebral arteries 

protects smaller arteries and capillaries from changes in aortic pressure by reducing 

microvascular blood pressure (Heistad and Kontos 1983). 

Several mechanisms have been proposed to explain CBF autoregulation, 

including myogenic, metabolic, and neurogenic mechanisms.  The myogenic theory 

suggests that vascular smooth muscle can respond to changes in transmural pressure 

(Folkow 1964; Heistad and Kontos 1983).  The myogenic mechanism is pressure-
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dependent, and the stimulus for this response may be changes in either wall tension or 

stretch of vascular smooth muscle cells (Heistad and Kontos 1983).  Studies have 

shown that the cerebral autoregulatory response can be initiated within seconds of 

changes in transmural pressure (Busija, Heistad, and Marcus 1980; Kontos et al. 1978; 

Symon, Held, and Dorsch 1973), further supporting the myogenic mechanism. 

Autoregulation has also been proposed to be a metabolic mechanism and flow-

dependent.  In this theory, the accumulation of metabolic products influences the 

activity of vascular smooth muscle to cause vasodilation, thus increasing CBF in more 

metabolically active areas (Heistad and Kontos 1983).  A close correlation exists 

between increases in regional CBF and areas of local activity in the cerebral cortex 

(Ingvar 1976) and areas of activity seen on electroencephalogram (EEG) (Ingvar, 

Sjölund, and Ardö 1976; Paulson and Sharbrough 1974). The identity of the vasoactive 

metabolic byproducts that may mediate this mechanism is unclear.  Adenosine is 

generated in response to tissue hypoxia and is a candidate metabolite (Heistad and 

Kontos 1983; Winn et al. 1980).  It is also known that CO2 has a powerful effect on 

CBF and CVR (Traystman 1997), and the local vasodilator effect of CO2 is thought to 

be mediated by changes in extracellular fluid pH (Kontos, Raper, and Patterson 1977).  

An increase in arterial pCO2 by 1 mmHg can cause a ~4% increase in CBF (Skinhøj 

1977). 

Neurogenic control of CBF autoregulation may occur through either intrinsic or 

extrinsic innervation.  Under normal conditions within the autoregulatory range, resting 

CBF seems to be minimally affected by sympathetic stimulation (Harper et al. 1972; 
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Heistad and Marcus 1978) or denervation (Werber and Heistad 1984), though 

sympathetic stimulation can attenuate transient CBF increases within the autoregulatory 

range (Busija, Heistad, and Marcus 1980).  However, sympathetic stimulation has been 

shown to shift the upper limit of autoregulation to higher pressures and decrease BBB 

permeability (Bill and Linder 1976; Gross et al. 1979; Heistad and Marcus 1979; 

MacKenzie et al. 1979).  Conversely, acute sympathetic denervation was shown to shift 

autoregulation to lower blood pressures (Sadoshima et al. 1985).  The shift in CBF 

autoregulation with sympathetic stimulation may be a physiological mechanism in 

place to protect the brain against increased blood pressure associated with sympathetic 

activation (Paulson, Strandgaard, and Edvinsson 1990). 

 

1.2.3. Limits of Autoregulation 

Autoregulation of CBF is a balance between passive distension of vessels due to 

changes in transmural pressure and changes in vessel diameter due to vascular smooth 

muscle reactivity (Heistad and Kontos 1983).  The balance of these forces is 

represented by a pressure-flow curve, a diagram of autoregulation.  A hypothetical 

autoregulatory curve is shown in Figure 2.  At very low pressures (designated by the  

letter A), increases in ABP result in increased blood flow because cerebral vessels are 

maximally and passively dilated and CVR is low.  The autoregulatory plateau is the 

range in which most physiological blood pressures occur (letter B), and where CBF is 

most tightly regulated.  In this range, increases in flow are proportionally less than 

increases in pressure due to increased CVR evidenced by vasoconstriction.  At higher 
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pressures (indicated by letter C), the autoregulatory range is exceeded; CBF increases 

linearly with pressure and CVR decreases due to force dilatation of the cerebral arteries 

(Chillon and Baumbach 1997; Heistad and Kontos 1983; Paulson, Strandgaard, and 

Edvinsson 1990).  When autoregulation is abolished, either above or below the 

autoregulatory range, CBF changes linearly with ABP (Paulson, Strandgaard, and 

Edvinsson 1990).  Experimentally, autoregulation of CBF has been demonstrated in 

several mammalian species, including rats (Hernandez, Brennan, and Bowman 1978; 

Koo and Cheng 1974), cats (Busija, Heistad, and Marcus 1980; MacKenzie, 

Strandgaard et al. 1976), dogs (Busija, Heistad, and Marcus 1980; Ekström-Jodal et al. 

1977; Rapela and Green 1964), and baboons (Strandgaard et al. 1974; Symon, Held, 

and Dorsch 1973).  In humans, CBF autoregulation has been demonstrated by several   
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Figure 2: Hypothetical autoregulatory curve, adapted from Chillion and Baumbach 1997 and used 
with the permission of Elsevier Limited for Academic Press  
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groups reporting only minimal changes in CBF with ~30-40 mmHg increases in MAP, 

induced by either intravenous angiontensin or metaraminol (Agnoli et al. 1968; 

McHenry et al. 1974; Olesen 1973). Generally, in humans the limits of CBF 

autoregulation are ~60 mmHg at the lower end and ~150 mmHg at the upper end 

(Paulson, Strandgaard, and Edvinsson 1990; Strandgaard et al. 1973).  

If blood pressure (and thus CPP) falls below a certain point, termed the lower 

limit of CBF autoregulation, CBF decreases.  Because of the high metabolic demand 

for oxygen in the brain, limited CBF may lead to neurological complications, such as 

dizziness, confusion, loss of consciousness, and ultimately ischemic brain damage 

(Finnerty, Witkin, and Fazekas 1954; Paulson et al. 1989; Paulson, Strandgaard, and 

Edvinsson 1990).  The lower limit of CBF autoregulation has been observed at 50-70 

mmHg in normotensive individuals (Lassen 1959; Strandgaard et al. 1973; Olesen 

1973).  In rats, the lower limit of CBF autoregulation has been observed at ~30 mmHg 

(Koo and Cheng 1974), 50-69 mmHg (Barry et al. 1982) and 80 mmHg (Hernandez, 

Brennan, and Bowman 1978).  The discrepancy in these observations is most likely due 

to variations in technique and experimental definition of the loss of autoregulation. 

Evidence suggests that at high pressures cerebral resistance vessels are unable to 

further constrict to counteract elevated CPP and subsequently force dilatation occurs 

and CBF increases linearly with pressure (MacKenzie, Strandgaard et al. 1976; 

Paulson, Strandgaard, and Edvinsson 1990).  The existence of an upper limit to CBF 

autoregulation has been shown in several mammalian species, including rats (Euser and 

Cipolla 2007; Hernandez, Brennan, and Bowman 1978), cats (MacKenzie, Strandgaard 
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et al. 1976), dogs (Ekström-Jodal et al. 1977), baboons (Strandgaard et al. 1974; 

Strandgaard et al. 1975), and in man (Skinhøj and Strandgaard 1973; Strandgaard et al. 

1973).  Classically, pial arteriolar constriction is observed as ABP is increased, thereby 

maintaining a constant CBF (MacKenzie, Strandgaard et al. 1976).  With continued 

intraluminal pressure increases, segmental dilation (the “sausage-string” pattern) is 

observed followed by uniform dilation as segments of the resistance arteries are 

forcefully dilatated  (MacKenzie, Strandgaard et al. 1976; Paulson, Strandgaard, and 

Edvinsson 1990).  As the vessels become progressively and forcefully dilatated, CVR 

drops and CBF increases (Ekström-Jodal et al. 1977; Hernandez, Brennan, and 

Bowman 1978; Strandgaard et al. 1974).  This hyperperfusion of the brain can 

potentially cause BBB damage and edema formation (Sokrab et al. 1988; Westergaard, 

van Deurs, and Bronsted 1977).  This progression of events is the etiology of HTE 

(Lassen and Agnoli 1972; Paulson, Strandgaard, and Edvinsson 1990; Skinhøj and 

Strandgaard 1973). 

Lassen and Agnoli first used the term “breakthrough of autoregulation” to 

characterize the excessive cerebral arteriolar distension caused by severe hypertension 

(Lassen and Agnoli 1972).  The upper limit of autoregulation has been reported at ~160 

to 180 mmHg in rats (Euser and Cipolla 2007; Hernandez, Brennan, and Bowman 

1978), ~160-170 mmHg in cats (MacKenzie, Strandgaard et al. 1976), 180-200 mmHg 

in dogs (Ekström-Jodal et al. 1977), and ~140 to 150 mmHg in primates and man 

(Skinhøj and Strandgaard 1973; Strandgaard et al. 1973; Strandgaard et al. 1974). 
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1.2.4. Modulators of Autoregulation – Hypertension and Nitric Oxide 

Chronic Hypertension - It has been noted that “virtually every tissue readily 

adjusts its structural design to changes in functional load, and blood vessels are no 

exception” (Folkow et al. 1973), and this is true during chronic hypertension.  Although 

hypertensive patients without neurological deficits have similar CBF as normotensive 

individuals, as determined by the nitrous oxide method, CVR is significantly increased 

88% (Kety et al. 1948), suggesting an adaptation of the cerebral circulation during 

chronic hypertension.  It appears that the adaptation of the cerebral circulation to 

sustained hypertension affects CBF autoregulation.  In patients with severe 

hypertension, the lower limit of CBF autoregulation was 120 mmHg on average, much 

higher than 70 mmHg as observed in normotensive controls (Strandgaard et al. 1973).  

Interestingly, the lower limit of CBF autoregulation is more severely elevated in 

patients with greater levels of hypertension (Strandgaard et al. 1973).  Similarly, 

hypertensive patients show a reduced tolerance of acute hypotension (Lassen 1959), 

and signs of cerebral ischemia manifest at significantly higher blood pressures in 

patients with malignant hypertension versus normotensive controls (Finnerty, Witkin, 

and Fazekas 1954).  The signs of cerebral ischemia are closely related to a mean CBF 

of 31.5 mL per 100 g brain tissue per minute irrespective of the subject’s blood 

pressure, supporting the concept that the autoregulatory curve is shifted to higher blood 

pressures with chronic hypertension (Finnerty, Witkin, and Fazekas 1954).  The lower 

limit of CBF autoregulation is also shifted to the right in baboons (Jones et al. 1976) 

and rats (Barry et al. 1982; Fujishima and Omae 1976; Harper and Bohlen 1984).  Both 
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renal and spontaneously hypertensive rats exhibit a shift of the lower limit of CBF 

autoregulation and greater incidence of hypotensive ischemic brain damage (Barry et 

al. 1982).  These data suggest that the adaptation of CBF autoregulation to hypertension 

is dependent on structural changes of the vasculature as opposed to other factors which 

would likely be different between two different animal models of chronic hypertension. 

Chronic hypertension also shifts the upper limit of CBF autoregulation.  In 

spontaneously hypertensive rats, the upper limit of autoregulation is increased by ~50 

mmHg (Harper and Bohlen 1984), and this shift is closely related to the rise in basal 

blood pressure (Sadoshima et al. 1985).  In baboons, the upper limit of CBF 

autoregulation is similarly increased by chronic renal hypertension (Strandgaard et al. 

1975).  These authors suggested that a shift of the upper limit of CBF autoregulation 

would partially protect the patient against the effects of hypertension and could explain 

why some patients exhibit severe hypertension without signs of HTE (Strandgaard et al. 

1975).  Results from studies of hypertensive patients also suggest that the upper limit of 

CBF autoregulation is shifted rightward with chronic hypertension because normal 

CBF is observed at MAP greater than 150 mmHg (Kety et al. 1948; Strandgaard et al. 

1973).  Experimental animal models of chronic hypertension also demonstrate normal 

CBF despite elevated ABP (Jones et al. 1976; Sadoshima, Busija, and Heistad 1983; 

Werber and Heistad 1984). 

The rightward shift in the CBF autoregulatory curve to higher pressures in 

chronic hypertension is likely due to structural remodeling and hypertrophy of the 

cerebral arteries (Faraci, Baumbach, and Heistad 1989).  Hypertrophy increases the 
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cross-sectional area of the vessel wall and remodeling typically refers to a decrease in 

outer diameter of the vessel (Schachter 2002; Schiffrin 1992).  These structural changes 

have been shown to occur in the cerebral circulation (Nordberg and Johansson 1980; 

Baumbach and Heistad 1989; Hart, Heistad, and Brody 1980), and likely contribute to 

the increased segmental resistance of large arteries (>200 μm diameter) in chronic 

hypertension (Baumbach and Heistad 1983).  During hypertension, elevated arterial 

pressure increases wall tension.  This is represented by LaPlace’s Law which states that 

for a cylinder, T = PR, where T represents circumferential wall tension, P is 

intravascular pressure, and R is the vessel radius (Schiffrin 1992).  (It should be noted 

that this relationship is only true if the wall to lumen ratio is < 0.1 (Coulson et al. 

2002).)  Wall stress is the amount of wall tension transmitted to each point of the vessel 

wall, and is represented by the quotient of wall tension and wall thickness, where wall 

stress = (PR)/wall thickness (Schiffrin 1992).  Thus, both wall tension and wall stress 

are increased by hypertension (Heistad and Baumbach 1992).  Vascular hypertrophy 

and remodeling in response to chronic hypertension normalize wall stress through 

increases in wall thickness and decreased vascular diameter (Heistad and Baumbach 

1992).  These structural changes increase the wall to lumen ratio, and increased wall to 

lumen ratios have been observed in the cerebral circulations of both young and old 

spontaneously hypertensive rats (Nordberg and Johansson 1980; Hart, Heistad, and 

Brody 1980; Harper and Bohlen 1984).  Vascular medial hypertrophy associated with 

chronic hypertension attenuates increases in microvascular pressure (Werber and 
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Heistad 1984; Harper and Bohlen 1984; Heistad and Baumbach 1992) and likely 

protects the BBB (Baumbach and Heistad 1988; Mueller and Heistad 1980). 

Cerebrovascular remodeling is a physiological adaptation to hypertension that 

protects the brain from damage at high ABP.  However, previous studies in our lab 

suggest that this protective adaptation does not occur during pregnancy.  While 

hypertension-induced vascular remodeling occurred in NP control rats, this adaptation 

was absent in both LP rats treated with a nitric oxide synthase (NOS) inhibitor (NG-

nitro-L-arginine methyl ester, L-NAME) and Dahl salt-sensitive LP rats (Aukes et al. 

2007; Cipolla, DeLance, and Vitullo 2006).  Pregnancy also decreases myogenic 

reactivity in the posterior cerebral artery (Aukes et al. 2007) and lowers the pressure of 

force dilatation in vitro (Cipolla, Vitullo, and McKinnon 2004).  As described in 

Chapter 3, in vivo studies to determine the upper limit of CBF autoregulation found no 

difference between control NP and LP rats; however, the consequences of 

autoregulatory breakthrough were greater as evidenced by increased cerebral edema 

formation (Euser and Cipolla 2007).  In addition, altered CBF autoregulation has been 

reported in preeclamptic and eclamptic patients (Oehm et al. 2003; Oehm et al. 2006).  

Taken together, these studies suggest that pregnancy alone affects the cerebral 

circulation in ways that may make it more vulnerable to damage caused by acute 

increases in ABP. 

Nitric Oxide - Nitric oxide (NO) is a well-known vasodilator, and is recognized 

as the chemical identity of endothelium-derived relaxing factor (Furchgott and 

Vanhoutte 1989; Ignarro et al. 1987; Palmer, Ferrige, and Moncada 1987).  In 1998, the 
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Nobel Prize for Physiology and Medicine was award to three American scientists, Dr. 

Robert F. Furchgott, PhD, Dr. Louis J. Ignarro, PhD, and Dr. Ferid Murad, MD, PhD, 

for their work in identifying and characterizing NO (SoRelle 1998).  NO is synthesized 

from L-arginine and oxygen via NOS enzymes (Chan and Vallance 2002; Palmer, 

Ashton, and Moncada 1988).  Three isoforms of the NOS enzyme have been identified, 

constitutively active endothelial (eNOS) and neuronal (nNOS) forms, and an inducible 

(iNOS) form modulated by inflammatory mediators (Förstermann et al. 1994; 

Vanhoutte 2003).  In cerebral vessels under normal physiologic conditions, NO is 

synthesized both within the endothelium via eNOS and by adventitial nerves via nNOS 

(Chan and Vallance 2002).  All three NOS isoforms are involved in regulating vascular 

tone, and studies show that the continuous basal release of NO from the endothelium is 

an important modulator of resting vascular tone (Chan and Vallance 2002; Zatz and 

Baylis 1998).  NOS can be inhibited pharmacologically, and L-NAME and L-NNA are 

L-arginine analogues that act as competitive, nonspecific NOS inhibitors (Traystman et 

al. 1995).  Acute and chronic treatment with NOS inhibitors causes hypertension in 

both animals and humans (Aisaka et al. 1989; Haynes et al. 1993; Rees, Palmer, and 

Moncada 1989; Ribeiro et al. 1992).  During pregnancy, sustained NOS inhibition 

causes symptoms similar to preeclampsia including hypertension, proteinuria, and fetal 

growth retardation in rats (Molnar et al. 1994; Yallampalli and Garfield 1993). 

Production of NO is increased during pregnancy, and may play a role in the 

decreased peripheral vascular resistance observed during gestation (Sladek, Magness, 

and Conrad 1997; Williams et al. 1997; Boccardo et al. 1996).  Estrogen levels are also 
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elevated in pregnancy, and it has been shown that estrogen treatment increases both 

eNOS and endothelium-derived NO within cerebral vessels (McNeill et al. 1999; 

Skarsgard, Van Breemen, and Laher 1997).  Studies by ourselves and others suggest 

that NO has an active role in autoregulatory breakthrough in both female and male rats, 

and that inhibition of NOS significantly increases and possibly prevents autoregulatory 

breakthrough following acute hypertension (Euser and Cipolla 2007; Talman and 

Nitschke Dragon 1995).  Recently, it was suggested that NO synthesized specifically by 

nNOS is responsible for the cerebral vasodilatation during acute hypertension (Talman 

and Nitschke Dragon 2007).  Arterial forced dilatation prior to autoregulatory 

breakthrough appears to be an active process involving pressure-dependent production 

of NO, rather than a mechanical dilation (Euser and Cipolla 2007).  Studies have also 

shown that inhibition of potassium channels similarly shifts the autoregulatory curve to 

higher pressures (Paterno, Heistad, and Faraci 2000).  Together, these results suggest 

that autoregulatory breakthrough is an active process that may be mediated by NO and 

potassium channels. 

