
University of Vermont University of Vermont 

UVM ScholarWorks UVM ScholarWorks 

College of Arts and Sciences Faculty 
Publications College of Arts and Sciences 

5-15-2013 

MaxEnt versus MaxLike: Empirical comparisons with ant species MaxEnt versus MaxLike: Empirical comparisons with ant species 

distributions distributions 

Matthew C. Fitzpatrick 
University of Maryland Center for Environmental Science 

Nicholas J. Gotelli 
University of Vermont 

Aaron M. Ellison 
Harvard Forest 

Follow this and additional works at: https://scholarworks.uvm.edu/casfac 

 Part of the Climate Commons 

Recommended Citation Recommended Citation 
Fitzpatrick MC, Gotelli NJ, Ellison AM. MaxEnt versus MaxLike: empirical comparisons with ant species 
distributions. Ecosphere. 2013 May;4(5):1-5. 

This Article is brought to you for free and open access by the College of Arts and Sciences at UVM ScholarWorks. It 
has been accepted for inclusion in College of Arts and Sciences Faculty Publications by an authorized 
administrator of UVM ScholarWorks. For more information, please contact scholarworks@uvm.edu. 

https://scholarworks.uvm.edu/
https://scholarworks.uvm.edu/casfac
https://scholarworks.uvm.edu/casfac
https://scholarworks.uvm.edu/cas
https://scholarworks.uvm.edu/casfac?utm_source=scholarworks.uvm.edu%2Fcasfac%2F82&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/188?utm_source=scholarworks.uvm.edu%2Fcasfac%2F82&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@uvm.edu


MaxEnt versus MaxLike:
empirical comparisons with ant species distributions

MATTHEW C. FITZPATRICK,1,� NICHOLAS J. GOTELLI,2 AND AARON M. ELLISON
3

1University of Maryland Center for Environmental Science, Appalachian Lab, Frostburg, Maryland 21502 USA
2Department of Biology, University of Vermont, Burlington, Vermont 05405 USA

3Harvard Forest, Harvard University, Petersham, Massachusetts 01366 USA

Citation: Fitzpatrick, M. C., N. J. Gotelli, and A. M. Ellison. 2013. MaxEnt versus MaxLike: empirical comparisons with

ant species distributions. Ecosphere 4(5):55. http://dx.doi.org/10.1890/ES13-00066.1

Abstract. MaxEnt is one of the most widely used tools in ecology, biogeography, and evolution for

modeling and mapping species distributions using presence-only occurrence records and associated

environmental covariates. Despite its popularity, the exponential model implemented by MaxEnt does not

directly estimate occurrence probability, the natural quantity of interest when modeling species

distributions. Instead, MaxEnt generates an index of relative habitat suitability. MaxLike, a newly

introduced maximum-likelihood technique, has been shown to overcome the problem of directly

estimating the probability of occurrence using presence-only data. However, the performance and relative

merits of MaxEnt and MaxLike remain largely untested, especially when modeling species with relatively

few occurrence data that encompass only a portion of the geographic range of the species. Using geo-

referenced occurrence records for six species of ants in New England, we provide comparisons of MaxEnt

and MaxLike. We show that by most quantitative metrics, the performance of MaxLike exceeds that of

MaxEnt, regardless of whether MaxEnt models account for sampling bias and include greater model

complexity than implemented in MaxLike. More importantly, for most species, the relative suitability index

estimated by MaxEnt often was poorly correlated with the probability of occurrence estimated by MaxLike,

suggesting that the two methods are estimating different quantities. For species distribution modeling,

MaxLike, and similar models that are based on an explicit sampling process and that directly estimate

probability of occurrence, should be considered as important alternatives to the widely-used MaxEnt

framework.

Key words: ecological niche modeling; myrmecology; New England; occurrence probability; presence-only data;

species distribution modeling.
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INTRODUCTION