 

1.3. The Blood-brain Barrier and Cerebral Edema Formation 

1.3.1. The Blood-brain Barrier 

In 1885, the first evidence of a barrier between the peripheral circulation and the 

central nervous system was described (Ehrlich 1885; as cited in Betz and Dietrich 

1998; and Hawkins and Davis 2005).  Ehrlich noted that dyes injected intravenously 

into rats stained all organs of the body with the exception of the brain and spinal cord 
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(Betz and Dietrich 1998; Hawkins and Davis 2005); he concluded that this was due to a 

low affinity of the dye for the brain (Ehrlich 1904; as cited in Betz and Dietrich 1998; 

and Hawkins and Davis 2005).  This concept was later refuted by Ehrlich’s student 

Goldmann, who demonstrated that dye injected into the cerebrospinal fluid (CSF) 

stained the whole of the brain but did not reach the periphery (Goldmann 1913; as cited 

in Betz and Dietrich 1998; and Hawkins and Davis 2005).  Spatz first proposed that the 

site of the BBB might be the cerebrovasculature (Spatz 1934; as cited in Betz and 

Dietrich 1998), but it was not until the advent of electron microscopy that this could be 

demonstrated (Betz and Dietrich 1998).  Reese and Karnovsky showed that intravenous 

horseradish peroxidase, an electron dense tracer, did not pass from the vessel lumen, 

suggesting that cerebral endothelial cell membranes comprised the BBB (Reese and 

Karnovsky 1967).  Brightman and Reese confirmed that the BBB was at the level of the 

cerebral vascular endothelium, and found that tight junctions (TJ) “periodically 

obliterated the interspace along the apical-to-basal axis” between endothelial cells in 

cerebral parenchymal vessels (Brightman and Reese 1969).  The BBB has been 

observed in all regions of the brain with the exception of the circumventricular organs 

(Ballabh, Braun, and Nedergaard 2004; Fenstermacher et al. 1988). 

Cerebral endothelial cells possess unique characteristics that together form the 

BBB: a lack of capillary fenestrations (Fenstermacher et al. 1988), a low basal rate of 

pinocytosis (Reese and Karnovsky 1967; Sedlakova, Shivers, and Del Maestro 1999), 

and the presence of high-electrical resistance TJ between adjacent endothelial cells 

(Brightman and Reese 1969; Reese and Karnovsky 1967).  Paracellular movement is 
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prevented by TJ, demonstrated by a high transendothelial electrical resistance 

indicating a high impedence to ion movement (Butt, Jones, and Abbott 1990; Crone 

and Olesen 1982).  Transcellular transport, via pinocytosis, is very low under normal 

conditions.  This has been demonstrated experimentally by the very limited transfer of 

tracers across the vascular endothelial cells of the brain under normal conditions 

(Brightman and Reese 1969; Brightman et al. 1970; Feder 1971; Mueller and Heistad 

1980; Reese and Karnovsky 1967; Westergaard 1977). 

 

1.3.2. Hypertension and Blood-brain Barrier Permeability 

One of the perturbations that can influence BBB permeability is hypertension.  

At high blood pressures, above the upper limit of CBF autoregulation, arterial pressure 

is transmitted to small vessels and the increased pressure is exerted on the vascular 

walls.  If this pressure is high enough, it can lead to BBB damage manifested as 

increased BBB permeability (Häggendal and Johansson 1971-1972).  Increased 

permeability has been observed by many investigators using various tracers and 

methods of induced hypertension.  Extravastion of relatively large dye-albumin 

complexes caused by hypertension has been described (Brightman et al. 1970; Byrom 

1954; Häggendal and Johansson 1972; Johansson et al. 1970; Johansson 1974; Olsson 

and Hossmann 1970; Suzuki et al. 1984).  Horseradish peroxidase has been used 

extensively with electron microscopy to show increased BBB permeability caused by 

hypertension on an ultrastructural level, indicated by increased pinocytosis (Giacomelli, 

Wiener, and Spiro 1970; Hansson, Johansson, and Blomstrand 1975; Nag, Robertson, 
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and Dinsdale 1977; Olsson and Hossmann 1970; Westergaard, van Deurs, and Bronsted 

1977).  In several of these studies, chronically hypertensive animals manifested 

neurological symptoms similar to HTE, including convulsions, together with observed 

increases in BBB permeability (Byrom 1954; Giacomelli, Wiener, and Spiro 1970). 

The mechanism of increased BBB permeability induced by hypertension was 

not initially clear.  In cats, extravasation of Evan’s blue (EB) was seen when blood 

pressure was abruptly raised, but not in animals in which blood pressure had been 

increased to similar levels in a stepwise and more gradual manner (Häggendal and 

Johansson 1972).  This suggested that increased BBB permeability was caused by a 

mechanical effect due to the sudden increase in intraluminal pressure, particularly when 

the brain was not able to properly autoregulate CBF or the pressure exceeded the 

autoregulatory range (Häggendal and Johansson 1972; Hardebo 1981; Johansson 1974).  

In many cases, CBF was found to be increased in areas of BBB disruption, supporting 

the idea that BBB permeability is increased following autoregulatory breakthrough 

(Baumbach and Heistad 1985; Häggendal and Johansson 1972; Hatashita, Hoff, and 

Ishii 1986; Johansson 1974; Johansson 1983; Suzuki et al. 1984).  Several studies 

showing increased permeability during acute hypertension did not observe gross 

damage to the endothelial cells, and direct injury to the endothelium could not account 

for the transfer of tracers (Giacomelli, Wiener, and Spiro 1970; Nag, Robertson, and 

Dinsdale 1977; Westergaard, van Deurs, and Bronsted 1977).  This is supported by 

indications that BBB disruption caused by acute hypertension is reversible, and further 

suggests that increased permeability following an uncomplicated acute rise in blood 
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pressure is a functional disturbance and not damage to the endothelium (Hatashita, 

Hoff, and Ishii 1986; Johansson and Linder 1978; Nag 1986). 

There at least two ways that tracers can move from the vascular lumen into the 

brain parenchyma, either paracellularly through the endothelial TJ or transcellularly by 

way of increased pinocytosis.  In both chronic and acute hypertension, horseradish 

peroxidase has been observed in pinocytotic vesicles and between endothelial cells 

through TJ (Giacomelli, Wiener, and Spiro 1970; Hansson, Johansson, and Blomstrand 

1975).  However, intact TJ have also been reported by numerous investigators 

(Hatashita, Hoff, and Ishii 1986; Nag, Robertson, and Dinsdale 1977; Westergaard, van 

Deurs, and Bronsted 1977).  Pinocytotic vesicles are observed within two minutes after 

the hypertensive insult (Hansson, Johansson, and Blomstrand 1975; Nag, Robertson, 

and Dinsdale 1977), and an increase in the number of pinocytotic vesicles occurs in 

both acute and chronic hypertension (Eto, Omae, and Yamamoto 1971; Hansson, 

Johansson, and Blomstrand 1975; Nag, Robertson, and Dinsdale 1977, 1979).  In 

hypertensive animals, horseradish peroxidase tracer was observed in eight times as 

many vesicles versus normotensive animals (Nag, Robertson, and Dinsdale 1979).  

Additionally, it was later shown that disruption of microtubules and microfilaments, 

which account for the movement of pinocytotic vesicles through the endothelial cell, 

was protective of the BBB during acute hypertension (Larsson et al. 1980; Nag 1995).  

Collectively, these observations led to the theory that endothelial cells respond to 

increased pressure through enhanced pinocytosis, with a resulting increase in BBB 

permeability (Nag, Robertson, and Dinsdale 1977; Westergaard 1977).  Studies have 
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shown that increased pinocytosis is not caused by the tracer horseradish peroxidase 

(Nag, Robertson, and Dinsdale 1979), nor by the agents used to induce hypertension 

(Westergaard, van Deurs, and Bronsted 1977).  Our lab has shown that elevated 

pressure alone increases pinocytosis in cerebral vessels, suggesting that vesicle 

formation in cerebral endothelial cells is sensitive to physical stimulation, though this 

mechanism has not yet been established (Cipolla et al. 2004). 

High pressure can induce transendothelial pinocytotic vesicular transport of 

albumin and other vascular contents, and the presence of plasma proteins in the brain 

parenchyma is an important component of edema formation (Kuroiwa et al. 1985), 

further discussed below.  Therefore, increased BBB permeability via an increase in 

transcellular transport is likely an important contributor to edema formation during 

acute hypertension.  Notably, our lab has also shown a significant increase in pressure-

induced BBB permeability, via pinocytosis, specific to LP animals (Cipolla et al. 2005).  

This represents a possible mechanism by which acute hypertension may increase 

cerebral edema formation during pregnancy and predispose pregnant women to the 

neurological complications of eclampsia. 

Some regions of the brain appear to be more susceptible than others to increased 

BBB permeability during acute hypertension.  Relatively high permeability occurs in 

the parietal, temporal, and occipital cortices (Hatashita et al. 1985; Hatashita, Hoff, and 

Ishii 1986; Nag, Robertson, and Dinsdale 1979; Nag 1986; Suzuki et al. 1984), as well 

as in the cerebrum versus the brainstem or cerebellum (Baumbach and Heistad 1985; 

Mayhan, Faraci, and Heistad 1986).  The primary location of BBB disruption during 
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acute hypertension in the cerebrovasculature has been reported at various locations.  

Some studies suggest that the arterioles are the predominant site of BBB permeability 

(Hansson, Johansson, and Blomstrand 1975; Nag, Robertson, and Dinsdale 1977, 1979; 

Westergaard 1977; Westergaard, van Deurs, and Bronsted 1977), while other groups 

report that BBB disruption occurs largely in the venules (Auer 1978; Baumbach and 

Heistad 1985; Baumbach, Mayhan, and Heistad 1986; Mayhan and Heistad 1985).  It 

has been suggested that these discrepancies may be caused by possible differences 

between pial and parenchymal vessels; intravital microscopy studies demonstrated 

venous disruption whereas results of histological studies indicate disruption at the level 

of parenchymal arterioles (Mayhan and Heistad 1985).  It has also been suggested that 

the nature of the hypertension affects the location of BBB permeability within the 

vasculature, with a rapid rise and more severe, sustained increase in pressure more 

likely to cause arterial permeability versus venous (Mayhan and Heistad 1985).  While 

pin-pointing the type of vessel and region of the brain most affected by acute 

hypertension may provide important information about the structure and function of the 

cerebral circulation, the net effect of increased BBB permeability is the same.  

Increased BBB permeability allows for a movement of water and solutes into the brain 

and can lead to cerebral edema formation and potentially dangerous clinical 

implications. 
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1.3.3. Various Modulators of Blood-brain Barrier Permeability 

A variety of factors have been found to modulate the permeability of the BBB.  

Seizures, both drug-induced and electrically-stimulated, have been shown to increase 

BBB permeability, and this is thought to be via increased pinocytosis (Bolwig, Hertz, 

and Holm-Jensen 1977; Hedley-Whyte, Lorenzo, and Hsu 1977; Lorenzo et al. 1975; 

Lee and Olszewski 1961; Petito, Schaefer, and Plum 1977; Suzuki et al. 1984; 

Westergaard, Hertz, and Bolwig 1978).  However, when elevations in blood pressure 

are prevented by cervical cordotomy prior to seizure induction, BBB disruption is 

minimal (Petito, Schaefer, and Plum 1977).  This suggests that the seizures are 

probably not directly increasing BBB permeability; rather, the systemic hypertension 

and accompanying increases in CBF occurring with the seizures are responsible for the 

increased BBB permeability. 

Nitric oxide (NO) is an endogenous vasodilator synthesized from the amino acid 

L-arginine by NOS enzymes (Chan and Vallance 2002; Palmer, Ashton, and Moncada 

1988; Vanhoutte 2003).  In the cerebral circulation, NO does not appear to have a role 

in basal BBB integrity (Mayhan 2000); however, it has been implicated in BBB 

disruption during acute hypertension (Mayhan 1995).  In addition, NO seems to 

modulate BBB permeability induced by various inflammatory mediators (Mayhan 

1996, 1999; Nakano, Matsukado, and Black 1996).  Studies have also suggested a role 

for NO in mediating BBB permeability during cerebrovascular injury (Nag, Picard, and 

Stewart 2000, 2001; Thiel and Audus 2001), and excessive amounts of NO redox forms 

(NO•, NO+, NO-, ONOO-) can compromise the integrity of the BBB (Boje and 
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Lakhman 2000; Mayhan 2000).  Pregnancy is known to be a state of increased NO 

(Boccardo et al. 1996; Sladek, Magness, and Conrad 1997; Williams et al. 1997), and it 

is possible that elevated levels of NO and related molecules may contribute to BBB 

permeability and cerebral edema formation during pregnancy as explored in this 

project.  Our work has shown that in LP rats, cerebral edema formation caused by acute 

hypertension and autoregulatory breakthrough is partially attenuated by treatment with 

the NOS inhibitor L-NAME (Euser and Cipolla 2007). 

 

1.3.4. Starling Forces 

Water movement between the vascular compartment and tissue is largely 

controlled by osmotic gradients and hydrostatic pressure differences (Kimelberg 2004; 

Papadopoulos, Krishna, and Verkman 2002).  This is represented mathematically by the 

Starling equation, Jv = Lp [(Pplasma-Ptissue) – σprotein (Πplasma-Πtissue)], where Jv is flow, 

Lp is the hydraulic conductivity of the endothelial membrane (a measure of water 

permeability), Pplasma-Ptissue represents the hydrostatic pressure difference between 

plasma and tissue (which is largely influenced by the systemic blood pressure), σ is the 

osmotic reflection coefficient and is inversely related to permeability, and Πplasma-

Πtissue is the difference in protein oncotic pressure between plasma and tissue 

(Fenstermacher and Patlak 1976; Kimelberg 2004; Klatzo 1987).  In the peripheral 

circulation, plasma entering the tissue maintains its normal salt content due to the 

presence of capillary fenestrations, and efflux of fluid from the vasculature due to blood 

hydrostatic pressure is offset by the oncotic pull of the plasma proteins retained in the 
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vascular compartment (Kimelberg 2004).  At peripheral capillaries, σprotein is 0.93, 

indicating that 93% of plasma proteins are retained in the capillary (Kimelberg 2004). 

In the brain, the endothelial cells are linked by TJ preventing the movement of 

ions and other hydrophilic substances between the endothelial cells into the tissue.  

Thus, due to the presence of the BBB, the Starling equation is modified to include the 

osmotic force of plasma salts: Jv = Lp[(Pplasma-Ptissue) – σprotein(Πplasma-Πtissue) – 

σsalt(Πplasma-Πtissue)] (Kimelberg 2004), where σsalt  is the osmotic reflection coefficient 

for ion movement and Πplasma-Πtissue also represents the difference between plasma and 

tissue salt osmotic pressure.  The lack of fenestrations in the cerebral capillary 

endothelium causes the σsalt to approach 1.  The hydraulic conductivity, Lp, of the BBB 

is at least one to two orders of magnitude smaller than the peripheral capillary 

membranes, signifying a very strong resistance to bulk water movement across the 

membrane (Fenstermacher and Patlak 1976).  In the cerebral circulation, ABP (Pplasma) 

must be greater than ICP (Ptissue) to maintain blood flow.  Net transport of water is 

directed by osmotic forces resulting from selective solute transport in order to maintain 

homeostasis in the brain (Kimelberg 2004). 

Under normal conditions, any movement of water into the brain would be 

directed by blood pressure (Go and Pratt 1975) and would be opposed immediately by 

the strong osmotic and oncotic pulls of the plasma salts and proteins within the 

vasculature (Kimelberg 2004).  However, the tightly regulated flow of water into the 

brain can be disturbed if the BBB is damaged (Kimelberg 1995).  Breakdown of the 

BBB causes σsalt to approach zero (as in the peripheral circulation) and σprotein to 
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decrease (Kimelberg 2004; Rapoport 1997).  At the site of BBB disruption, Lp and 

Pplasma (blood pressure) appear to determine the force with which edema spreads, and 

the elevation of MAP dramatically accelerates the spread of edema (Klatzo 1987).  An 

investigation of the relationship between hydrostatic pressure and cerebral edema 

formation found that when both Pplasma and Ptissue were altered simultaneously (via 

aortic occlusion and craniectomy, respectively) protein extravasation and edema 

formation were greater than for either insult separately (Hatashita et al. 1985).  The 

dominant influence of blood pressure over other Starling forces in the cerebral 

circulation is important to consider in any clinical situation in which the hypertension is 

involved.  Increased hydrostatic pressure, commonly caused by hypertension, is the 

physiologic cause of vasogenic cerebral edema formation (Kimelberg 2004; Hatashita 

et al. 1985), as described below, and this contributes to the clinical symptoms of 

eclampsia (Kaplan 2006; Zunker et al. 1995). 

 

1.3.5. Cerebral Edema 

Brain edema is defined as an abnormal accumulation of fluid within the brain 

parenchyma producing a volumetric enlargement of the tissue (Klatzo 1987).  Because 

the brain is surrounded by the rigid skull, an increase in tissue water content can rapidly 

produce neurological symptoms including headache, nausea, vomiting, altered 

consciousness, and coma through an increase in ICP (Rapoport 1997).  Brain swelling 

can become so severe that increased ICP (Ptissue in the brain) impairs CBF or causes 

herniation of the brain through the foramen magnum with life-threatening implications 
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(Joo and Klatzo 1989; Kimelberg 1995).  Similarly, the neurological symptoms of 

eclampsia are thought to be caused by cerebral edema formation (Kaplan 2006; Zunker 

et al. 1995). 

Cerebral edema can form in response to a wide variety of insults and by 

different mechanisms.  In 1967, Klatzo proposed a classification of edema based on 

mechanistic principles and described two primary types of edema, vasogenic and 

cytotoxic (also termed cellular) (Klatzo 1967).  Klatzo acknowledges that both forms of 

edema typically co-exist to some degree, however, identifying the predominant type of 

edema, and thus a pathogenic mechanism, can help to understand the cerebral insult 

and most appropriate clinical management (Klatzo 1987).  Cytotoxic edema is 

associated with intracellular swelling in both gray and white matter with no change in 

BBB permeability (Kimelberg 2004; Klatzo 1967), and the entry of water into the brain 

is largely due to osmotic gradients that develop due to tissue injury and disrupted 

cellular osmoregulation (Klatzo 1987).  This form of edema commonly occurs in 

ischemic states, with trauma, or with acute hypo-osmolality (Fishman 1975; Kimelberg 

1995; Klatzo 1987). 

Vasogenic edema is caused by injury to the vessel wall that results in the 

movement of plasma constituents and water, as predicted by the Starling equation, into 

the extracellular space (Fishman 1975; Kimelberg 2004; Klatzo 1987).  Implicit in the 

definition of vasogenic edema is a net gain of water and solutes in the brain 

parenchyma (Kimelberg 1995).  The retention of water in the tissue, due to serum 

protein retention, is essential to the formation and persistence of the edema (Klatzo 
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1987).  In animal studies, increased brain water content has been associated with the 

presence of extravasated proteins (Hatashita, Hoff, and Ishii 1986; Kuroiwa et al. 

1985).  As predicted by the Starling equation, the development of vasogenic edema is 

also strongly influenced by systemic blood pressure (Brightman et al. 1970).  

Vasogenic edema preferentially spreads and accumulates in the white matter, possibly 

because parallel white matter tracts are more compliant (Klatzo 1967, 1987).  It has 

been shown that vasogenic edema begins to resolve as soon as proteins can no longer 

pass across the BBB (Kuroiwa et al. 1985).  Generally, vasogenic edema is reversible 

and leaves the cellular elements of previously edematous tissue reasonably intact, 

however vasogenic edema can progress to cytotoxic edema if CBF becomes restricted 

(Klatzo 1987).  In support of this, areas of cytotoxic edema have been observed 

clinically within areas of vasogenic edema in eclamptic patients (Loureiro et al. 2003; 

Zeeman et al. 2004). 

It has long been recognized that eclampsia is very similar neuroradiologically to 

HTE, as described in section 1.1.3.  In both disorders, the distinction between cytotoxic 

and vasogenic edema is significant because of considerable differences in prognosis 

and treatment.  Cytotoxic edema may result in irreversible cerebral infarction whereas 

vasogenic edema can be readily reversibile if treated promptly, and treatment 

guidelines differ between the likely causes of these forms of edema (Schaefer et al. 

1997).  In eclamptic patients, vasogenic edema is demonstrated as increased ADCs on 

MRI (Engelter, Provenzale, and Petrella 2000; Kanki et al. 1999; Loureiro et al. 2003; 

Schaefer et al. 1997; Zeeman et al. 2004).  The most common locations of 
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neuroradiologic abnormalities in eclampsia are the parietal and occipital lobes 

(Dahmus, Barton, and Sibai 1992; Loureiro et al. 2003; Naidu et al. 1997; Schwartz et 

al. 1992; Schwartz et al. 2000; Zeeman et al. 2004).  MRI scans in eclamptic and 

preeclamptic patients, obtained after intravenous administration of gadopentetate 

dimeglumine show enhancement indicating BBB disruption (Schwartz et al. 1992; 

Schwartz et al. 2000), suggesting vasogenic versus cytotoxic edema formation.  In 

studies in which a follow-up scan was obtained, the majority of cerebral abnormalities 

were reversible, which additionally suggests vasogenic edema as the origin of the 

imaging abnormalities (Loureiro et al. 2003; Manfredi et al. 1997; Schwaighofer, 

Hesselink, and Healy 1989; Schwartz et al. 2000).  Hyperperfusion of the 

cerebrovasculature due to autoregulatory breakthrough is the likely cause of vasogenic 

edema formation in eclampsia (Kaplan 2006; Zunker et al. 1995).  Thus, it is important 

to understand how pregnancy may affect CBF autoregulation and BBB permeability 

which together contribute to cerebral edema formation, and this is the overall goal of 

this dissertation. 

 

1.3.6. Aquaporins 

In 2003, the Nobel Prize in Chemistry was awarded to Dr. Peter Agre for the 

discovery of aquaporin (AQP) water channels (Knepper and Nielsen 2004).  The 

aquaporins are a family of water channel proteins that act to facilitate water flux 

through cell membranes in a variety of cell types (Badaut et al. 2002).  Water flow 

through AQPs is bi-directional and controlled by osmotic gradients (Agre et al. 2002).  
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Eleven AQPs have been observed in mammals, AQP0 through AQP10 (Badaut et al. 

2002), and six of these have been described in the rodent brain, AQP1, AQP3, AQP4, 

AQP5, AQP8, and AQP9 (Elkjaer et al. 2000; Hasegawa et al. 1994; Jung et al. 1994; 

Nielsen et al. 1993; Nielsen, Nagelhus et al. 1997; Yamamoto et al. 2001).  AQP1, 

formerly known as CHIP, is found in the apical membrane of choroid plexus epithelial 

cells and is thought play a role in CSF formation (Nielsen et al. 1993).  AQP9 has been 

demonstrated on ependymal cells in rat brain (Elkjaer et al. 2000) and on astrocytes of 

the glia limitans and around the ventricles in mouse brain (Badaut et al. 2001).  

Transcripts of AQP3, AQP5, and AQP8 have been detected in cortical neuron and 

astrocyte cell cultures (Yamamoto et al. 2001), however the physiologic role of these 

proteins in the brain has not yet been determined. 

Aquaporin-4 was first cloned from rat lung (Hasegawa et al. 1994) and brain 

(Jung et al. 1994).  Throughout the body, AQP4 is located in a variety of tissues: 

kidney (Frigeri et al. 1995; Neely et al. 1999), respiratory epithelium (Nielsen, King et 

al. 1997), stomach (Frigeri et al. 1995; Koyama et al. 1999), and skeletal muscle 

(Frigeri et al. 1995; Neely et al. 1999).  However, the predominant site of its expression 

is in the brain (Nielsen, Nagelhus et al. 1997; Venero et al. 1999).  In the central 

nervous system, AQP4 expression has been found in several regions including cortex 

(Jung et al. 1994; Neely et al. 1999), hippocampus (Jung et al. 1994; Neely et al. 1999), 

cerebellum (Jung et al. 1994; Nagelhus et al. 1998; Neely et al. 1999), brainstem (Neely 

et al. 1999), spinal cord (Frigeri et al. 1995; Jung et al. 1994; Neely et al. 1999; Oshio 

et al. 2004), and retina (Nagelhus et al. 1998).  High levels of AQP4 protein have been 
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found in astrocytes bordering the subarachnoid space, the ventricles, and blood vessels 

(Nielsen, Nagelhus et al. 1997).  The expression of AQP4 was found to be highly 

polarized with the most abundant expression in astrocytic endfeet in direct contact with 

blood vessels in rat (Amiry-Moghaddam et al. 2004; Nagelhus et al. 1998; Nielsen, 

Nagelhus et al. 1997; Oshio et al. 2004) and human tissues (Saadoun et al. 2002).  

AQP4 has also been reported in cerebral endothelial cells (Amiry-Moghaddam et al. 

2004) and in cerebral microvessel isolations (Kobayashi et al. 2001).  Systemic 

capillary endothelial cells are immunoreactive for AQP1 (Nielsen et al. 1993); 

however, cerebral microvessels in the rat express only AQP4 mRNA (Kobayashi et al. 

2001).  The location of AQP4 at brain-CSF and brain-blood interfaces suggests a role 

in brain water homeostasis.  In addition, AQP4 likely plays a role in cerebral edema, as 

edema is essentially the loss of water homeostasis in the brain. 

AQP4 has been tied to edema formation in a variety of injury models.  AQP4 

null mice, which are phenotypically normal, show decreased edema formation 

following both acute hyponatremia and ischemic stroke (Manley et al. 2000).  

Additionally, when AQP4 expression was disrupted at the astrocytic endfeet, by α-

syntrophin deletion, edema volume was decreased following transient cerebral ischemia 

(Amiry-Moghaddam et al. 2003).  Brain regions with increased AQP4 expression have 

increased rates of edema formation, induced by acute hyponatremia (Amiry-

Moghaddam et al. 2004).  Expression of AQP4 is also increased after ischemia 

(Taniguchi et al. 2000) and traumatic brain injury (Sun et al. 2003).  In general, 

increased AQP4 levels seem to cause greater edema formation and decreased or absent 
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AQP4 levels are protective against cerebral edema.  However, more recently it has been 

suggested that the role of AQP4 in cerebral edema varies with the specific type of 

edema, vasogenic or cytotoxic (Manley et al. 2004).  In animal models of vasogenic 

edema, AQP4 appears to be protective and aid the resolution of cerebral edema 

(Papadopoulos et al. 2004).  Conversely, in instances where cytotoxic edema is more 

common, AQP4 expression appears to be maladaptive because it tends to increase 

cerebral edema formation (Amiry-Moghaddam et al. 2004).  Therefore, in eclampsia, 

which is typically characterized as a vasogenic edema, AQP4 may be more important in 

resolving cerebral edema formation rather than preventing the initial formation. 

Of interest to the study of eclampsia is the role of AQP4 in mediating water 

movement across the BBB.  We have shown that cerebral edema formation is increased 

in LP rats but not NP rats following acute hypertension, and this is not likely due to 

increased solute permeability (Euser and Cipolla 2007).  Our lab has also shown that 

AQP4 protein levels are significantly increased in pregnant and postpartum rats versus 

NP females (Quick and Cipolla 2005).  These findings led to the hypothesis that 

pregnancy acts to increase water permeability (hydraulic conductivity) of the BBB by 

increased AQP4 expression leading to significantly enhanced edema formation. 

 

1.4. Magnesium Sulfate 

1.4.1. Clinical Usage 

Magnesium sulfate (MgSO4) has been used since the beginning of the 20th 

century to treat eclamptic seizures (Lazard 1925) and continues to be used extensively 
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(Working Group on High Blood Pressure in Pregnancy 1990; Sibai 1990; Witlin and 

Sibai 1998).  Empirical evidence supports the effectiveness of MgSO4 in treating 

eclamptic seizures (Lazard 1925; Pritchard, Cunningham, and Pritchard 1984; Sibai et 

al. 1981; Sibai 1990), and recently controlled clinical trials have provided evidence to 

support these reports (Altman et al. 2002; Chien, Khan, and Arnott 1996; Witlin and 

Sibai 1998).  For eclamptic seizure prophylaxis in preeclamptic women, MgSO4 is 

superior to phenytoin (an anticonvulsant drug) (Duley and Henderson-Smart 2003; 

Lucas, Leveno, and Cunningham 1995), nimodipine (a calcium channel blocker with 

specific cerebral activity) (Belfort et al. 2003), diazepam (Duley and Henderson-Smart 

2003), and placebo (Altman et al. 2002).  In a multinational trial, MgSO4 reduced the 

risk of recurrent seizures in eclamptic women by 52% when compared to diazepam and 

by 67% when compared to phenytoin (The Eclampsia Trial Collaborative Group 1995).  

The publication of these trials appears to have significantly increased the use of 

magnesium sulfate versus other anticonvulsants in the United Kingdom and Ireland 

(Gülmezoglu and Duley 1998).  The reported use of magnesium sulfate in preeclampsia 

has increased from 2% to 40%, and 60% of providers surveyed would now use 

magnesium as an anticonvulsant for eclamptic women versus in 1992 only 2% of 

eclamptic women received magnesium sulfate (Douglas and Redman 1994; 

Gülmezoglu and Duley 1998).  Although the effectiveness of MgSO4 in treating and 

preventing eclampsia has been established, questions still exist as to its safety and 

mechanism. 
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There are concerns regarding the possibility of hypermagnesemia toxicity in 

eclampsia treatment.  Normal serum concentrations of Mg+2 are 1.5-2.5 mEq/L (1.8-3.0 

mg/dL), with one third bound to plasma proteins (Donaldson 1986).  Magnesium serum 

concentrations advocated for the treatment of eclamptic convulsions are 3.5-7 mEq/L 

(4.2-8.4 mg/dL) (Leveno and Cunningham 1999; Pritchard 1955).  Areflexia, 

particularly loss of the patellar reflex, has been observed at 8-10 mEq/L, and 

respiratory paralysis at >13 mEq/L (Donaldson 1986; Pritchard, Cunningham, and 

Pritchard 1984).  Progressively higher serum magnesium levels can ultimately lead to 

cardiac arrest (Donaldson 1986; McCubbin et al. 1981).  Reports suggest that in some 

patients eclamptic seizures do not cease even with elevated levels of MgSO4 (Pritchard, 

Cunningham, and Pritchard 1984; Sibai et al. 1981; Sibai et al. 1984), suggesting that 

MgSO4 is not effective in treating all cases of eclampsia. 

Though the use of MgSO4 is wide-spread and effective, its mechanism of action 

remains unclear.  Several possible mechanisms of action have been proposed, and are 

further discussed in following sections.  MgSO4 may act as a vasodilator, with actions 

either peripherally or in the cerebral circulation, to relieve vasoconstriction.  

Alternatively, MgSO4 may protect the BBB and thereby decrease cerebral edema 

formation.  Further, MgSO4 may treat eclamptic seizures through a central 

anticonvulsant action.  Aims 3 and 4 of this dissertation were designed to better 

understand the effects of MgSO4 during normal pregnancy.  The vasodilatory action on 

in vitro cerebral and systemic resistance arteries was investigated and is described in 
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Chapter 2, and the effect of MgSO4 treatment on in vivo BBB permeability during acute 

hypertension is described in Chapter 4. 

 

1.4.2. Magnesium-induced Vasodilation 

Magnesium is a unique calcium antagonist as it can act on all types of calcium 

channels in vascular smooth muscle, and subsequently may lower peripheral and 

cerebral vascular resistance, relieve vasospasm, and decrease ABP (Altura et al. 1987).  

The vasodilatory effect of MgSO4 has been investigated in a wide variety of vessels.  

For example, both in vivo and in vitro animal studies have shown that it is a vasodilator 

of the aorta (Aloamaka et al. 1993; Longo et al. 2001), mesenteric arteries (Altura et al. 

1987; Euser and Cipolla 2005; Nishio et al. 1989; Villamor et al. 1996), skeletal muscle 

arteries (Altura et al. 1987), uterine arteries (Nelson and Suresh 1991), and cerebral 

arteries (Altura et al. 1987; Euser and Cipolla 2005; Perales et al. 1991).  However, the 

importance of magnesium-induced vasodilation in the treatment and prevention of 

eclampsia is not completely understood. 

The theory of cerebrovascular vasospasm as the etiology of eclampsia seemed to 

be reinforced by TCD studies which suggested that MgSO4 treatment caused dilation in 

the cerebral circulation (Belfort and Moise Jr. 1992; Belfort, Saade, and Moise Jr. 

1993; Naidu et al. 1996) as well as in large cerebral arteries in animal studies (Perales 

et al. 1991).  However, a vasodilator such as MgSO4 would seem to be a paradoxical 

treatment choice for eclamptic encephalopathy.  In order to clarify the cerebral effect of 

MgSO4, we performed in vitro studies to compare the effect of MgSO4 treatment on 



 
50 
 
 
 
 

resistance arteries from cerebral and mesenteric circulations.  This work is presented in 

detail in Chapter 2.  In summary, we found that MgSO4 caused a concentration-

dependent vasodilatation in both cerebral and mesenteric resistance arteries; however 

the mesenteric arteries were significantly more sensitive to MgSO4, particularly during 

pregnancy (Euser and Cipolla 2005).  Our results of a modest vasodilatory effect in the 

cerebral circulation are consistent with other findings that MgSO4 treatment caused no 

significant change in CBF, large cerebral artery diameter, or mean MCA velocity as 

determined by MRI (Hatab, Zeeman, and Twickler 2005) and TCD (Belfort, Saade, 

Yared et al. 1999; Sherman et al. 2003).  The effects of MgSO4 as an eclamptic seizure 

prophylactic may be more closely related to an effect on peripheral vascular resistance 

and lowering of systemic blood pressure than to a direct effect on CBF. 

Reports of the effects of MgSO4 treatment on ABP have been mixed.  

Hypotensive effects have been noted in various studies particularly with bolus 

injections (Belfort, Saade, and Moise Jr. 1993; Pritchard 1955; Scardo, Hogg, and 

Newman 1995); however the duration of decreased blood pressure was varied.  In 

pregnant rats with L-NAME-induced hypertension, magnesium treatment resulted in 

significantly lower blood pressures at term and better neonatal outcomes (Standley, 

Batia, and Yueh 2006).  It has been cautioned that magnesium should not be considered 

primarily an anti-hypertensive agent, and there are other drugs better suited for that 

purpose in eclampsia (Leveno and Cunningham 1999). 

Several reports have suggested that gestation may influence vascular reactivity 

to MgSO4 and that this sensitivity varies with vascular bed (Aloamaka et al. 1993; 
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Euser and Cipolla 2005; Longo et al. 2001; Nelson and Suresh 1991).  Human uterine 

arteries from pregnant patients are three-fold more reactive to MgSO4 than uterine 

arteries from non-pregnant patients (Nelson and Suresh 1991).  In aortic smooth muscle 

from pregnant and non-pregnant rats, both greater and less sensitivity to magnesium-

induced vasodilation have been shown based on the preconstriction agent used, 

suggesting that pregnancy may differentially affect receptor versus voltage-operated 

calcium channels (Aloamaka et al. 1993).  In another study of rat aortic rings, the effect 

of magnesium was dependent on gestation such that vasodilation was lower at term 

than during late pregnancy (Longo et al. 2001).  We have found that while mesenteric 

resistance arteries showed no change in sensitivity with gestation, posterior cerebral 

resistance arteries from LP and postpartum (PP) animals were significantly less 

sensitive to MgSO4 versus those from NP animals (Euser and Cipolla 2005).  This may 

be due to changes in the cerebrovascular vaodilatory mechanisms that have been 

demonstrated during pregnancy and the postpartum state (Cipolla, Vitullo, and 

McKinnon 2004). 

MgSO4 may have other effects within the vasculature that could also explain its 

effectiveness in eclampsia.  Magnesium may act by stimulating production of 

prostacyclin by the endothelial cells causing vasodilation (Watson et al. 1986), or by 

inhibiting platelet aggregation (Ravn et al. 1996; Watson et al. 1986).  In patients with 

pregnancy-induced hypertension, MgSO4 treatment significantly decreased circulating 

levels of angiotensin-converting enzyme (Goldkrand and Fuentes 1986).  These actions 
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may attenuate the endothelial dysfunction associated with eclampsia (Easton 1998; 

Khan et al. 2005; Roberts et al. 1989). 

 

1.4.3. Effects on the Blood-brain Barrier 

As described in detail in section 1.3.1, the cerebral endothelium is specialized 

and forms the BBB.  Briefly, the unique features of the BBB include intercellular TJ 

between endothelial cells, a lack of capillary fenestrations, and a low rate of pinocytosis 

(transcellular transport) (Betz 1997; Hawkins and Davis 2005).  Disruption of the BBB 

can result in vasogenic edema formation, an important component in the clinical picture 

of eclampsia (Kaplan 2006; Zunker et al. 1995).  Recently, decreased BBB 

permeability with MgSO4 treatment has been reported in a variety of animal models of 

BBB disruption including traumatic brain injury (Esen et al. 2003), septic 

encephalopathy (Esen et al. 2005), hypoglycemia (Kaya et al. 2001), and mannitol 

injection (Kaya et al. 2004).  Our work has also shown decreased BBB permeability 

during acute hypertension in LP rats treated with MgSO4 (Euser and Cipolla 2007).  

This work is presented in Chapter 4 of this manuscript.  Various studies have also 

shown that MgSO4 decreases cerebral edema formation after injury (Esen et al. 2003; 

Feldman et al. 1996; Ghabriel, Thomas, and Vink 2006; Kaya et al. 2004; Okiyama et 

al. 1995).  However, it is not yet clear how magnesium protects the BBB and decreases 

edema formation. 