The fitting of species distribution models

(SDMs) to geo-referenced species occurrence

records and environmental variables is a major

research activity in biogeography and ecology

(Elith and Leathwick 2009, Franklin 2009). When

fit with presence-only data (i.e., using only

species occurrence records, not species absence

records), these models generate indices propor-

tional to habitat suitability (Phillips et al. 2006) or

probability of habitat use (Boyce et al. 2002) that

can be mapped in geographic space. These

distribution maps have figured prominently in

modeling the distributions of invasive species

(Ficetola et al. 2007, Fitzpatrick et al. 2007, Ward

v www.esajournals.org 1 May 2013 v Volume 4(5) v Article 55



2007), forecasting geographic range shifts caused
by climatic change (Thuiller et al. 2005, Fitzpa-
trick et al. 2008, Lawler et al. 2009), and in
describing or estimating macroecological pat-
terns such as species richness (Svenning et al.
2010, Mateo et al. 2012, Pottier et al. 2012). The
indices of habitat suitability or habitat use
predicted from presence-only SDMs are widely,
but incorrectly, interpreted as estimators of the
probability of species occurrence (Yackulic et al.
2013). For consistency with current literature and
for the purposes of comparison with actual
probabilities of species occurrence, we refer here
to these indices as ‘‘probability of species
occurrence’’ or ‘‘species occurrence probabilities’’.
However, we agree with Royle et al. (2012) that
such indices are not necessarily valid estimators
of the probability of species occurrence.

A variety of statistical methods are available
for estimating occurrence probabilities from
presence-only data (Elith et al. 2006, Franklin
2009), but by far the most widely-used has been
Phillips et al.’s (2006) software implementation of
MaxEnt, a machine-learning algorithm based on
principles of maximum entropy (Jaynes 1957).
The original paper describing MaxEnt (Phillips et
al. 2006) has been cited over 1200 times, with
over 300 citations in 2012 alone; Elith et al. (2011)
discuss the assumption underlying MaxEnt, and
provide a series of recipes for using the algo-
rithm.

Royle et al. (2012) reminded ecologists that the
habitat suitability indices generated by MaxEnt
are not direct estimators of the probability of
species occurrence, which is typically the key
parameter of interest when modeling species
distributions. As an alternative, Royle et al.
(2012) introduced MaxLike, a formal likelihood
model that explicitly estimates the probability of
species occurrence and the species’ prevalence,
given presence-only data and a set of environ-
mental covariates measured at each sample
location. Royle et al. (2012) also provided an R
package (R Core Team 2012) to implement
MaxLike (Chandler and Royle 2012).

To compare the output of MaxLike and
MaxEnt, Royle et al. (2012) used a presence-
absence data set based on the occurrence of the
Carolina wren (Thryothorus ludovicianus (Lath-
am)) in 2222 North American Breeding Bird
survey routes censused in 2006. To represent the

expected distribution of species occurrence prob-
abilities, they initially fit a logistic regression
model to these presence-absence data. They next
discarded the absence data, and fit the presence-
only records using both MaxLike and MaxEnt.
The continental map of occurrence probabilities
generated by MaxLike closely resembled the map
generated by the logistic regression model. In
contrast, the map generated by MaxEnt under-
estimated the ‘‘probability of occurrence’’ within
the geographic range of the Carolina wren, but
over-estimated it in areas beyond the geographic
range. Royle et al. (2012) did not report a
quantitative evaluation of the predictive perfor-
mance of the models however.

Royle et al.’s (2012) results suggested that the
logistic output of MaxEnt may differ substantial-
ly from underlying occurrence probabilities, but
it is unclear for several reasons whether their
results can be generalized to the much larger
body of empirical studies that have used MaxEnt.
First, the sample size in Royle et al.’s (2012)
artificial data set was much larger than the
sample sizes commonly used by MaxEnt practi-
tioners and seen in published studies (e.g.,
Pearson et al. 2006, Papesx and Gaubert 2007,
Wisz et al. 2008). Second, Royle et al. (2012)’s data
set encompassed most of the geographic range of
the Carolina wren. In contrast, many empirical
analyses using MaxEnt are based on incomplete
censuses that encompass only a portion of the
geographic range of the species (e.g., DeMatteo
and Loiselle 2008, Trisurat et al. 2011). Finally, to
fit structurally-equivalent MaxEnt and MaxLike
models to their data set, Royle et al. (2012) were
forced to modify MaxEnt’s default settings and
disable all feature classes except for ‘‘linear’’ and
‘‘quadratic’’ (see Elith et al. 2011 for details
regarding feature classes). Most published anal-
yses use the default settings, which implement
multiple feature classes determined by the
number of occurrence records. Phillips and
Dudı́k (2008) found that, when analyzing
‘‘high-quality’’ empirical data sets, use of Max-
Ent’s default settings substantially improved
model performance.

Other than the Carolina wren data set assem-
bled by Royle et al. (2012), we are not aware of
other published comparisons of the performance
of MaxEnt and MaxLike with empirical data.
Such comparisons are important because empir-
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ical data sets are often characterized by modest
sample sizes, limited geographic coverage, and
non-random locations of sampling points. With
these kinds of limitations, it is unknown whether
MaxEnt and MaxLike predictions will differ
substantially and exhibit the same kinds of
differences that emerged in the analyses present-
ed by Royle et al. (2012).