Several mechanisms of action have been proposed to explain the neuroprotective 

effects of magnesium.  Magnesium is a calcium antagonist that acts both intracellularly 
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and extracellularly (Fawcett, Haxby, and Male 1999), and may act directly on cerebral 

endothelial cells.  It is possible that by acting as a calcium antagonist at the level of the 

endothelial cell actin cytoskeleton, magnesium opposes paracellular movement of 

solutes through the TJ.  Alternatively, pinocytosis can be induced by acute hypertension 

and contributes to increased BBB permeability during acute hypertension.  If 

magnesium is somehow able to decrease pinocytosis caused by acute hypertension, it 

may restrict the movement of water and solutes into the brain and limit edema 

formation thereby improving clinical outcomes in eclampsia.  It has been suggested that 

the movement of large molecules such as EB across the BBB may implicate 

transcellular versus paracellular transport (Mayhan and Heistad 1985).  In our study, we 

found that MgSO4 treatment significantly decreased BBB permeability during acute 

hypertension to the large solute EB but not to the much smaller solute sodium 

fluorescein, suggesting transcellular transport (Euser and Cipolla 2007).  Further 

studies to investigate the effects of MgSO4 on the BBB may provide important 

information regarding the benefits of MgSO4 for eclampsia treatment and prophylaxis. 

Magnesium sulfate may also act to limit cerebral edema formation through an 

effect on aquaporin expression.  Brain edema has been associated with an up-regulation 

of AQP4 (Papadopoulos and Verkman 2005; Taniguchi et al. 2000), and it has been 

suggested that MgSO4 treatment attenuates cerebral edema formation by down-

regulating AQP4 expression in astrocytes (Ghabriel, Thomas, and Vink 2006).  This 

concept is particularly interesting in light of observations of increased AQP4 

expression during pregnancy (Quick and Cipolla 2005), and the subsequent hypothesis 
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that increased aquaporin expression during pregnancy may increase the vulnerability of 

the cerebral circulation to damage during acute hypertension.  However, in more recent 

studies MgSO4 treatment in normotensive LP rats did not affect AQP4 protein 

expression versus untreated LP rats (unpublished results).  In this study AQP4 

expression was determined in naïve rat brains, and it is possible that MgSO4 may affect 

AQP4 following an acute injury to the brain, such as a hypertensive insult.  Magnesium 

treatment may also cause a redistribution of AQP4 within the brain tissue, an outcome 

that was not assessed by these studies. 

 

1.4.4. Possible Anticonvulsant Activity 

There is controversy regarding the use of MgSO4 treatment for neurological 

conditions, such as eclamptic seizures.  Concerns have been raised that MgSO4 

treatment may mask the outward signs of convulsions through its action at the 

neuromuscular junction without treating the cause of the seizure in the central nervous 

system (Donaldson 1986; Kaplan et al. 1988).  Dose-related depression of 

neuromuscular transmission has been shown in preeclamptic women receiving 

traditional MgSO4 therapy (Ramanathan et al. 1988).  Studies have also shown that 

there is little to no change in EEGs obtained during MgSO4 treatment, and minimal 

signs of central nervous system depression in both normal (Somjen, Hilmy, and 

Stephen 1966) and eclamptic patients (Sibai et al. 1984), and in animals (Koontz and 

Reid 1985).  However, clinical trials have demonstrated the efficacy of MgSO4 in the 

treatment and prevention of eclamptic seizures versus more traditional anticonvulsant 



 
55 
 
 
 
 

drugs (Lucas, Leveno, and Cunningham 1995; The Eclampsia Trial Collaborative 

Group 1995). 

The possible anticonvulsant activity of magnesium may be related to its role as a 

N-methyl-D-aspartate (NMDA) receptor antagonist (Goldman and Finkbeiner 1988; 

Hallak et al. 1994; Lipton and Rosenberg 1994).  For comparison, epileptic seizures are 

thought to be mediated at least in part by stimulation of glutamate receptors, such as the 

NMDA receptor (Dingledine, Hynes, and King 1986; Lipton and Rosenberg 1994).  In 

rats, peripheral magnesium treatment results in a resistance to both electrically 

stimulated (Hallak et al. 1992) and NMDA-induced hippocampal seizures (Cotton et al. 

1993).  In addition, peripheral treatment with MgSO4 causes a significant reduction in 

the NMDA receptor binding capacity in the brain (Hallak et al. 1994).  Studies in 

animals have also shown that MgSO4 reduces epileptic seizure activity (Borges and 

Gucer 1978), though these findings have been challenged due to inadequate controls 

(Koontz and Reid 1985). 

Magnesium ions must cross the BBB in order to elicit a central anticonvulsant 

effect.  It has been demonstrated in animal studies that MgSO4 can cross the intact BBB 

and enter the central nervous system in correlation with the level of serum 

hypermagnesemia (Hallak et al. 1992).  Interestingly, seizure activity increases the 

movement of magnesium into the brain (Hallak et al. 1992).  Human studies have also 

shown small but significant increases in CSF concentrations of MgSO4 after systemic 

administration (Pritchard 1955; Thurnau, Kemp, and Jarvis 1987).  Conversely, other 

work has suggested that the BBB prevents changes in brain and CSF magnesium 
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concentrations (Hilmy and Somjen 1968).  However, this same group later suggested 

that even a small amount of magnesium in the central nervous system may suppress 

cortical neuronal activity (Kato and Somjen 1969).  The possibility remains that acute 

hypertension and/or acute convulsions could cause BBB disruption which could permit 

MgSO4 to enter the brain parenchyma and act as an anticonvulsant during eclampsia.  It 

is likely that the prophylactic effect of MgSO4 in the prevention of eclamptic seizures is 

multi-factorial, encompassing both vascular and neurological mechanisms. 

 

1.5. Methodology 

1.5.1. Rat Model of Pregnancy 

All experiments were conducted using Sprague Dawley female rats housed in 

the University of Vermont animal care facility.  The rat is an appropriate model of 

pregnancy because of similar hemichorial placentation (Pijnenborg et al. 1981) and 

cardiovascular adaptations (Gilson, Mosher, and Conrad 1992; Barron 1987) as human 

pregnancy.  In addition, rats have a similar cerebrovascular architecture to humans 

(Edvinsson and MacKenzie 2002), and rats develop HTE (Smeda and Payne 2003).  

For NP experiments, virgin animals were used.  All LP experiments were performed in 

primiparous animals on day 19 to 21 of a 22 day gestation.  The rats were studied 

during this time period in order to best focus on late gestation when eclampsia often 

occurs (Roberts et al. 2003).  For the in vitro isolated vessel experiments PP animals 

were also studied, and they were used on the third day postpartum following their first 

pregnancy. 
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1.5.2. Arteriograph System 

In vitro studies utilized the pressurized arteriograph system. This system allows 

the artery to remain pressurized and perfused within a solution bath and lumen diameter 

can be measured directly.  Our lab has considerable experience using this system to 

study the myogenic activity and passive structural properties of small cerebral arteries 

(Cipolla, DeLance, and Vitullo 2006; Cipolla, Vitullo, and McKinnon 2004; Euser and 

Cipolla 2005).  Vessels were dissected from animal tissue and mounted and secured on 

glass cannulas within the arteriograph chamber, as shown in Figure 3.  A dual-chamber 

arteriograph system can be used to study two vessels simultaneously, as done in this 

project.  The proximal cannulas are attached to an in-line pressure transducer which 

allows the intravascular pressure to be maintained at a constant pressure or changed at a 

variable rate.  A state of no flow through the vessels was obtained by closing the distal 

cannulas.  The lumen diameters were measured through optical windows in the bottom 

of the arteriograph chambers, also seen in Figure 3, using an inverted microscope with 

 

Figure 3: Arteriograph chamber and mounted artery, images courtesy of Dr. Marilyn J. Cipolla, PhD 

A: Chamber with isolated vessel 
mounted on two glass cannulas.  
Notice the optical window in the 
bottom of the chamber.   
B:  Closer view of a mounted 
vessel, secured with nylon 
sutures.   

A B
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an attached video camera and monitor connected to a video dimension analyzer (VDA).  

The VDA and pressure transducer output signals were sent to a computer via a data 

acquisition system, providing a visual representation of lumen diameter, similar to a 

chart recorder. 

The pressurized arteriograph system is advantageous because it allows vessel 

diameter to be directly measured in response to drugs and solutions or different 

intraluminal pressures.  Pousielle’s law determines CVR, such that R = (8ηl)/(πr4), 

where R represents resistance to blood flow, η represents blood viscosity, l is the length 

of the vessel, and r is radius of the vessel (Hurn and Traystman 1997).  CBF is 

dependent of CPP and CVR, such that CBF = CPP/CVR (Paulson et al. 1989; Skinhøj 

1977).  Because it is related inversely to CVR, CBF is proportional to vessel radius to 

the 4th power and small changes in luminal diameter can lead to considerable changes 

in flow (Ku and Zhu 1993).  Through observation of isolated and pressurized vessels in 

vitro under different circumstances, the global effect of such circumstances on CBF 

may be predicted.  However, CBF autoregulation is a complex interaction of 

endothelial, neuronal, and metabolic influences that cannot be adequately reproduced in 

vitro, and for this reason the model of HTE was used to study CBF in vivo. 

 

1.5.3. Model of Hypertensive Encephalopathy in Pregnancy 

In order to investigate CBF autoregulation during pregnancy in vivo, we adapted 

a model of acute hypertension so that CBF could be measured while increasing ABP.  

Briefly, CBF is recorded continuously during an acute infusion of phenylephrine (PE) 
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to raise ABP sufficiently to cause autoregulatory breakthrough.  The resulting data 

were then analyzed in order to determine a pressure versus flow curve and the pressure 

of autoregulatory breakthrough.  This model could best be described as HTE during 

pregnancy, which we believe to be similar to eclampsia.  This same model has been 

used by many different groups to examine cerebral hemodynamics and the effects of 

acute hypertension on BBB permeability and vasogenic edema formation in male 

animals (Hatashita, Hoff, and Ishii 1986; Hernandez, Brennan, and Bowman 1978; 

MacKenzie, Strandgaard et al. 1976; Mayhan, Faraci, and Heistad 1986; Talman and 

Nitschke Dragon 1995).  In this dissertation, this model has proven useful to determine 

CBF autoregulation and the upper limit of autoregulation in pregnant rats as well as 

determine the effect of acute hypertension on BBB permeability and cerebral edema 

formation.  This model was also used in this project to determine the effect of 

magnesium sulfate treatment on BBB permeability during acute hypertension.  Several 

choices were made in adapting this model for use in our laboratory, and the advantages 

and possible caveats of these choices is discussed below. 

A laser Doppler probe was used to continuously measure CBF transcranially.  

Laser Doppler flowmetry measures changes in CBF and the laser Doppler signal must 

be normalized to obtain a relative CBF (rCBF) to allow for interanimal comparison.  

This technique is limited because it is nonquantitative and multiple probes are required 

to determine regional blood flows (Iadecola 1997).  Other techniques, such as 

microsphere infusion, can be used to establish absolute CBF measurements, however 

these studies are limited because they do not allow for continuous measurement of CBF 
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(Iadecola 1997).  Continuous data collection is a distinct advantage of the laser Doppler 

technique (Iadecola 1997).  For the studies within this project, the probe was positioned 

on the animal’s skull over the MCA perfusion domain as previously described (Smeda, 

VanVliet, and King 1999). 

For some studies, phenylephrine (PE) was used to acutely increase ABP.  

Phenylephrine is an α-adrenergic agonist, and is commonly used to study the effects of 

hypertension on the cerebral circulation in vivo for several reasons (Mayhan, Faraci, 

and Heistad 1988).  Sympathomimetic agents, such as PE, contract pial vessels in situ 

and in vitro (Edvinsson and Krause 2002).  However, α-adrenergic agonists do not 

readily pass the BBB (Hardebo and Owman 1980; Oldendorf 1971), and CBF is 

minimally affected by intravenous infusion if the BBB is intact (Tamaki and Heistad 

1986; MacKenzie, McCulloch et al. 1976).  Thus, PE increases peripheral vascular 

resistance without acting directly on cerebral vessels.  In addition, when ABP 

elevations are prevented, intravenous infusions of PE or other α-adrenergic agonists do 

not have direct effects on pial arteriolar diameter (Kontos et al. 1981), cerebral vascular 

resistance in large or small arteries (Tamaki and Heistad 1986), or BBB permeability 

(Mayhan and Heistad 1985, 1986).  Some studies of the cerebral circulation and acute 

hypertension have used angiotensin II as a pressor agent.  However, we specifically 

chose not to use angiotensin II because refractory responses to angiotensin II have been 

shown during pregnancy (Gant et al. 1973).  Importantly, no difference in CBF changes 

to the cerebrum were observed using different methods to increase ABP, aortic 

obstruction, aortic obstruction with angiotensin II infusion, or aortic obstruction with 
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norepinephrine infusion (Baumbach and Heistad 1985; Baumbach, Mayhan, and 

Heistad 1986). 

The goal of this proposal was to study the effect of normal pregnancy on 

cerebrovascular parameters.  For this reason, this model was appropriate because it 

used normal, healthy pregnant animals.  However, other model systems may better 

represent the symptoms and endothelial dysfunction of preeclampsia and eclampsia 

(Khan et al. 2005; Working Group on High Blood Pressure in Pregnancy 1990; Roberts 

et al. 1989).  The reduced uterine perfusion pressure model involves surgically reducing 

blood flow in the uterine and ovarian arteries and has been shown to induce 

hypertension, proteinuria, and intrauterine growth restriction (Alexander et al. 2001).  

While our results have shown that autoregulation does not differ with normal gestation 

(Euser and Cipolla 2007), circulating factors and/or oxidative damage as part of 

eclampsia could cause greater endothelial dysfunction and affect either the upper limit 

of autoregulation or cerebral edema formation.  For this project, we believed that it was 

important to understand how normal pregnancy may predispose the brain to 

hyperperfusion and edema formation before investigating a disease state.  Future 

experiments could utilize models of preeclampsia such as the reduced uterine perfusion 

pressure. 

 

1.5.4. Cerebral Edema Quantification 

Brain edema is the abnormal accumulation of fluid in brain parenchyma 

producing a volumetric enlargement of the tissue (Klatzo 1987).  Different techniques 
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can be used to quantify brain water content and thus measure cerebral edema formation.  

For these studies, we used the ratio of wet and dry tissue weights to determine brain 

water content, a measure of cerebral edema (Schwab, Bauer, and Zwiener 1997).  

Briefly, the brain was quickly removed from the animal, weighed wet, and transferred 

to an oven for drying at 100° C for 24 hours, after which the brain was weighed again 

dry.  Brain water content (in percent) was determined by the following formula: 

((weightwet - weightdry) ÷ weightwet) * 100; where weightwet is the weight of the brain 

immediately after removal from the skull, and the weightdry is the weight of the brain 

after drying. 

In our experience, the differences seen between groups in cerebral edema 

formation using a ratio of wet to dry weights have been small.  However, other methods 

of cerebral edema quantification, such as gravimetry, are not necessarily preferable.  

Gravimetry uses a calibrated column of bromobenzene and kerosene to determine the 

specific gravity of a small piece of brain tissue, and thus the percent brain water content 

(Marmarou et al. 1978).  Gravimetry has been used previously in our laboratory and 

was found to produce variable results.  In addition, others have shown no significant 

difference in estimated brain water content determined by wet and dry weights versus 

gravimetry (Schwab, Bauer, and Zwiener 1997). 

 

1.5.5. Blood-brain Barrier Permeability Model 

In order to determine BBB permeability in vivo, the model of HTE in pregnancy 

was further adapted to include an in situ brain perfusion model.  Dye tracers were 
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infused intravenously as an additional step prior to induction of acute hypertension.  

Further procedures were completed as before, however just before the experiment was 

ended, the animal was perfused with lactated Ringer’s solution and the right side of the 

heart opened in order to flush dye from the cerebrovascualture.  Quantification of the 

dye present in the brain parenchyma was determined using fluorescence 

spectrophotometry of the supernatant from homogenized and centrifuged tissue 

samples. 

Dye tracers have been used to study the BBB since the earliest studies (Byrom 

1954; Ehrlich 1885; Goldmann 1913), and are still used extensively as markers of BBB 

permeability (Auer 1978; Johansson et al. 1970; Kozler and Pokorny 2003; Mayhan 

and Heistad 1985; Wolman et al. 1981).  Two different dye tracers were used for this 

dissertation, Evan’s blue (EB) and sodium fluorescein (NaFl).  Evan’s blue binds to 

albumin and is commonly used as a marker of BBB permeability (Kaya et al. 2001; 

Wolman et al. 1981).  The passage of EB across the BBB suggests that large plasma 

proteins are passing into the brain tissue.  It has been suggested that the movement of 

large molecules, such as albumin and EB, across the BBB implicates transcellular 

versus paracellular transport (Mayhan and Heistad 1985).  Conversely, NaFl was used 

to trace the movement of ions across the BBB, and was found to be a less sensitive and 

more variable marker of BBB permeability. 
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1.6. Project Aims and Hypotheses 

The overall goal of this project was to understand how pregnancy affects CBF 

autoregulation and edema formation in response to acute hypertension.  The 

permeability of the BBB during acute hypertension was also investigated as this is a 

principal mechanism of vasogenic edema formation.  An in vivo model of HTE was 

used to determine autoregulatory curves and the pressure at which breakthrough occurs 

in both NP and LP female rats (Aim 1), as well as cerebral edema formation and BBB 

permeability (Aim 2).  Because pregnancy is known to be a time of elevated NO 

(Sladek, Magness, and Conrad 1997; Williams et al. 1997), we also investigated the 

effect of NOS inhibition, induced by L-NAME treatment, on CBF autoregulation and 

cerebral edema formation during acute hypertension (Aims 1 and 2, respectively).  This 

work is presented in Chapter 3. 

Another goal of this project was to investigate the effects of MgSO4 on the 

cerebral circulation during pregnancy.  Magnesium is widely used to both treat and 

prevent eclamptic seizures (Witlin and Sibai 1998; Sibai 1990; Working Group on High 

Blood Pressure in Pregnancy 1990), although its mechanism of action is not clear.  

Because of the theorized hyperperfusive etiology of eclampsia, the known action of 

MgSO4 as a vasodilator seems paradoxical.  Thus, Aim 3 of this project explored the 

effect of MgSO4 on cerebral and mesenteric resistance arteries, important contributors 

to CBF and peripheral vascular resistance, respectively.  In addition, we determined if 

the response to MgSO4 varied with gestation.  We hypothesized that there may be a 

differential sensitivity to MgSO4 in the cerebral versus the systemic vasculature, and 
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that the systemic vasculature would be more sensitive to MgSO4.  The effect of MgSO4 

was determined in vitro by directly measuring luminal diameters, and this work is 

presented in Chapter 2. 

The results of Aim 3, together with the work of others, has shown limited effects 

of MgSO4 on cerebral arterial diameter and CBF (Belfort, Saade, Yared et al. 1999; 

Euser and Cipolla 2005; Hatab, Zeeman, and Twickler 2005; Sherman et al. 2003).  

Therefore, we subsequently hypothesized that in eclampsia MgSO4 may protect the 

brain by decreasing BBB disruption during acute hypertension.  Protection of the BBB 

with MgSO4 treatment has been shown in other conditions that may cause cerebral 

edema (Esen et al. 2003; Esen et al. 2005; Kaya et al. 2001; Kaya et al. 2004).  Aim 4 

determined the effect of MgSO4 on in vivo BBB permeability during acute hypertension 

in LP rats using the same model of HTE used in Aims 1 and 2.  This work is presented 

in Chapter 4.  A summary of this project’s aims and hypotheses follows below. 

 

Aim 1: To determine CBF autoregulation and autoregulatory breakthrough in 

control NP and LP rats, and to investigate the role of NO in mediating autoregulatory 

breakthrough. 

Hypotheses: a)  Autoregulatory breakthrough in LP rats will occur at lower 

pressures versus NP rats. 

b)  NOS inhibition will increase the pressure of autoregulatory 

breakthrough. 
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Aim 2: To determine if pregnancy is associated with increased cerebral edema 

formation during autoregulatory breakthrough and the role of NO in mediating this 

outcome.  In addition, the effect of acute hypertension on in vivo BBB permeability was 

determined in both NP and LP animals. 

Hypotheses: a)  There will be greater BBB permeability and cerebral edema 

formation after autoregulatory breakthrough in LP versus NP animals. 

b)  Cerebral edema formation will be less with NOS inhibition in both 

NP and LP rats. 

 

Aim 3: To determine the effect of MgSO4 on lumen diameter in cerebral and 

mesenteric resistance arteries in vitro from NP, LP, and postpartum (PP) animals.   

Hypothesis: a)  There may be a differential sensitivity to MgSO4, such that systemic 

resistance arteries are more sensitive to the effects of MgSO4 than the 

cerebral resistance arteries.  

 

Aim 4: To determine the effect of MgSO4 treatment on in vivo BBB 

permeability in LP rats during acute hypertension. 

Hypothesis: a)  Treatment with MgSO4 will decrease BBB permeability in treated 

versus untreated LP rats. 
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CHAPTER 2: RESISTANCE ARTERY VASODILATION TO MAGNESIUM 

SULFATE DURING PREGNANCY AND THE POSTPARTUM STATE 

 

 

 

 

 

 

 

 

 

 

 

 

Anna G. Euser and Marilyn J. Cipolla 

Am J Physiol Heart Circ Physiol 2005;288:H1521-H1525 



 
118 

 
 
 
 

Abstract 

This study compared the vasodilatory response to magnesium sulfate (MgSO4) 

of cerebral and mesenteric resistance arteries and determined if the response varied 

between different gestational groups.  Third-order branches (<200 µm) of the posterior 

cerebral (PCA) and mesenteric arteries (MA) were dissected from non-pregnant (NP, 

n=6), late pregnant (LP, day 19, n=6), and postpartum (PP, d3, n=6) Sprague-Dawley 

rats.  A concentration-response curve was performed by replacing the low MgSO4 (1.2 

mM) HEPES buffer solution with increasing concentrations of MgSO4 (4, 6, 8, 16, 32 

mM) and measuring lumen diameter at each concentration.  All groups exhibited 

concentration-dependent dilation to MgSO4, decreasing the amount of tone in the 

vessels.  However, MA were significantly more sensitive to MgSO4 than PCA.  While 

there was no difference in response between different gestational groups in MA, the 

PCA from the LP and PP groups showed a significantly diminished response to 

MgSO4.  The percent dilation at 32 mM MgSO4 for PCA vs. MA in NP, LP and PP 

animals was: 36±2 vs. 51±7% (p<0.05); 19±9 vs. 54±6% (p<0.01 vs. PCA and NP) and 

12±5 vs. 52±11% (p<0.01 vs. PCA and NP).  These results demonstrate that MgSO4 is 

a vasodilator of small resistance arteries in the cerebral and mesenteric vascular beds.  

The refractory responses of the PCA in LP and PP groups demonstrate changes in the 

cerebrovascular vasodilatory mechanisms with gestation.  The greater sensitivity of the 

MA to MgSO4-induced vasodilation suggests that the prophylactic effect of MgSO4 on 

eclamptic seizures may be more closely related to the lowering of systemic blood 

pressure than to an effect on cerebral blood flow. 
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Introduction 

 Hypertensive disorders of pregnancy, including preeclampsia and eclampsia, 

affect ~8% of all pregnancies (19), however, the physician caring for a preeclamptic 

patient has few treatment options available to choose from.  Magnesium sulfate 

(MgSO4) has been used empirically since the beginning of the 20th century to prevent 

seizures, and continues to be used extensively as an eclampsia prophylactic (15, 22).  

Though the use of MgSO4 is wide-spread and effective (2, 15, 16), its mechanism of 

action has historically been poorly understood.  For example, studies have shown that it 

is a vasodilator of large, conduit arteries such as the aorta (1, 14) and mesenteric rings 

(21), however, its effects on the small resistance arteries that control systemic blood 

pressure and vascular resistance are not clear. 

 Resistance arteries (<200 µm in diameter) operate in a state of partial 

constriction, or tone, and are generally the site of vascular resistance (9).  This intrinsic 

tone also provides a set point from which arteries can constrict or dilate to control 

blood flow (9, 20).  Thus, the small resistance arteries have a great influence on 

peripheral vascular resistance and mean arterial pressure (20).  In addition, because 

flow is dependent inversely on vessel diameter to the 4th power, small changes in 

luminal diameter lead to measurable changes in flow (12).  It is therefore possible that 

as a vasodilator MgSO4 prevents eclamptic seizures by lowering peripheral vascular 

resistance. 
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 It was previously thought that eclampsia was due to vasospasm of cerebral 

vessels and the resultant ischemia was the root of the neurological complications, 

which include headaches, nausea, vomiting, visual disturbances, and convulsions (23).  

This etiology seemed to be reinforced by studies that showed MgSO4 dilated the middle 

cerebral artery (3, 4, 18).  However, more recent evidence suggests that eclampsia is 

similar to hypertensive encephalopathy in which an acute elevation in blood pressure 

overcomes the myogenic vasoconstriction, causing forced dilatation of cerebral vessels, 

hyperperfusion, and edema (5, 8, 17, 23).  Under these conditions, it would be 

paradoxical that a vasodilator, such as MgSO4, would be an effective prophylactic since 

it would cause greater hyperperfusion and promote further edema.  We therefore 

hypothesized that there is a differential sensitivity to MgSO4 between the cerebral and 

systemic resistance vessels such that the systemic circulation is more sensitive to 

MgSO4 leading to a reduction in peripheral vascular resistance prior to vasodilation of 

cerebral vessels.  To date, no studies have specifically compared the differential 

response of resistance arteries to MgSO4 from cerebral and systemic circulations, 

important contributors to cerebral blood flow regulation and peripheral vascular 

resistance, respectively. 

 The goal of this study was to investigate the effects of MgSO4 on small, 

myogenic resistance arteries that play an integral role in the modulation of peripheral 

vascular resistance (mesenteric) and control cerebral blood flow (posterior cerebral).  

The effect of MgSO4 was evaluated by directly measuring the luminal diameter of 

isolated and pressurized vessels, a powerful indicator of flow. 
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Materials and Methods 

Animals 

Female Sprague-Dawley rats (Harlan) were used for all experiments, weighing 

250-350 g.  The animals were housed in the Animal Care Facility, an AAALAC 

accredited facility.  All procedures were approved by the institutional animal care and 

use committee (IACUC) at the University of Vermont.  Three groups of animals were 

compared, virgin non-pregnant (NP, n=6), late pregnant (LP, day 19, n=6), and 

postpartum (PP, day 3, n=6).  Both the late pregnant and the postpartum animals were 

studied in association with their first pregnancy. 

Preparation of arterial segments and pressurized arteriograph system 

 The animals were decapitated following anesthesia with halothane/oxygen, and 

the brain quickly removed and transferred to cold physiologic salt solution (HEPES 

buffer) at pH 7.4±0.03.  A third-order branch of the posterior cerebral artery (PCA) was 

dissected and mounted on glass cannulas within a dual-chamber arteriograph and 

secured with nylon suture, as previously described (6).  A branch of the PCA was 

chosen because the symptoms of eclampsia are focused in the occipital lobe and 

posterior region of the brain (10).  A section of the small intestine was also quickly 

removed from the same animal so that experiments were paired. A third-order branch 

of the mesenteric artery (MA) was then dissected, and similarly mounted on glass 

cannulas in the second chamber.  Therefore, one PCA and one MA were studied 

simultaneously.  Both proximal cannulas were attached to an in-line pressure transducer 

with a controller that allowed intravascular pressure to be maintained at a constant 
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pressure or changed at a variable rate.  The distal cannulas remained closed so that 

there was no flow through the arteries.  Using an inverted microscope with an attached 

video camera and monitor connected to a video dimension analyzer (VDA), the lumen 

diameters were measured through optical windows in the bottom of the arteriograph 

chambers.  A data acquisition system was used to send the VDA and pressure output to 

a computer, which provided visualization of the vessels’ changing diameters, similar to 

a chart recorder. 

Experimental protocol 

 Both vessels were equilibrated for one hour at 50 mmHg in a 1.2 mM MgSO4 

HEPES buffer solution.  Intravascular pressure was then increased to 75 mmHg, during 

which time both vessels developed spontaneous tone.  However, because the amount of 

tone was less in the MA, it was precontracted with phenylephrine (1×10-7 to 5×10-7 

mM) until it attained a diameter of similar magnitude to that of the PCA.  Both vessels 

were then exposed to increasing concentrations of MgSO4 and the inner lumen diameter 

was recorded at each concentration (4, 6, 8, 16, and 32 mM).  (The therapeutic range of 

MgSO4 for seizure prophylaxis is 4-8 mg/dL (1, 9).)  The vessels were then washed 

with 32 mM MgSO4 HEPES solution.  A single dose of papaverine (0.1 mM) was 

added to each bath to obtain fully relaxed diameters.  While exposed to papaverine, 

pressure was reduced from 150 mmHg to 10 mmHg and lumen diameter measured at 

each pressure (150, 125, 100, 75, 50, 40, 30, 20, and 10 mmHg). 
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Data calculations 

 Percent change in diameter was calculated as the difference in diameter from the 

vessel diameter at the baseline MgSO4 concentration of 1.2 mM following the equation: 

((Φ - Φ low mag)/Φ low mag)×100 where Φ = diameter at the respective concentration and Φ 

low mag = diameter in 1.2 mM MgSO4.  Percent constriction was calculated in both low 

magnesium (1.2 mM MgSO4) and high magnesium (32 mM MgSO4) with respect to the 

vessel’s diameter in papaverine using the formula: (1-(Φ/Φ papav)) × 100 where Φ = 

vessel diameter and Φ papav = diameter in papaverine.  All data are from vessels 

pressurized at 75 mmHg. 

Drugs and solutions 

HEPES, papaverine, phenylephrine, and magnesium sulfate were all purchased 

from Sigma.  Papaverine (10-2 M) and phenylephrine (10-3 M) stock solutions were 

made weekly and stored at 4°C.  All vessel experiments were conducted in a 

physiologic salt solution composed of (mM): NaCl (142.0), KCl (4.7), MgSO4 (1.2), 

EDTA (0.50), CaCl2 (2.8), HEPES (1.0), KH2PO4 (1.2), and glucose (5.0).  A stock 

solution of 80 mM MgSO4 was made daily in HEPES physiologic salt solution. 

Statistical analysis 

 Data are expressed as mean ± SE.  The number of animals in each group was the 

n-value.  One MA and one PCA were taken from each animal.  The differences in 

reactivity over gestation were determined using a one-way analysis of variance 

(ANOVA) followed by a Student-Newman-Keuls test for multiple comparisons.  The 

difference between the vessels (MA vs. PCA) within gestational groups was determined 
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using a paired t-test.  Differences in constriction at the various concentrations were 

determined using a repeated measure ANOVA. 

 

Results 

 Table 1 shows the percent constriction of the vessels at different stages of 

gestation for PCA and MA in both low (1.2 mM) and high (32 mM) concentrations of 

MgSO4 with respect to papaverine.  The percent constriction was significantly less in 

high MgSO4 vs. low MgSO4 concentrations in both vascular beds, demonstrating that 

MgSO4 caused dilation.  In addition, there was significantly less spontaneous tone in 

the PP vs. NP PCA in 1.2 mM MgSO4.   

 Figures 1 and 2 show the concentration-response curves to MgSO4, in both 

PCAs and MAs respectively, in all gestational groups.  It is notable that the 

concentration-dependent response of the PCA was dampened in the LP and PP animals 

(Figure 1).  It is unlikely that this relates to the diminished tone in these vessels because 

the calculation normalizes the response to the start diameter.  The dilation of the MA 

was similar between all groups (Figure 2). 

 Across all gestational groups, the MAs were more sensitive to MgSO4 than 

PCAs from the same animals at all concentrations.   These results are shown in Figures 

3, 4, and 5, each figure showing a different gestational stage.  In both LP and PP 

animals, there was a significant difference in sensitivity between the two vascular beds 

(Figures 4 and 5).  For the NP animals (Figure 3), though a difference between vascular 

beds was observed, it is not statistically significant at all concentrations. 



 
125 

 
 
 
 

 

Discussion 

The results of this study demonstrate that MgSO4 has a concentration-dependent 

vasodilatory effect on resistance arteries of the cerebral and mesenteric vascular beds.  

However, the sensitivity of this response was dependent on the vascular bed and the 

gestational stage of the animal.  For example, the PCAs from LP and PP animals 

showed a refractory response to MgSO4 when compared to the NP group.  This 

gestational change in reactivity was not observed in the MAs.  While it is not clear as to 

what the cause of this differential response was, it may be due to changes in the 

cerebrovascular vasodilatory mechanisms that have been demonstrated during 

pregnancy and the postpartum state (7). 

Studies have shown a vasodilatory effect with MgSO4 treatment on both the 

cerebral circulation and systemic arteries (1, 3, 4, 12, 15, 21).  Belfort et. al. 

investigated the effect of MgSO4 on the cerebral circulation in patients with pregnancy-

induced hypertension (4) and showed a significant increase in mean velocity in the 

maternal middle cerebral artery in response to intravenous MgSO4 that was interpreted 

as distal artery vasodilation.  The current study is the first to directly examine the 

dilatory response of small distal cerebral arteries to MgSO4 and found that it caused 

modest vasodilation, a response that differed with gestational stage (12-36%), shown in 

Figure 1.  In addition, this study also demonstrated that the systemic circulation (i.e. the 

mesenteric vascular bed), was more sensitive to MgSO4 than the cerebral circulation 

(12-19% vs. 50-52%), especially in LP and PP animals, as seen in Figures 4-6.  This 
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finding suggests that as an eclamptic seizure prophylaxis the effects of MgSO4 may be 

more closely related to an effect on peripheral vascular resistance and lowering of 

systemic blood pressure than to an effect on cerebral blood flow.  In support of this 

theory, it has been shown that treatment with a 6 g intravenous loading dose of MgSO4 

caused a significant decrease in both maternal systolic and diastolic blood pressures (4). 

Because of the difference in the amount of intrinsic tone in MA vs. PCAs, we 

precontracted the MA with phenylephrine to match the degree of constriction of the 

PCA.  While there was a significant decrease in myogenic tone in the PP PCAs, we 

chose not to precontract those vessels for consistency within the group.  It is important 

to note the possibility that MgSO4 may dilate precontraction to phenylephrine more 

easily than myogenic tone, accounting for the increased sensitivity of the MA.  

Previous studies have shown a differential dilatory response of aortic rings from 

pregnant rats that depended on the method of precontraction (potassium chloride (KCl) 

vs. phenylephrine).  However, MgSO4 had a decreased vasodilatory action on vessels 

precontracted with phenylephrine when compared to those precontracted with KCl (1).  

This suggests that the difference in dilation of the PCA vs. the MA in our study could 

become even more significant if KCl was used for precontraction or if we compared 

dilation of intrinsic tone only. 

MgSO4 has been shown to have effects other than those on the vasculature that 

may relate to its effectiveness in preventing eclamptic seizures.  Mg+2 has been shown 

to be a N-methyl-D-aspartate (NMDA) receptor antagonist (13), and it has been 

hypothesized that this interaction accounts for the anti-convulsant properties of MgSO4.  
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It is not clear whether or not MgSO4 can cross the blood-brain barrier.  However, if the 

blood-brain barrier has been disrupted due to the endothelial damage caused by acute 

hypertension, MgSO4 could enter the brain parenchyma and exert its effects.  Along 

these lines, Mg+2 has been shown to be protective of the blood-brain barrier under 

conditions that promote disruption (11), which could perhaps slow the progression of 

hypertensive encephalopathy.  It is likely then that the prophylactic effect of MgSO4 in 

preventing eclamptic seizures is multi-factorial, encompassing both vascular and 

neurological mechanisms. 

In conclusion, we found a significant difference in the vasodilatory effect of 

MgSO4 on cerebral resistance arteries from LP and PP animals compared to NP 

animals, implying that there are changes in the cerebrovascular vasodilatory 

mechanisms that occur with pregnancy.  The LP and PP PCAs were also significantly 

less sensitive to MgSO4 than the MAs, suggesting a differential action on mesenteric vs. 

cerebral resistance arteries. 
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Table 1: Percent constriction to magnesium sulfate at different stages of gestation  

 
 Posterior Cerebral Artery Mesenteric Artery 

[MgSO4] 1.2 mM 32 mM 1.2 mM 32 mM 

Non-pregnant 32±2 7±2** 38±3 5±1** 

Late pregnant 26±6 14±5* 35±2 4±1** 

Postpartum 13±5† 3±3* 36±6 7±2** 
 

All data are expressed as mean ± SE.   *=p≤0.05, **=p≤0.01 vs. percent 

constriction in 1.2 mM MgSO4; †=p≤0.05 vs. percent constriction non-pregnant PCA in 

1.2 mM MgSO4 
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Figure 1: Percent change in diameter of the posterior cerebral artery to magnesium sulfate 

Graph showing the percent change in diameter of the posterior cerebral artery (PCA) to 

increasing concentrations of magnesium sulfate (MgSO4) at different stages of 

gestation, non-pregnant (NP, closed circles), late pregnant (LP, open circles), and 

postpartum (PP, closed triangles) animals.  Notice that while there is a concentration-

dependent dilation in all groups, the PCA from LP and PP animals were less sensitive 

to MgSO4 with respect to NP animals.  *=p≤0.05, **=p≤0.01 vs. LP and PP 
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Figure 2: Percent change in diameter of the mesenteric artery to magnesium sulfate 

Graph showing the percent change in diameter of the mesenteric arteries (MA) to 

increasing concentrations of magnesium sulfate (MgSO4) at different stages of 

gestation, non-pregnant (NP, closed circles), late pregnant (LP, open circles), and 

postpartum (PP, closed triangles) animals.  The dilation was concentration-dependent 

and did not vary between gestational groups. 
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Figure 3: Percent change in diameter of the posterior cerebral artery and mesenteric artery in non-
pregnant animals 

Graph showing the percent change in diameter of the posterior cerebral arteries (PCA, 

closed circles) and mesenteric arteries (MA, open circles) in non-pregnant (NP) animals 

in response to increasing concentrations of magnesium sulfate (MgSO4).  *=p≤0.05 vs. 