In this study, we compared MaxEnt and
MaxLike species distribution models for six
species of ants in New England, with occurrence
records derived from a recent comprehensive
compilation (Ellison et al. 2012). For each of six
species, we asked: (1) How do MaxEnt and
MaxLike distribution maps compare for both the
mean and the variance of the probability of
occurrence? (2) For both sampled and unsampled
locations, what is the relationship between the
probabilities of occurrence estimated by MaxEnt
and those predicted by MaxLike? (3) How do the
mapped predictions of MaxEnt and MaxLike
differ in several goodness-of-fit statistics that are
used to quantify model performance? (4) How
do the mapped predictions of MaxEnt and
MaxLike compare to expectations based on
expert knowledge about the distribution of these
species in unsampled areas of New England?

METHODS

Ant occurrence data
Ant locality records were derived from field

collections (Ellison et al. 2002, 2012, Gotelli and
Ellison 2002) and museum records with accurate,
georeferenced, collection data (Ellison et al. 2012).
Each record of a presence (Table 1) represents a
collection from a single nest, an individual pitfall
trap, or a collection at a single bait. These records
encompass collections from a variety of sources
and time periods, including museum records and
standardized ecological sample surveys and are
part of a larger dataset on the distribution of 132
species of ants in New England.

Test species
Of the 132 species in the ants of New England

dataset, we considered as case studies six species
of ants common in the six New England
(northeastern U.S.) states (Maine, New Hamp-
shire, Vermont, Massachusetts, Connecticut,
Rhode Island), but which differ in their geo-

graphic distribution, range size, and number of
occurrence records (Table 1). These case studies
included a circumboreal species for which New
England is in the southern part of its range
(Camponotus herculeanus (L.)), a southern North
American species for which New England is in
the northern part of its range (Prenolepis imparis
(Say)), three widespread, commonly collected
North American species for which New England
is in the center of its range (Camponotus novaebor-
acensis (Fitch), Formica integra (Nylander), Mono-
morium emarginatum (DuBois)), and a North
American habitat specialist, the sandplain-inhab-
iting Pheidole pilifera (Roger). See Ellison et al.
(2012) for additional details on the natural
history of these six ant species and the broader
dataset.

Environmental data
To avoid over-fitting models with the small

number of occurrence records available for some
of the study species (Table 1), we used only a
small set of 20 potential environmental covari-
ates: elevation (meters above sea level) and 19
bioclimatic variables from the WorldClim data-
base (http://www.worldclim.org; Hijmans et al.
2005) that measure minima, maxima, and sea-
sonality in temperature (8C) and precipitation
(mm) at a spatial resolution of 30 arc-seconds (’1
3 1 km). We reduced this full set of covariates by
removing those covariates that exhibited little
spatial variability across the study region (BIO3,
BIO8, BIO9, BIO13). We then selected covariates
to minimize multicollinearity (r , 0.7), but
retained uncorrelated pairs of variables that
were, in our opinion, biologically informative.
This selection process reduced the 20 covariates
to three—mean annual temperature (BIO1),
mean annual precipitation (BIO12), and eleva-
tion—that were used in model fitting and
prediction. Temperature is broadly correlated
with patterns of ant diversity and abundance
(Sanders et al. 2007), elevation is a strong
predictor of ant species distribution in the New
England region (Gotelli and Ellison 2002), and
ant foraging activity in some New England
species is associated with precipitation (Nuss et
al. 2005). Five of the six ant species we used in
our analyses are habitat generalists whose
distributions are constrained primarily by these
habitat variables; the sixth, Pheidole pilifera, is a
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warm-climate species restricted to sandy soils
(Ellison et al. 2012). Prior to analysis, all
environmental covariates were standardized to
have a mean of zero and unit variance following
the recommendations of Royle et al. (2012). Our
emphasis in these analyses was not to select the
optimal set of variables for modeling ant distri-
butions, but to compare the performance of
MaxEnt and MaxLike with an identical set of
predictor variables.