PCA 
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Figure 4: Percent change in diameter of the posterior cerebral artery and mesenteric artery in late 
pregnant animals 

 

Graph showing the percent change in diameter of the posterior cerebral arteries (PCA, 

closed circles) and mesenteric arteries (MA, open circles) in late pregnant (LP) animals 

in response to increasing concentrations of magnesium sulfate (MgSO4).  Notice that 

the MA was significantly more sensitive to MgSO4 than the PCA.  *=p≤0.05, 

**=p≤0.01 vs. PCA 
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Figure 5: Percent change in diameter of the posterior cerebral artery and mesenteric artery in 
postpartum animals 

 

Graph showing the percent change in diameter of the posterior cerebral arteries (PCA, 

closed circles) and mesenteric arteries (MA, open circles) in postpartum (PP) animals in 

response to increasing concentrations of magnesium sulfate (MgSO4).  Notice that the 

MA is significantly more sensitive to MgSO4 than the PCA.  *=p≤0.05 vs. PCA 
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CHAPTER 3: CEREBRAL BLOOD FLOW AUTOREGULATION AND 

EDEMA FORMATION DURING PREGNANCY IN ANESTHETIZED RATS 
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Abstract 

 Eclampsia is considered a form of hypertensive encephalopathy in which an 

acute elevation in blood pressure causes autoregulatory breakthrough, blood-brain 

barrier disruption, and edema formation.  We hypothesized that pregnancy predisposes 

the brain to eclampsia by lowering the pressure of autoregulatory breakthrough and 

enhancing cerebral edema formation.  Because NO production is increased in 

pregnancy, we also investigated the role of NO in modulating autoregulation.  Cerebral 

blood flow autoregulation was determined by phenylephrine infusion and laser Doppler 

flowmetry.  Four groups were studied: untreated nonpregnant (n=7) and late-pregnant 

(d19 to 21, n=8) Sprague-Dawley rats and nonpregnant (n=8) and late-pregnant (n=8) 

animals treated with an NO synthase inhibitor (NG-nitro-L-arginine methyl ester, 0.5 to 

0.7 g/L).  Brain water content and blood-brain barrier permeability to sodium 

fluorescein were determined after breakthrough.  Pregnancy caused no change in 

autoregulation or the pressure of breakthrough.  However, treatment with the NO 

synthase inhibitor significantly increased the pressure of autoregulatory breakthrough 

(nonpregnant: 183.6±3.0 mm Hg versus 212.0±2.8 mm Hg, P<0.05; late-pregnant: 

180.8±3.2 mm Hg versus 209.3±4.7 mm Hg, P<0.05).  After autoregulatory 

breakthrough, only late-pregnant animals showed a significant increase in cerebral 

edema formation, which was attenuated by NO synthase inhibition.  There was no 

difference in blood-brain barrier permeability between nonpregnant and late-pregnant 

animals in response to acute hypertension, suggesting that pregnancy may predispose 
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the brain to eclampsia by increasing cerebral edema through increased hydraulic 

conductivity. 

Key Words: autoregulation, eclampsia, L-NAME, laser Doppler flowmetry, NO 

synthase, pregnancy 

 

Introduction 

Eclampsia is a hypertensive disorder of pregnancy that occurs when 

hypertension in pregnancy presents with neurologic complications, including headache, 

nausea, vomiting, visual disturbances, and death.1, 2  This disease remains a leading 

cause of maternal and fetal mortality worldwide.3-5  In fact, it is estimated that 40% of 

eclamptic deaths are due to cerebral involvement.1 

Eclampsia is thought to be a form of hypertensive encephalopathy.6-8  This acute 

syndrome occurs from a sudden and excessive elevation of blood pressure that causes 

forced dilatation of the cerebrovasculature, autoregulatory breakthrough, and 

hyperperfusion that leads to disruption of the blood-brain barrier (BBB) and vasogenic 

edema formation.6, 9, 10  There is considerable evidence to suggest that eclampsia and 

hypertensive encephalopathy are similar, including similar symptoms (headache, 

nausea, vomiting, visual disturbances, and, in the most severe cases, convulsions)2, 6, 9 

and comparable findings on imaging that indicate white matter edema and evidence of 

localized BBB disruption.6, 11, 12  In addition, clinical reports demonstrate increased 

cerebral blood flow (CBF) both before and after the onset of eclamptic seizures,10, 13-16 

further supporting eclampsia as a hyperperfusive disorder. 
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 Our previous studies on isolated and pressurized posterior cerebral arteries 

demonstrated a significant decrease in the pressure at which force dilatation occurred in 

late-pregnant (LP) versus nonpregnant (NP) rats.17  These data suggest that CBF 

autoregulatory breakthrough may occur at lower pressures in pregnancy, perhaps 

predisposing women to the neurologic complications of eclampsia during episodes of 

hypertension.  Therefore, this study sought to understand how pregnancy alone affects 

cerebral hemodynamics, including autoregulation, which may be an important step to 

preventing and treating eclampsia. 

In addition to pregnancy, CBF autoregulation may be modulated by NO.  It has 

been shown that NO synthase (NOS) inhibition during acute hypertension extended the 

autoregulatory range,18 suggesting that NO may play an active role in mediating the 

pressure of autoregulatory breakthrough.  Because NO production is significantly 

increased during pregnancy,19-21 it is possible that this is a mechanism by which 

autoregulation is shifted during pregnancy. 

The goal of the present study was to examine CBF autoregulation during 

pregnancy and to determine the upper limit of autoregulation in LP and NP rats.  We 

also investigated the contribution of NOS to CBF autoregulation.  Autoregulatory 

curves were determined in LP and NP Sprague-Dawley rats using a model of acute 

hypertension in vivo with and without NOS inhibition using NG-nitro-L-arginine 

methyl ester (L-NAME).  In addition, because eclampsia has been shown to be 

associated with increased cerebral edema,6, 9, 11 we also determined cerebral edema 
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formation and BBB permeability after autoregulatory breakthrough, a potential 

mechanism of edema formation. 

 

Methods 

Animal Model 

 All of the experiments used a rat model of pregnancy and were conducted using 

Sprague-Dawley female rats (Charles River).  It has been shown that gravid rats 

undergo many cardiovascular changes similar to those seen in human pregnancy.22  

Animals were housed in the University of Vermont Animal Care Facility, an 

Association for Assessment and Accreditation of Laboratory Care-accredited facility.  

All of the procedures were approved by the University of Vermont Institutional Animal 

Care and Use Committee and complied with the National Institutes of Health Guide for 

the Care and Use of Laboratory Animals.  Virgin animals were used for NP 

experiments.  LP experiments were conducted on day 19 to 21 of gestation.  A total of 

54 animals were studied.  Further animal characteristics are summarized in the Table. 

NOS Inhibition and Determination of Blood Pressure 

 For experiments investigating the effect of NOS inhibition on CBF 

autoregulation, the NOS inhibitor L-NAME (Sigma) was used.  L-NAME was 

administered to animals in their drinking water for 7 days (0.5 g/L for NP animals and 

0.7 g/L for LP animals).  These doses have been shown to cause similar elevations of 

blood pressure in NP and LP animals.23  The time course of L-NAME treatment was 

chosen to mimic the last trimester of pregnancy (7 days of a 22-day gestation) when 
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eclampsia most often occurs in gestation.3  Based on earlier studies,23 this period of 

treatment was sufficient to cause mean arterial pressure elevation as determined by the 

noninvasive tail cuff technique (Coda 6 System, Kent Scientific).  Arterial blood 

pressure was monitored over the 7-day treatment period, as previously described.23  

Animals treated with L-NAME had their blood pressures monitored for 1 to 3 days 

before the initiation of L-NAME treatment and at least 6 of the 7 days of L-NAME 

treatment.  For each day, the average of 3 representative measurements was taken (data 

not shown). 

In vivo Acute Hypertension Model 

For determination of CBF autoregulatory curves, a model of acute hypertension 

was used that allowed for continuous recording of both CBF and arterial blood pressure 

in vivo.  Anesthesia was initiated with isoflurane (≤3% in O2, inhaled), which was then 

tapered off and discontinued.  Anesthesia was maintained with intravenous 

pentobarbital (≤60 mg kg-1 hr-1), which was decreased, as tolerated, during the surgical 

preparation to minimize effects on experimental parameters.  Adequate anesthesia was 

assessed by toe pinch and changes in arterial blood pressure.  Animals were 

mechanically ventilated with a mixture of compressed air and 100% O2 via 

tracheostomy.  Ventilation was adjusted to maintain arterial blood gases within 

physiologic ranges (pH 7.35 to 7.45, PCO2 35 to 45 mm Hg, and PO2 ≥100 mm Hg). 

 CBF was measured transcranially using laser Doppler flowmetry with a 1-mm 

probe (Perimed).  The right side of the skull was exposed and cleared of membranes.  

The flow probe was affixed over a thinned area of skull posterior to the coronal suture 
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and lateral to the sagittal suture over the middle cerebral artery perfusion domain, as 

described elsewhere.24 

A femoral arterial catheter was used to obtain blood samples for analysis 

(Medica), and to measure arterial blood pressures via a pressure servo transducer 

(Living Systems Instrumentation).  A filtered solution of heparin sulfate and lactated 

Ringer’s solution (1000 U in 6 mL) was used within the arterial catheter to prevent 

clotting.  Two femoral venous catheters were placed in order to deliver pentobarbital 

and phenylephrine (PE, 0.01 g /10 mL lactated Ringer’s solution, Sigma) intravenously.  

PE dosage was increased at regular intervals starting at 0.5 µL/min (0.5 µg/min) to 

ensure a consistent rise in arterial blood pressure.  After CBF autoregulatory curves 

were obtained and evidence of breakthrough occurred, elevated blood pressure and 

CBF were maintained for 10 minutes.  Animals were quickly decapitated, and the brain 

was then removed for wet and dry weight measurements. The brain was first weighed 

wet followed by drying in an oven at 100° C for 24 hours, at which point the brain was 

weighed again dry.  

Four groups of animals were studied for determination of CBF autoregulation 

curves: NP (n=7), LP (n=8), NP animals treated with L-NAME (NP + L-NAME, 0.5 

g/L for 7 days, n=8), and LP animals treated with L-NAME (LP + L-NAME, 0.7 g/L 

for 7 days, n=8).  In addition, 2 control groups were added for brain water content 

analysis to control for edema because of either pregnancy and/or the response to the 

surgical preparation of acute hypertension.  These groups are designated as NP without 

(w/o) hypertension (HTN) and LP w/o HTN. 
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Determination of CBF Autoregulatory Curves 

Autoregulatory curves were determined for each animal by analysis of CBF and 

pressure tracings.  Tracings of CBF and arterial blood pressures were collected during 

PE infusion using commercially available software (Figure 1; Perisoft, Perimed).  

During acute hypertension, the average CBF and arterial pressure were determined for 

the same time point over a range of pressures from baseline to autoregulatory 

breakthrough.  These data were used to determine pressure versus flow curves for each 

experimental group.  The point at which the curve became vertical was taken to signify 

autoregulatory breakthrough. 

Relative CBF 

Because laser Doppler units are a relative measure of changes in CBF, the laser 

Doppler signal was normalized to the flow at baseline (after anesthesia had been 

minimized and before PE administration) to determine a relative CBF (rCBF).   The 

following equation was used: rCBF = (CBFx/CBFbaseline), where CBFx is the flow in 

laser Doppler units at various pressures and doses of phenylephrine, and CBFbaseline is 

the flow in laser Doppler units at the start of the experiment.  For example, rCBF of 2 

signifies a 2-fold increase in CBF from baseline. 

Brain Water Content  

 The percent of water content of the brain is a measure of cerebral edema.25  

Brain water content (in percentage) was determined by the following formula: 

[(weightwet – weightdry) ÷ weightwet] * 100%; where weightwet was the weight of the 
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brain immediately after removal from the animal, and weightdry was the weight of the 

brain after drying. 

In vivo BBB Solute Permeability Studies 

 To investigate BBB permeability in response to acute hypertension, studies were 

conducted which combined the in vivo acute hypertension model described above with 

central infusion of a dye tracer, sodium fluorescein (NaFl, 376 Da; Sigma).  Animals 

were prepared and instrumented as described for the in vivo acute hypertension model 

with the addition of the placement of a catheter (22-gauge) in the right common carotid 

artery before the infusion of PE.  A solution of 0.1% NaFl in lactated Ringer’s solution 

filled the catheter, and 0.5 mL of this solution was infused directly into the left 

ventricle of the heart and allowed to circulate for 10 minutes before beginning the PE 

infusion (starting at 0.5 µL/min [0.5 µg/min]).  Once arterial pressures had reached 

≥180 mm Hg (sufficient to cause autoregulatory breakthrough), arterial blood pressure 

and CBF were maintained for 10 minutes, the same time course as the cerebral edema 

formation experiments.  The cerebral circulation was then flushed by perfusion with 40 

mL of lactated Ringer’s solution through the carotid catheter, and at the same time the 

chest was opened and the right atrium snipped to allow for  the removal of the dye from 

the vasculature.  Animals were quickly decapitated, and the brain removed.  Any 

animals in which appropriate flushing of the vasculature was not evident on gross 

examination were excluded from analysis.  The brain was weighed and then 

homogenized in 10 mL 50% trichloroacetic acid (Sigma) 15 times in glass Dounce 

tissue grinders.  Homogenized samples were centrifuged at 4000g at 4º C for 10 
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minutes.  The supernatant was analyzed by fluorescence spectrophotometry (460 to 515 

nm) to determine dye clearance into the brain tissue. 

Four groups were studied for in vivo BBB solute permeability: NP Sham (n=4), 

NP HTN (n=4), LP Sham (n=4), and LP HTN (n=4).  Sham controls were surgically 

prepared in an identical manner with the exception that PE was not infused; thus, no 

acute hypertension occurred.  The time course of the sham experiments was similar to 

that of an experiment with acute hypertension.  Data are expressed as average 

fluorescence counts per second (CPS) per gram brain tissue. 

Statistical Analysis 

All of the data are expressed as mean±SEM.  Differences in arterial blood 

pressures at different rCBFs between NP and LP groups and between untreated control 

and L-NAME-treated groups were determined by an ANOVA with a posthoc Student-

Newman-Keuls test for multiple comparisons.  Similarly, differences in brain water 

content between nonsurgical controls (w/o HTN) and NP and LP groups, between 

nonsurgical controls (w/o HTN) and L-NAME-treated groups, and between untreated 

control and L-NAME-treated groups were determined by an ANOVA.  Differences in 

BBB permeability between groups were determined by ANOVA and a posthoc 

Student-Newman-Keuls test for multiple comparisons.  Differences were considered 

significant if P< 0.05. 
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Results 

The Table presents data on the characteristics of each group of animals studied.  

L-NAME treatment during the last trimester of pregnancy did not affect average litter 

size, the number of animals showing fetal resorption, or the body weight of the animal.  

However, the body weight of pregnant animals was significantly greater than either NP 

group, as expected.  Arterial blood pressures, determined at the time of surgery via 

arterial catheter, were similar between groups prior to PE infusion with the exception of 

the NP + L-NAME group, which had a significantly higher baseline blood pressure 

(Table and Figure 2). 

 All of the groups of animals showed CBF autoregulation over a range of 

pressures up to the pressure of autoregulatory breakthrough (PAB), as shown in Figure 

2.  The PAB was determined for each group at a rCBF of 2 and is reported in the Table.  

There was a dramatic increase in the PAB in L-NAME-treated animals versus NP and 

LP control groups, respectively (at rCBF of 2: NP animals, 183.6±3.0 mm Hg versus 

212.0±2.8 mm Hg, P<0.05; LP animals, 180.8±3.2 mm Hg versus 209.3±4.7 mm Hg, 

P<0.05).  No differences were observed between NP and LP control groups at any point 

on the autoregulatory curve.  However, in L-NAME-treated animals, between rCBFs of 

1.0 to 1.05 and 1.30  to 1.45, there was a shift to lower pressures in LP + L-NAME 

versus NP + L-NAME animals (P<0.05). 

Brain water content was used as a measure of cerebral edema formation.25  After 

autoregulatory breakthrough had occurred because of acute hypertension, brain water 
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content was determined for each animal (Figure 3).  Brain water content was also 

determined for additional control groups that did not undergo surgery or acute 

hypertension (NP w/o HTN and LP w/o HTN) to control for any effects of pregnancy 

or the surgical preparation.  There was no difference in brain water content between 

any of the NP groups, regardless of acute hypertension or L-NAME treatments (NP w/o 

HTN 77.84±0.22%, NP acute HTN 77.70±0.11%, and NP L-NAME + acute HTN 

77.60±0.15%).  However, there was a significant increase in brain water content after 

autoregulatory breakthrough in LP animals that underwent acute hypertension versus 

NP animals.  In addition, L-NAME treatment significantly attenuated the rise in brain 

water content because of autoregulatory breakthrough in LP animals (LP w/o HTN 

77.86±0.05%, LP acute HTN 78.56±0.10%, and LP L-NAME + acute HTN 

78.28±0.08%).  Lastly, increased cerebral edema was not due to pregnancy alone, 

because only those animals that underwent autoregulatory breakthrough had increased 

edema formation. 

 To investigate the mechanism by which brain water content was increased in LP 

animals in response to acute hypertension, the permeability of the BBB to a small 

solute under the same conditions was determined.  The passage of NaFl into cerebral 

brain tissue was determined in response to acute hypertension as shown in Figure 4.  

Acute hypertension caused an increase in permeability in both NP and LP animals 

compared with sham controls, although this was not statistically significant.  However, 

there was no difference in BBB permeability between NP and LP animals under either 

sham or acute hypertensive conditions (NP Sham 9930.0±3056.7 CPS/g versus LP 
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Sham 10 568.5±2564.4 CPS/g; NP HTN 17 855.0±2151.8 CPS/g versus LP HTN 16 

245.8±5237.9 CPS/g). 

 

Discussion 

There were several major findings in this study that examined CBF 

autoregulation, cerebral edema, and BBB permeability during pregnancy.  Both NP and 

LP animals demonstrated CBF autoregulation up to ~180 mm Hg that was similar 

between gestational groups.  Likewise, the PAB was not different between untreated 

NP and LP animals.  However, treatment with the NOS inhibitor L-NAME shifted the 

autoregulatory curve to significantly higher pressures in both NP and LP animals, 

suggesting that NOS has an active role in modulating the PAB.  In addition, edema 

formation after autoregulatory breakthrough was significantly increased in LP versus 

NP animals, demonstrating that pregnancy alone promotes cerebral edema formation 

when pressure is elevated.  There was no difference in BBB permeability to NaFl 

between LP and NP groups, suggesting that the increase in cerebral edema formation 

was not primarily because of increased solute permeability.  Lastly, NOS inhibition 

attenuated edema formation after autoregulatory breakthrough in the LP + L-NAME 

group, further suggesting that increased NO production during pregnancy may 

contribute to the enhanced edema formation. 