Comparison between MaxEnt and MaxLike
We modeled distributions of each of the six ant

species using MaxEnt and MaxLike and com-
pared the resulting habitat suitability index
(MaxEnt; logistic output) with estimates of prob-
ability of species occurrence (MaxLike; W(x)).
Occurrence data for each species were partitioned
randomly 50 times into calibration (75%) and
evaluation (25%) datasets and 50 MaxEnt and
MaxLike models for each species were fit and
evaluated using the same random training and
testing datasets. Our primary comparisons in-
volved MaxEnt and MaxLike models that consid-
ered linear effects only and which did not account
for sampling bias. However, we also assessed the
influences of model complexity and sampling bias
on MaxEnt performance relative to MaxLike. To
assess model complexity, we additionally fit
MaxEnt models using the default settings, which
automate the implementation of more complex
model feature classes (quadratic, product, hinge,
and threshold) depending on the number of
occurrence records.

For each type of feature implementation
(linear-only and default), we also fit MaxEnt
models that accounted for sampling bias by

selecting background data with the same under-
lying bias as the ant occurrence data (target
group background; Phillips et al. 2009). To
generate the sampling bias surface, we totaled
the number of ant occurrence records (using the
full dataset of 132 species) found within each grid
cell and then extrapolated these data across the
study region using kernel density estimation as
implemented in the sm package (Bowman and
Azzalini 2010) of the R statistical language
(http://r-project.org/). Lastly, we generated
10,000 background points comprised of random
locations weighted by the sampling bias surface
(Elith et al. 2010). Otherwise, we fit MaxEnt
models using the default values as implemented
in the dismo package (Hijmans et al. 2012) and
MaxEnt 3.3.3E. MaxLike models were fit using
the maxlike package (Chandler and Royle 2012)
using the ‘‘SANN’’ method and a maximum of
10,000 iterations to maximize the log-likelihood
function. The resulting species distribution maps
illustrate the average predicted probability from
the 50 models for each species; uncertainty is
illustrated with maps for each species of the
standard deviation of the predicted probability
from the 50 fitted models. All analyses were
performed in R 2.15.1 (R Development Core
Team 2012). To provide an independent check of
our R-scripts, we also ran analyses using the
MaxEnt GUI and obtained identical results. All
data and code are available through the Harvard
Forest Data Archive (http://harvardforest.fas.
harvard.edu/data-archive), dataset HF-147.

Model evaluation
We evaluated model outputs in terms of their

statistical fit to the training data, their spatial

Table 1. Modeled ant species, the number of occurrence records that were randomly partitioned into training

(75%) and testing (25%) data sets, and comparison of MaxLike and MaxEnt models implementing linear

features without (LF) and with (LF-BC) bias correction using the small sample size correction of Akaike’s

information criterion (DAICc, MaxEnt�MaxLike) and normalized model selection weights for MaxLike versus

MaxEnt (w).

Species Train/Test

DAICc

MaxLike wMaxEnt-LF MaxEnt-LF-BC

Camponotus herculeanus 82/27 731.2 868.1 1.0
Camponotus novaeboracensis 201/68 1771.7 2064.3 1.0
Formica integra 32/11 252.0 278.1 1.0
Monomorium emarginatum 21/7 176.0 194.6 1.0
Pheidole pilifera 5/2 32.6 32.8 1.0
Prenolepis imparis 55/26 1610.0 1645.3 1.0
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predictions of occurrence relative to testing data,
and our professional judgment. To assess the
relative goodness of fit of the MaxEnt and
MaxLike models, we used the sample-size
corrected Akaike information criteria (AICc).
For MaxLike, AICc was calculated directly from
the maximized log-likelihood term, whereas for
MaxEnt we calculated AICc using the ap-
proached described by Warren and Seifert
(2011). Thus, each of the 50 MaxLike and MaxEnt
models implementing linear features and fit
using the 50 training datasets for each species
had an associated AICc, from which we deter-
mined the normalized Akaike model selection
weight.

The evaluation of the predictive accuracy of
presence-only species distribution models is an
ongoing challenge; we focused primarily on
evaluation criteria that require only information
on presence (Franklin 2009). First, we identified
the minimum predicted area (MPA; Engler et al.
2004), which is the proportion of the study area
predicted as present using the probability thresh-
old required to correctly predict as present a user-
defined proportion of the test data. Here, we set
this proportion to 95%. Models that yield a lower
MPA are considered superior (Engler et al. 2004,
Franklin 2009). In essence, MPA assumes that a
good presence-only SDM should predict a spatial
distribution that is as small as possible, while
correctly predicting a maximum number of
observed occurrences as present. In addition to
MPA, we compared the mean predicted proba-
bility of occurrence from MaxEnt and MaxLike at
known presences and at locations selected at
random across New England. We also report
AUC (area under the receiver-operator curve
(ROC); Fielding and Bell (1997)), which is widely
used to evaluate the predictive performance of
presence-only SDMs in combination with ‘‘back-
ground’’ or pseudo-absence data. However, when
used in such contexts, AUC must be interpreted
cautiously because it assumes that the costs of
over-prediction and under-prediction are equiv-
alent. Because pseudo-absences represent loca-
tions where no data are available, not necessarily
locations where the species has not been detected,
there is little justification for penalizing over- and
under-prediction equivalently. In practice, how-
ever, presence-only data can inform only under-
prediction. Lobo et al. (2008), Peterson et al.

(2008), and Jiménez-Valverde (2012) discuss these
and other issues arising with the application of
AUC to SDMs. Differences in model outputs and
evaluation metrics produced by MaxEnt and
MaxLike were tested using Wilcoxon signed-rank
tests for related samples.

RESULTS

The number of training records ranged from a
maximum of 201 for Camponotus novaeboracensis
to a minimum of five for Pheidole pilifera (mean¼
66; Table 1). Model comparison by AICc and
normalized Akaike model selection weights
revealed that for all six ant species, MaxLike
models were better supported by the data than
MaxEnt models implementing linear features
with or without sampling bias correction (Table
1). However, model evaluation by AUC was
inconsistent, with MaxLike scoring lower, equal,
or greater AUC values than MaxEnt, depending
on the ant species considered and whether
MaxEnt models were fit using default settings
or restricted to linear features, and whether
sampling bias was accounted for or not (Fig. 1).
In general, MaxEnt models that accounted for
sampling bias scored lower or equal AUC values
than MaxEnt models without bias correction.

By default, the MaxEnt algorithm assumes a
baseline species prevalence of 0.5 (Phillips and
Dudı́k 2008), and therefore assigned a probability
of occurrence close to 0.5 to most occurrence
locations. In contrast, MaxLike assigned substan-
tially higher probabilities to locations with
recorded presences for five of six species than
did any of the implementations of MaxEnt (Fig.
2A). For randomly chosen background locations
(Fig. 2B), MaxLike also tended to generate higher
average probabilities of occurrence than MaxEnt,
although accounting for sampling bias increased
average probabilities at random background
locations. Randomly-chosen background points
also had nearly constant probabilities of occur-
rence with MaxEnt, although the value of the
mean probability differed among species; Max-
Ent models implementing default features tend-
ed to generate lower probabilities than MaxEnt
models implementing only linear features. In
contrast, MaxLike usually generated a larger
range of different probabilities for both occur-
rence and background locations.
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For all species except Prenolepis imparis and
Monomorium emarginatum, there were weak cor-
relations between the predictions of species
occurrence probabilities from MaxLike and Max-
Ent for either occurrence or background locations
(Fig. 3). Accounting for sampling bias weakened
correlations for all species. Consistent with these
findings, mapped predictions from MaxLike (Fig.
4A–F) usually predicted larger areas of higher
probability of occurrence than did MaxEnt (Fig.
4G–R). MaxEnt models that accounted for
sampling bias tended to increase the area of
higher predicted probability of occurrence to
some extent (Fig. 4M–R), and, for the two species
of Camponotus (Fig. 4M, N), largely reversed the
south-north trend of increasing occurrence prob-
ability predicted by MaxEnt without bias correc-
tion (Fig. 4G, H). However, the MaxLike
distribution maps also exhibited larger standard
deviations in the probability of occurrence and
greater uncertainty in predictions across large
areas of the study region (Fig. 5A–F). In contrast,
MaxEnt had lower standard deviations and
uncertainty (Fig. 5G–R).

For all species of ants except Camponotus
herculeanus, MaxLike models had either a smaller
or equivalent mean MPA than MaxEnt, regard-
less of the feature class implementation and
whether sampling bias was accounted for or
not, the latter of which tended to increase MPA
(Fig. 6A). However, MaxLike exhibited much
greater variability than MaxEnt in the probability
threshold required to predict 95% of known
occurrences as present (Fig. 6B). In instances
when differences in probability thresholds be-
tween MaxLike and MaxEnt were significant,
MaxLike had a higher probability threshold than
MaxEnt, except for bias-corrected models for
Monomorium emarginatum.