The present study is the first to examine CBF autoregulatory breakthrough and 

edema formation during pregnancy. Establishing the autoregulatory pressure range in 

female animals and the effect of pregnancy on this cerebrovascular parameter is 
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important because of the hyperperfusive nature of eclampsia.  Clinical reports have 

demonstrated increased CBF in the maternal brain both preceding and after the onset of 

eclamptic seizures,10, 13, 14, 16 as well as in severe preeclampsia.15, 16  Clinical evidence 

also suggests that the autoregulatory curve is shifted to a lower range of pressures 

during pregnancy as evidenced by the onset of seizures at relatively low mean arterial 

pressures when compared with cases of hypertensive encephalopathy.1, 13  In addition, 

our in vitro data demonstrated that the pressure of force dilatation was lower during 

pregnancy, also suggesting that PAB would be lower.17  However, the results of the 

present study did not show a difference in CBF autoregulation or PAB between NP and 

LP animals.  This discrepancy with our in vitro studies may be because of the fact that 

CBF autoregulation is a complex interaction of endothelial, neuronal, and metabolic 

influences that cannot be mimicked in vitro.  In addition, our in vitro studies examined 

the posterior cerebral artery, whereas this in vivo study used laser Doppler to measure 

changes in flow in the middle cerebral artery perfusion domain, and it is possible that 

different regions of the brain have differing autoregulatory capabilities.  Although 

autoregulation may not differ with normal gestation, it remains possible that circulating 

factors and/or oxidative damage as part of eclampsia could cause greater endothelial 

dysfunction that affects either the PAB or edema formation.  This would agree with 

clinical reports of neurologic complications and seizures at lower pressures in settings 

of endothelial dysfunction.11, 13, 26 

An important finding of the present study was the effect of NOS inhibition on 

CBF autoregulation.  Treatment with L-NAME for 7 days shifted the autoregulatory 
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curve to higher pressures in both groups of animals, suggesting that NO has an active 

role in determining autoregulation and the PAB.  In addition, arterial forced dilatation 

before autoregulatory breakthrough seems to be an active process that involves the 

pressure-dependent production of NO rather than a mechanical dilation.  Studies by 

Talman and Dragon18 also suggest that NO has an active role in autoregulatory 

breakthrough in male rats, because NOS inhibition prevented autoregulatory 

breakthrough.  This concept is further supported by work that showed that potassium 

channel inhibition shifted autoregulatory curves to higher pressures.27  Taken together, 

these findings suggest that autoregulatory breakthrough is an active process that is 

mediated by both NO and possibly potassium channels.   

An alternative explanation for the shift in autoregulation because of NOS 

inhibition is vascular adaptation due to either hypertension-induced vascular 

remodeling or L-NAME-induced vasoconstriction.  However, studies have shown that 

while L-NAME treatment for just 7 days caused medial hypertrophy and an increased 

wall:lumen ratio in NP animals, these same vascular adaptations were not seen in LP 

animals.23  A similar lack of remodeling was seen in pregnant Dahl salt-sensitive 

hypertensive animals,28 suggesting that autoregulation is shifted to higher pressures 

after NOS inhibition for reasons other than structural vascular adaptations.  An effect of 

L-NAME on the contractile state and increased cerebrovascular resistance cannot be 

ruled out from these studies.   

 Cerebral edema is one of the hallmark pathologies of the eclamptic brain and is 

tied to the hyperperfusive nature of the disease.  It has been shown that 93% of 
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eclamptic women studied with diffusion-weighted MRI had evidence of cerebral 

vasogenic edema.11  Other classic imaging findings in eclampsia are subcortical white 

matter edema with evidence of localized BBB disruptions, particularly in parietal-

occipital locations.6, 7, 12  The results of the present study demonstrate that LP animals 

had increased cerebral edema formation after autoregulatory breakthrough that was not 

evident in NP animals.  Because enhanced BBB permeability can cause edema 

formation, we determined permeability to NaFl in response to acute hypertension in NP 

and LP animals.  Our results show that whereas there was a nonsignificant increase in 

permeability in response to acute hypertension, there was not a difference in 

permeability between NP and LP animals, suggesting that the mechanism by which 

pregnancy enhances edema is not due to enhanced solute permeability. 

 An alternative mechanism by which pregnancy may be affecting edema 

formation is through aquaporin expression in the brain.  Aquaporin 4, located in 

astrocytic end feet29, 30 and cerebral endothelium,29 has been shown to be significantly 

upregulated in the brain during pregnancy.31 This gestational effect may influence the 

formation and management of cerebral edema during acute hypertension.  Because this 

study did not find a difference in BBB permeability despite the increased cerebral 

edema formation after acute hypertension, it is possible that in the first 10 minutes after 

autoregulatory breakthrough, there is a specific movement of water across the BBB 

independent of an increase in solute permeability.  We hypothesize that pregnancy acts 

to increase water permeability (hydraulic conductivity) by increased aquaporin 

expression leading to significantly enhanced cerebral edema formation.  Interestingly, 
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L-NAME treatment decreased cerebral edema formation in response to acute 

hypertension, possibly because of increased cerebrovascular resistance and reduced 

microvascular pressure that protects the microvessels from the increased hydrostatic 

pressure associated with autoregulatory breakthrough. 

 

Perspectives 

 The pathogenesis of eclampsia seems to begin with an acute elevation in blood 

pressure leading to autoregulatory breakthrough and hyperperfusion of the brain.  

Subsequent vasogenic edema formation likely contributes to the clinical symptoms of 

eclampsia.  The results from this study suggest that changes during normal pregnancy 

may predispose women to the occurrence of eclampsia when arterial blood pressure is 

acutely elevated above the reference range.  In particular, the enhancement of cerebral 

edema formation without a change in autoregulation could potentiate the neurologic 

complications of eclampsia.  Because we found that pregnancy did not increase BBB 

permeability, it seems that increased cerebral edema is because of an increase in 

hydraulic conductivity (possibly by an increase in aquaporin expression).  In addition, it 

seems that NO contributes to the PAB and edema formation.  These data lend further 

insight into the process of autoregulatory breakthrough, which is an important 

component in the pathogenesis of eclampsia. 
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Table 1: Physiological characteristics of animals studied 

Group 
Average 

Litter 
Size 

Animals 
with Fetal 
Resorption 

Body 
Weight, g 

ABP, 
mmHg 

PAB, 
rCBF = 2.0, 

mmHg 
NP 

(n=7) 
 

  288.6±7.2 114.4±2.6 183.6±3.0 

LP 
(n=8) 

 
12.4 1 323.1±8.3* 111.1±3.3 180.8±3.2 

NP + L-NAME 
(n=8) 

 
  291.3±71 149.5±4.6* 212.0±2.8* 

LP + L-NAME 
(n=8) 

 
13.0 1 322.5±7.8‡ 120.4±7.1‡ 209.3±4.7† 

 

Abbreviations: ABP = Arterial blood pressure, L-NAME = NG-nitro-L-arginine methyl 

ester, LP = Late-pregnant, NOS = Nitric oxide synthase, NP = Nonpregnant, PAB = 

Pressure of autoregulatory breakthrough, rCBF = relative cerebral blood flow.  *p<0.05 

vs. NP control, †p<0.05 vs. LP control, ‡p< 0.05 vs. NP + L-NAME 



 
161 

 
 
 
 

  

 

Figure 1: Tracing of cerebral blood flow and arterial blood pressure during acute hypertension 

Tracing of cerebral blood flow (CBF, in laser Doppler units) and arterial blood pressure 

(ABP, in mm Hg) in response to increasing doses of phenylephrine (PE).  In this 

experiment, CBF increased 4 times greater than baseline as ABP was increased from 

140 to 210 mm Hg demonstrating autoregulatory breakthrough.
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Figure 2: Autoregulatory curves for all groups studied 

Graph showing autoregulatory curves for all groups of animals.  All of the animals 

maintained cerebral blood flow autoregulation (represented as relative cerebral blood 

flow, rCBF) up to the pressure of autoregulatory breakthrough (PAB).  There was no 

difference between nonpregnant (NP) and late-pregnant (LP) controls (closed and open 

squares, respectively).  Treatment of animals with NG-nitro-L-arginine methyl ester (L-

NAME) caused a significant shift in the PAB to higher pressures for both NP and LP 

animals (closed and open circles, respectively).  *p<0.05 vs. LP + L-NAME, †p<0.05 

vs. LP control (all points rCBF >1.15), ‡p<0.01 vs. NP control. 
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Figure 3: Brain water content for all groups studied  

Graph showing percent brain water content for all groups of animals.  Controls (gray 

bars, w/o HTN) did not undergo acute hypertension or autoregulatory breakthrough.  

There was no difference in brain water content between nonpregnant (NP) groups.  

Late-pregnant (LP) animals (white and black bars) had increased brain water content 

after autoregulatory breakthrough (acute HTN) compared to animals that did not 

undergo acute hypertension (LP w/o HTN, gray bar).  Treatment with NG-nitro-L-

arginine methyl ester (L-NAME) attenuated brain water content in LP animals.  

*p<0.01 vs. respective NP control, †p<0.01 vs. LP w/o HTN, ‡p<0.01 vs. LP acute 

HTN group. 
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Figure 4: Average fluorescence as a measure of blood-brain barrier permeability 

Graph showing average fluorescence (CPS/g) of sodium fluorescein in the brain as a 

measure of blood-brain barrier permeability in response to acute hypertension.  Sham 

controls did not undergo phenylephrine infusion to cause acute hypertension.  No 

difference in permeability was seen between nonpregnant (NP) and late-pregnant (LP) 

groups. 
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CHAPTER 4:  THE EFFECT OF MAGNESIUM SULFATE ON BLOOD-BRAIN 

BARRIER PERMEABILITY AND BRAIN AQUAPORIN-4 EXPRESSION IN 

PREGNANT RATS 
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Abstract 

Background and Purpose: Eclampsia is associated with increased blood-brain 

barrier (BBB) permeability and cerebral edema formation.  Magnesium sulfate is used 

to treat eclampsia despite an unclear mechanism of action.  This study’s goal was to 

determine the effect of magnesium sulfate on in vivo BBB permeability during acute 

hypertension and on brain aquaporin-4 (AQP4) protein expression. 

Methods: An in vivo model of hypertensive encephalopathy was used in late-

pregnant (LP) rats following magnesium treatment, 270 mg/kg intraperitoneal injection 

every 4 hours for 24 hours.  BBB permeability was determined by in situ brain 

perfusion of Evan’s blue (EB) and sodium fluorescein (NaFl), and dye clearance 

determined by fluorescence spectrophotometry.  The effect of magnesium treatment on 

AQP4 expression was determined by Western blot in additional LP rats. 

Results: Acute hypertension increased BBB permeability in all brain regions, 

however, only the increase in EB was significant (P<0.05).  Magnesium attenuated 

BBB permeability to EB during acute hypertension by 41% in the posterior cerebrum 

(P<0.05), and 30% in the anterior cerebrum (n.s.).  Permeability to NaFl was decreased 

by 31% in the posterior cerebrum and 40% in the anterior cerebrum although this was 

not significant.  AQP4 expression appeared to be increased during pregnancy in both 

brain regions; however, magnesium treatment had no effect on its expression. 

Conclusions: Acute hypertension increased BBB permeability in LP rats and this was 

partially attenuated by magnesium treatment.  The greatest effect on BBB permeability 
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to EB was in the posterior cerebrum, an area particularly susceptible to edema 

formation during eclampsia. 

 

Introduction 

Eclampsia is a serious hypertensive disorder of pregnancy associated with 

increased blood-brain barrier (BBB) permeability and subsequent vasogenic edema 

formation.1-4  This condition is thought to be a form of hypertensive encephalopathy 

(HTE),2, 3, 5 and both eclampsia and HTE are causes of reversible posterior 

leukoencephalopathy syndrome (RPLS).6, 7  Using a model of HTE, we previously 

showed that breakthrough of cerebral autoregulation caused a significant increase in 

cerebral edema formation in late-pregnant (LP)  rats which was not seen in nonpregnant 

(NP)  controls despite similar pressures of autoregulatory breakthrough.8  This suggests 

that pregnancy alone promotes edema formation under conditions of acute 

hypertension. 

Magnesium sulfate is widely used to both prevent and treat eclamptic 

convulsions.9  This treatment has been proven to be more effective than anticonvulsant 

drugs and placebo,10, 11 though the mechanism of action remains unclear.  Some studies 

suggest that magnesium may prevent eclamptic seizures through vasodilatation in the 

cerebral circulation.12-14  However, magnesium treatment has also been reported to have 

little to no effect on cerebral hemodynamics and cerebral blood flow (CBF).15-17  We 

previously showed that while magnesium sulfate has a modest vasodilatory effect on 

cerebral resistance arteries, the sensitivity of this response is decreased by pregnancy 
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and the postpartum state.18  Furthermore, a randomized controlled trial found that when 

compared to nimodipine, a calcium channel blocker with specific cerebral vasodilator 

action, magnesium sulfate was more effective in preventing eclamptic seizures.19  

Together, these results provide evidence that the primary action of magnesium sulfate 

in eclampsia is likely not the relief of cerebral vasospasm. 

Treatment with magnesium sulfate has been reported to decrease BBB 

permeability and cerebral edema formation in a variety of brain injury conditions 

including traumatic brain injury,20-23 septic encephalopathy,24 hypoglycemia,25 and 

hyperosmolar mannitol injection.26  We therefore hypothesized that the action of 

magnesium sulfate in eclampsia may be related to BBB protection during acute 

hypertension.  The goal of this study was to determine the effect of magnesium sulfate 

treatment on in vivo BBB permeability following acute hypertension in LP rats.  In 

addition, it has been proposed that magnesium sulfate may limit cerebral edema 

formation by decreasing the expression of aquaporin-4 (AQP4),22 a water channel 

protein highly expressed in the brain, although this interaction has not been directly 

shown.  Therefore, another goal of this study was to determine the effect of magnesium 

sulfate treatment on AQP4 protein expression in LP rats. 

 

Material and Methods 

Animals 

All permeability experiments used a rat model of pregnancy in which 

primiparous Sprague-Dawley rats (Charles River, St. Constant, PQ, Canada) were 
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studied on day 19 to 21 of a 22 day gestation.  One group of animals was treated by 

intraperitoneal injection of magnesium sulfate (270 mg/kg every 4 hours for 24 hours) 

prior to acute hypertension (HTN + Mg, n=4), and compared to untreated controls 

(HTN, n=4) and sham (n=4) LP animals.  This dosage of magnesium sulfate has been 

reported to produce serum magnesium levels within the range (4.2-8.4 mg/dL, 0.35-

0.70 mmol/L) recommended for eclamptic seizure prophylaxis.27-29  Sham animals did 

not undergo acute hypertension, though experimental length was comparable.  Separate 

groups of animals, LP (n=3), LP + Mg (n=3), and NP (n=3), were used for analysis of 

AQP4 protein expression and these animals did not undergo acute hypertension.  All 

animals were housed in the University of Vermont Animal Care Facility, an American 

Association for the Accrediatation of Laboratory Animal Care accredited facility.  All 

experimental procedures were approved by the University of Vermont Institutional 

Animal Care and Use Committee. 

In vivo model of HTE and BBB permeability 

An in vivo model of HTE was used to determine BBB permeability during acute 

hypertension, as previously described.8  Briefly, a lactated Ringer’s solution containing 

two different-sized dye tracers was infused into the left ventricle of the heart, 0.1% 

sodium fluorescein (NaFl, 376 Da) and 2% Evan’s blue (EB, 69 kDa; all reagents from 

Sigma, St. Louis, MO unless otherwise specified).  This solution was allowed to 

circulate for 10 minutes prior to acute hypertension, induced by intravenous infusion of 

phenylephrine (0.01g /10 mL lactated Ringer’s solution).  Following 10 minutes of 

arterial blood pressure (ABP) of 180 mmHg or greater, sufficient to cause 
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autoregulatory breakthrough,8 the animal was perfused with lactated Ringer’s solution 

through the central catheter in order to flush the dye from the cerebral circulation.  

Animals were decapitated and the brain was quickly removed, sectioned, and weighed.  

The cerebral cortices were separated from the cerebellum and brainstem, and then 

further divided into anterior and posterior cerebrum by a coronal cut at the level of the 

optic chiasm.  Any animal in which gross examination revealed inadequate flushing of 

the cerebrovasculature was excluded from analysis.  Samples were processed as 

previously described,8 and the resulting supernatant was analyzed by fluorescence 

spectrophotometry at 460 to 515 nm for NaFl and 620 to 680 nm for EB.  Data are 

expressed as average fluorescence counts per second (CPS) per gram brain tissue. 

Western blot analysis of AQP4 expression 

Following anesthesia with isoflurane (Abbott, North Chicago, IL) and 

decapitation, brains were carefully removed and divided into anterior and posterior 

cerebrum, as described above.  Brain sections were snap frozen in liquid nitrogen and 

stored at -80° C.  For protein extraction, each section was homogenized in a glass 

Dounce tissue grinder with 3 mL lysis buffer consisting of 50 mM Trizma® 

hydrochloride, 150 mM NaCl, 10 mM EDTA, 0.25% deoxycholate, 1% nonylphenyl 

polyethylene glycol detergent (Calbiochem, San Diego, CA), 10% glycerol, 1% sodium 

dodecyl sulfate, 1 mM dithiothreitol (Bio-Rad, Richmond, CA), and 1% protease 

inhibitor cocktail.  The homogenate was transferred and centrifuged at 3900 rcf for 10 

minutes at 4° C.  The supernatant was centrifuged again under the same conditions.  

The total amount of protein was measured using the Coomassie Plus-BradfordTM Assay 
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Kit (Pierce, Rockford, IL).  Protein samples were incubated in Laemmli sample buffer 

(Bio-Rad, Richmond, CA) with 2-beta-mercaptoethanol at 95oC for 10 minutes.  

Protein (10 μg) was separated by sodium dodecyl sulfate-polyacrylamide gel 

electrophoresis and transferred to a polyvinylidene difluoride membrane (Bio-Rad, 

Richmond, CA).  Membranes were blocked for 20 minutes at room temperature in 3% 

non-fat milk in phosphate buffered saline containing 0.005% Tween-20 (PBST; 

Calbiochem, San Diego, CA), cut vertically, and subsequently incubated overnight at 

4oC with two primary antibodies: an affinity purified rabbit polyclonal raised against 

residues 249 to 323 of rat aquaporin-4 1:1,000 (Chemicon, Temecula, CA) and a mouse 

monoclonal antibody to glyceraldehyde-3-phosphate dehydrogenase (GAPDH) 

1:30,000 (Biodesign, Saco, ME).  Following washing steps in PBST, membranes were 

incubated in secondary antibodies conjugated to horseradish peroxidase for one hour at 

room temperature.  A sheep anti-rabbit IgG (Abcam, Cambridge, MA) 1:2,000 was 

used for AQP4 and a goat anti-mouse IgG (Pierce, Rockford, IL) 1:3,000 was used for 

GAPDH.  Additional washings in PBST were followed by chemiluminescence using 

SuperSignal West Pico Substrate and CL-XPosure Film (Pierce, Rockford, IL).  Films 

were scanned into Adobe Photoshop CS.  All experiments were done in duplicate. 

Statistical Analysis 

All data are expressed as mean ± SEM.  Differences in animal characteristics 

and tissue fluorescence between treatment groups were determined by an analysis of 

variance with three treatment groups and a posthoc Student-Newman-Keuls test for 

multiple comparisons.  Differences in tissue fluorescence between anterior and 
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posterior cerebrum within the same treatment group were determined by t-test.  

Likewise, differences between baseline and maximum ABP within the same treatment 

group were determined by t-test.  Differences were considered significant if P< 0.05. 

 

Results 

The Table summarizes animal characteristics for in vivo BBB permeability 

experiments.  There were no significant differences between treatment groups in either 

animal weight or litter size.  Baseline ABP, measured directly by femoral arterial 

catheter, was not significantly different between groups.  Animals receiving magnesium 

tended to have lower ABP, however this difference was not significant.  In the groups 

that underwent acute hypertension, there was a significant increase in ABP 

accompanied by a significant increase in CBF (P<0.05 vs. Sham and P<0.05 vs. 

baseline ABP). 

Acute hypertension significantly increased BBB permeability to EB in both the 

anterior and posterior cerebrum, and this was attenuated by magnesium sulfate 

treatment (Figure 1).  In addition, acute hypertension caused a greater increase in BBB 

permeability to EB in the posterior cerebrum where there was a 659% increase versus 

sham, compared to a 365% increase versus sham in the anterior cerebrum (P<0.05).  

Magnesium sulfate treatment decreased permeability to EB in the anterior and posterior 

cerebrum, 31% (n.s.) and 41% (P<0.05) respectively. 

Similar to EB, acute hypertension increased NaFl permeability in the posterior 

cerebrum by 184% and in the anterior cerebrum by 134%, although these increases 
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were not statistically significant (Figure 2).  There was no difference in BBB 

permeability to NaFl between anterior and posterior cerebrum within the same 

treatment group.  Magnesium sulfate treatment partially decreased NaFl permeability in 

the anterior and posterior cerebrum by 40% and 31% respectively (n.s.).   

In both the anterior and posterior cerebrum, AQP4 expression appeared to be 

increased in LP versus NP animals, similar to previous results.30  However, magnesium 

treatment did not have any appreciable effect on AQP4 visually.  Figure 3 shows 

representative Western blots for both the anterior (Panel A) and posterior (Panel B) 

cerebrum.  In all animals studied, the posterior cerebrum showed similar or increased 

levels of AQP4 expression, suggesting a potential regional heterogeneity in expression.    

 

Discussion 

There are several major findings of this study.  First, in brains from LP animals 

BBB permeability to EB was increased during acute hypertension and this was partially 

attenuated by magnesium sulfate treatment.  Second, BBB permeability varied 

regionally, such that the posterior cerebrum showed a greater increase in permeability 

during acute hypertension than the anterior cerebrum.  Third, magnesium treatment did 

not appear to have an effect on AQP4 expression in the anterior and posterior 

cerebrum.  These results suggest that magnesium sulfate limits BBB permeability most 

effectively in an area of the brain particularly affected in eclampsia.  In addition, the 

effect of magnesium sulfate on BBB permeability does not appear to be mediated by an 

effect on AQP4 expression. 
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This study used a model of HTE during pregnancy to investigate how acute 

hypertension affects BBB permeability, similar to eclampsia.  This model of HTE has 

been extensively used to investigate the effect of cerebral hemodynamics on BBB 

permeability and vasogenic edema formation.8, 31-36  Previously, we showed that after 

ten minutes of acute hypertension, LP animals had significant cerebral edema formation 

that was not seen in NP animals.8  That study also showed that acute hypertension 

increased BBB permeability to NaFl, but not significantly.  In the present study, we 

used both NaFl and EB to investigate BBB permeability, and, similar to previous 

findings, found a non-significant increase in NaFl permeability during acute 

hypertension.  However, permeability to EB was significantly increased during acute 

hypertension.  Evan’s blue binds to albumin and is commonly used as a marker of BBB 

permeability.25  Other studies investigating the effects of magnesium sulfate on BBB 

permeability examined only permeability to EB,20, 24-26 and our results agree with these 

reports.  Importantly, magnesium sulfate treatment decreased EB permeability during 

acute hypertension, suggesting that it is protective of the BBB and may limit vasogenic 

edema under conditions that cause it. 

The increase in permeability to EB during acute hypertension was the greatest in 

the posterior cerebrum, a region of the brain that is most susceptible to edema 

formation in eclampsia and RPLS.1-4, 6, 7  A magnetic resonance imaging study showed 

that 93% of eclamptic women showed signs of vasogenic edema, predominantly in the 

posterior regions of the brain.1  Animal studies have shown greater BBB disruption in 

the cerebrum versus the brainstem,31, 34 and more specifically greater BBB permeability 
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has been reported in the parietal, temporal, and occipital regions of the cortex caused by 

acute hypertension.33, 35, 37  Importantly, in the current study magnesium sulfate 

treatment decreased BBB permeability to EB most effectively in the posterior region of 

the brain. 

The mechanism by which magnesium sulfate acts to decrease BBB permeability 

is not clear from this study, but it may be related to a direct effect on the cerebral 

endothelium.  Magnesium sulfate is a calcium antagonist,38 and may decrease 

paracellular transport through tight junctions by opposing calcium-induced contractions 

of the actin cytoskeleton in endothelial cells.  Alternatively, acute hypertension has 

been shown to increase pinocytosis that may enhance transcellular transport in the 

cerebral endothelium.37, 39, 40  Magnesium may counter this mode of transport and 

decrease BBB permeability during acute hypertension.  In support of this concept, it 

has been suggested that transport of large molecules across the BBB implicates 

transcellular versus paracellular transport.32  In this study, magnesium treatment had a 

greater effect on a large solute (EB) than on a small solute (NaFl) suggesting 

transcellular transport under these conditions.  This result may explain why we did not 

observe an increase in BBB permeability to NaFl during acute hypertension in the 

current or previous studies.8 

While the results of the current study support our earlier findings of increased 

AQP4 expression in the brain during pregnancy,30 magnesium sulfate treatment had no 

effect on AQP4 expression.  Magnesium treatment has been reported to cause a 

qualitative change in AQP4 immunoreactivity such that AQP4 distribution in 
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magnesium-treated animals was more similar to uninjured animals following traumatic 

brain injury than injured.22  In the present study, we did not evaluate AQP4 expression 

after injury, but investigated the effect of pregnancy and magnesium treatment on naïve 

brains.  The role of AQP4 in mediating cerebral edema is still not clear, however it has 

been demonstrated that AQP4 promotes resolution of vasogenic edema,41 the type of 

edema formed following disruption of the BBB in eclampsia.  From the results of this 

study it does not appear that magnesium sulfate has an effect on total AQP4 expression 

levels, and the effects of magnesium sulfate on BBB permeability do not seem to be 

related to AQP4 expression. 

There are several limitations of the current study that are worth noting.  First, the 

relatively small n-value in each group may have produced a type-II error in some of our 

analyses, such as the NaFl.  This was because several animals were excluded from 

analysis due to technical problems, including insufficient clearance of dye during 

flushing.  In addition, BBB permeability to NaFl was highly variable with high 

background fluorescence, as seen in the sham animals, which likely precluded 

statistically significant differences.  Second, the effect of magnesium treatment on BBB 

permeability during acute hypertension was studied during normal pregnancy, not 

under conditions of oxidative stress or endothelial cell damage which may play a role in 

eclampsia.  However, this model of HTE in normal pregnancy is valuable for 

evaluating regional differences in BBB permeability and the effect of magnesium 

treatment on these parameters.  Despite these limitations, the fact that magnesium 
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treatment decreased BBB permeability during acute hypertension may provide insight 

into the beneficial effect of magnesium sulfate treatment in eclampsia. 

 

Summary 

To our knowledge, this is the first study to investigate magnesium sulfate 

treatment on BBB permeability during acute hypertension in pregnancy.  The results 

demonstrate that treatment with magnesium sulfate decreased BBB permeability 

following acute hypertension, particularly in the posterior region of the cerebrum.  

Magnesium treatment may limit edema formation in eclampsia by attenuating BBB 

permeability in response to acute hypertension. A more complete understanding of the 

effect of magnesium sulfate on the BBB may provide information regarding the 

beneficial effect of magnesium in eclampsia treatment and prophylaxis. 
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Table 1. Characteristics of late-pregnant animals studied for permeability experiments 

Group Weight 
(g) 

Litter 
Size 

Baseline ABP 
(mmHg) 

Maximum 
ABP (mmHg) 

Maximum 
rCBF 

Sham  
(n=4) 336±4 12±1 118±5 126±5 1.1±0.0 

HTN 
(n=4) 343±16 12±1 112±7 185±8*† 2.2±0.5* 

HTN + Mg 
(n=4) 354±11 12±1 103±4 184±6*† 2.4±0.2* 

 
Abbreviations:  ABP = Arterial Blood Pressure, rCBF = relative cerebral blood flow, 

*P<0.05 vs. sham, †P<0.05 vs. respective baseline ABP 
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Figure 1: Graph of blood-brain barrier permeability to Evan’s blue 

Graph showing average fluorescence (CPS/g) of Evan’s blue in the anterior and 

posterior cerebrum of late-pregnant animals as a measure of blood-brain barrier (BBB) 

permeability during acute hypertension.  BBB permeability was significantly increased 

with acute hypertension (HTN, *P<0.05 versus Sham), which was greater in the 

posterior versus anterior cerebrum (‡ P<0.05 versus anterior cerebrum).  Magnesium 

treatment significantly decreased BBB permeability in the posterior cerebrum (HTN + 

Mg, †P<0.05 versus HTN). 
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Figure 2: Graph of blood-brain barrier permeability to sodium fluorescein 

Graph showing average fluorescence (CPS/g) of sodium fluorescein in the anterior and 

posterior cerebrum of late-pregnant rats as a measure of blood-brain barrier (BBB) 

permeability during acute hypertension.  Acute hypertension (HTN) increased BBB 

permeability in both brain regions, though not significantly.  Magnesium treatment 

(HTN + Mg) decreased BBB permeability, however, this also was not statistically 

significant. 
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Figure 3: Aquaporin-4 expression in rat brain with magnesium treatment 

Representative Western blots of aquaporin-4 (AQP4) expression in the rat brain with 

and without magnesium treatment.  AQP4 expression was up during late-pregnancy 

(LP) compared to nonpregnant (NP) animals, and treatment with magnesium (LP + 

Mg) did not have an observable effect.  Similar results were obtained in all animals 

studied (n=3 in each group).  Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) 

blots from the same gel are included for comparison of expression levels. 

  A) Anterior cerebrum 

  B) Posterior cerebrum 
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CHAPTER 5: SUMMARY AND CONCLUSIONS 

Eclampsia, a hypertensive disorder of pregnancy, is thought to be a form of HTE 

in which an acute elevation of ABP exceeds the autoregulatory range and causes forced 

dilatation of cerebral vessels, decreased CVR, hyperperfusion, BBB disruption, and 

vasogenic cerebral edema formation.  During pregnancy, there are many adaptations in 

the maternal cardiovascular system, however relatively little is known about changes in 

the cerebrovasculature and CBF during pregnancy.  The overall goal of this dissertation 

project was to understand how pregnancy affects CBF autoregulation and BBB 

permeability, a principle mechanism of vasogenic edema formation, during acute 

hypertension. 

Using an in vivo model of HTE, we found that the upper limit of CBF 

autoregulation was not different between NP and LP rats.  In addition, although BBB 

solute permeability was not different between NP and LP animals during acute 

hypertension, cerebral edema formation, indicated by brain water content, was 

significantly increased only in LP rats.  These results suggest that changes during 

normal pregnancy may predispose women to eclampsia when ABP is acutely elevated 

above normal levels by potentiating cerebral edema formation.  The role of NO in 

mediating CBF autoregulation and edema formation was also determined.  It was found 

that NOS inhibition dramatically increased the pressure of autoregulatory breakthrough 

in both NP and LP animals, suggesting that autoregulatory breakthrough is an active 

process requiring NO.  Interestingly, NOS inhibition attenuated cerebral edema 

formation in LP animals following acute hypertension. 
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Despite an unclear mechanism of action, MgSO4 is widely used to treat 

eclampsia.  An additional goal of this project was to investigate the effects of MgSO4 

on the cerebrovasculature during pregnancy; specifically, the effect of MgSO4 on in 

vitro resistance artery vasodilation and in vivo BBB permeability during acute 

hypertension were studied.  It was found that while both cerebral and mesenteric 

resistance arteries vasodilated to MgSO4, mesenteric arteries were more sensitive than 

cerebral arteries.  Pregnancy further decreased MgSO4 sensitivity in cerebral arteries, 

but had no effect on mesenteric artery vasodilation, suggesting that changes in 

cerebrovascular vasodilatory mechanisms occur with pregnancy. 

The results from in vitro studies demonstrated a limited effect of MgSO4 on 

cerebral arterial diameter.  Therefore, we subsequently hypothesized that in eclampsia 

MgSO4 may protect the brain by decreasing BBB disruption during acute hypertension.  

Magnesium treatment has been shown to protect the BBB in other conditions that may 

cause cerebral edema.  Using an in vivo model of HTE and in situ brain perfusion in LP 

rats, it was demonstrated that MgSO4 treatment decreased BBB permeability during 

acute hypertension.  Interestingly, the greatest effect was seen in the posterior 

cerebrum, a region of the brain that is particularly affected in eclampsia and HTE.  

Magnesium treatment may limit edema formation in eclampsia by attenuating BBB 

permeability during acute hypertension.  A more complete understanding of the effect 

of magnesium sulfate on the BBB may provide further information regarding the 

beneficial effect of magnesium in eclampsia treatment and prophylaxis. 



 

 
190 

 
 
 
 

Future Directions - The results of these studies lead to further intriguing 

experimental questions.  This dissertation determined the effects of ~10 minutes of 

acutely elevated ABP.  It would be interesting to investigate the effect of a longer 

period of severe hypertension, on the scale of hours to days, and determine subsequent 

BBB permeability and cerebral edema formation, perhaps using a continuous infusion 

of a pressor agent.  This may more closely represent the clinical situation in eclamptic 

women where pressure is likely elevated for some time before neurological symptoms 

become evident.  Because it is thought that MgSO4 may aid the resolution of vasogenic 

edema formation, it would be of interest to determine the effects of MgSO4 treatment 

during extended hypertension.  It would also be interesting to combine the in vivo 

model of HTE with a rat model of preeclampsia that incorporates systemic endothelial 

dysfunction, such as the reduced uterine perfusion pressure model.  This could possibly 

represent a more complete spectrum of systemic and cerebral changes in preeclampsia 

and eclampsia, and may determine if endothelial dysfunction in eclampsia contributes 

to the onset of seizures at lower blood pressures in eclamptic patients versus HTE 

patients. 
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APPENDIX A:  STRUCTURAL AND FUNCTIONAL CHANGES IN 

CEREBRAL VS. MESENTERIC RESISTANCE ARTERIES DURING 

GESTATION 

 

Anna G. Euser and Marilyn J. Cipolla 

FASEB J. 19(5):A1598 

(Presented as a poster at Experimental Biology/XXXV International Congress of 

Physiological Sciences, San Diego, CA, April 2005) 

 

Abstract: It is known that pregnancy induces systemic vascular remodeling; 

however, how pregnancy affects the cerebral circulation that may predispose to 

eclampsia is not clear.  Third-order branches of the posterior cerebral (PCA) and 

mesenteric artery (MA) were isolated from non-pregnant (NP, n=6), late pregnant (LP, 

d19, n=6), and postpartum (PP, d3, n=6) SD rats and studied under pressurized 

conditions to determine both active (tone) and passive (distensibility) responses to 

pressure (10-150 mmHg).  In all gestational groups, PCAs had greater tone than MAs 

(21-30% vs. 9-11% at 100 mmHg, p<0.05)).  In addition, pregnancy influenced how 

PCAs responded to pressure: LP had greater tone vs. NP and PP at lower pressures (50 

mmHg) whereas PP did not develop tone until ≥100 mmHg.  MAs were 30-211% more 

distensible than PCAs, and responded to pregnancy by increasing distensibility in LP 

and PP animals by 97% and 211% (p<0.05).  These results demonstrate that gestation 

caused structural remodeling of the MA that was not present in the PCA.  However, 
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pregnancy-induced changes in myogenic reactivity of the PCA may be an important 

consideration when blood pressure is elevated as during eclampsia.  

 

Introduction: It is well-known that systemic vascular remodeling occurs during 

pregnancy to accommodate increases in cardiac output and blood volume, and a 

decrease in peripheral vascular resistance.1  However, how this remodeling affects the 

cerebral circulation vs. the systemic circulation is not clear.  Changes in the cerebral 

circulation during pregnancy may predispose the brain to damage from acute increases 

in pressure during eclampsia.2 

Structural and functional changes in the vasculature can be inferred from the 

characteristic properties of passive distensibility and active tone respectively.  Passive 

distensibility provides an indication of extracellular matrix remodeling, or structural 

changes in the vessel.  Myogenic reactivity is the ability of the vessel, particularly 

cerebral vessels, to react to changes in intraluminal pressure with changes in diameter.  

In the present study, we compared gestation-induced changes in structural and 

functional properties of cerebral and mesenteric arteries. 

 

Methods: Third-order branches (<200 μm) of the posterior cerebral and 

mesenteric arteries were isolated, both from the same NP (n=6), LP (d19, n=6), or PP 

(d3, n=6) Sprague Dawley rats. Arteries were mounted on glass cannulas in a dual 

chamber arteriograph bath, one in each chamber. This system allowed control over 

intravascular pressure and measurement of lumen diameter. After an equilibration 
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period at 50mmHg, pressure was increased to 75mmHg, lumen diameter was measured 

and the amount of spontaneous tone calculated.  Passive responses to pressure and 

distensibility were determined after treatment with papaverine, a smooth muscle 

contractile inhibitor. 

 

Results: MAs were more distensible than PCAs at each gestational age, and 

responded to pregnancy by increasing distensibility in LP and PP animals by 97% and 

211% respectively (p<0.05).  There was no difference in distensibility in PCAs 

between gestational groups. 

In all gestational groups, PCAs had greater tone than MAs (21-30% vs. 9-11% 

at 100 mmHg, p<0.05).  Additionally, pregnancy influenced how PCAs responded to 

pressure. PCAs from LP animals had greater tone vs. NP and PP at lower pressures (50 

mmHg). PCAs from PP animals did not develop similar levels of tone until ≥100 

mmHg. 

 

Discussion: These results demonstrate that gestation caused structural remodeling 

of the MA that was not present in the PCA. The increase in distensibility in MAs from 

LP and PP animals found in this study is similar to previously published data on the 

mesenteric resistance arteries in pregnancy.3  Our study found no evidence of changes 

in passive distensibility of the cerebral vessels with pregnancy, a vascular bed of which 

little is known during pregnancy. 
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Despite the absence of structural changes observed in cerebral resistance 

arteries, functional changes with gestation were observed.  PCAs from LP animals 

developed tone at lower pressures, but had less tone than PCAs from NP animals at 

higher pressures.  Pregnancy-induced changes in myogenic reactivity of the PCA may 

be an important consideration when blood pressure is elevated as during eclampsia. 
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Figure 1: Posterior cerebral artery distensibility over gestation 
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Figure 2: Mesenteric artery distensibility over gestation 
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Figure 3: Posterior cerebral artery, percent tone over gestation 
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Figure 4: Mesenteric artery, percent tone over gestation 
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