DISCUSSION

Our results reinforce Royle et al.’s (2012)
comparisons of model output for MaxEnt versus
MaxLike. Specifically, MaxEnt tends to under-
estimate the probability of occurrence within
areas of observed presences, but over-estimates it
in unsampled areas beyond the spatial coverage

Fig. 1. Box plot displaying the 25th and 75th percentiles around the median AUC values of ROC plots for

MaxLike and MaxEnt models implementing linear (LF) or default (DF) features without or with bias correction

(BC). * P ,0.01 based on Wilcoxon signed-ranks tests comparing MaxLike to each implementation of MaxEnt.

camher¼ Camponotus herculeanus; camnov¼ C. novaeboracensis; forint¼ Formica integra; monema¼Monomorium

emarginatum; phepil ¼ Pheidole pilifera; preimp ¼ Prenolepis imparis.
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of the data (Fig. 4). Accounting for sampling bias
did not fix this issue and, by our measures,
tended to result in less robust models. In
contrast, for 5 of 6 species, MaxLike assigned
high probabilities of occurrence to areas within
the spatial coverage of known occurrence and

much lower probabilities elsewhere. Royle et al.’s
(2012) example was based on a sample of
thousands of presence-absence records measured
at a continental scale (see Fig. 4 in Royle et al.
2012), but we obtained similar results for more
typical small data sets of dozens or hundreds of

Fig. 2. Box plots displaying the 25th and 75th percentiles around the median predicted probability of presence

at (A) test locations and at (B) 10,000 random background points from MaxLike and MaxEnt models

implementing linear (LF) or default (DF) features without or with bias correction (BC). Symbols and

abbreviations are as in Fig. 1.
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Fig. 3. Probability of occurrence at (circles) presence records and at an equivalent number of randomly selected

(squares) background locations from MaxLike versus MaxEnt implementing linear features (LF) without or with

bias correction (BC). The plotted probabilities at each point indicate the mean of the predictions from the 50

models for each species.
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Fig. 4. Mean predicted probability of occurrence from MaxLike and MaxEnt models implementing linear

features based on 50 random training/test (75/25%) partitions of occurrence records. (A–F) show predicted

probabilities of occurrence from MaxLike; (G–L) and (M–Q) show logistic output from MaxEnt without or with

bias correction respectively. Points indicate ant occurrences used to fit models.
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Fig. 5. Standard deviations of predicted probabilities of occurrence from MaxLike and MaxEnt models

implementing linear features based on 50 random training/test (75/25%) partitions of occurrence records. (A–F)

show standard deviations from MaxLike; (G–L) and (M–Q) show standard deviations from MaxEnt without or

with bias correction respectively. Points indicate ant occurrences used to fit models.
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presence-only records measured over a limited

geographic area (Fig. 4).

It is problematic that MaxEnt rarely predicts

any areas with a high probability of occurrence

( p . 0.80) and typically generates a relatively

narrow distribution of occurrence probabilities of

mean p ’ 0.5 for recorded presences. These

probabilities depend on the assumed value of

species prevalence (MaxEnt default ¼ 0.5);

different values would produce different results,

Fig. 6. Box plots displaying the 25th and 75th percentiles around the median (A) proportion of the study area

predicted as present using (B) the threshold required to correctly predict as present 95% of test occurrences from

MaxLike and MaxEnt models implementing linear (LF) or default (DF) features without or with bias correction

(BC). Symbols and abbreviations are as in Fig. 1.
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but species prevalence is not estimated from the
data by MaxEnt nor is there an objective criterion
for assuming one value over another. In contrast,
MaxLike usually generates a broader range of
occurrence probabilities, with generally higher
occurrence probabilities at observed sample
locations compared to randomly chosen back-
ground samples (Fig. 2). The fact that the output
from MaxEnt and MaxLike are poorly correlated
for most data sets (Fig. 3) suggests that the two
models are estimating different quantities. In
other words, MaxLike estimates probability of
occurrence, while MaxEnt estimates a relative
suitability index that, for five of six species in our
study, neither represents probability of occur-
rence nor is correlated with it.

Our goodness-of-fit statistics (Table 1) and
other evaluation metrics (Fig. 6) generally fa-
vored the MaxLike formulation, although AUC
(Fig. 1) was equivocal. However, given the
documented issues with AUC and pseudo-
absence data (Lobo et al. 2008, Peterson et al.
2008, Jiménez-Valverde 2012), the interpretation
of AUC is problematic. In essence, MaxLike
would have a lower AUC than MaxEnt simply
because it tends to predict higher probabilities of
occurrence across the spatial extent of the
occurrence data than MaxEnt and therefore will
assign higher probabilities to a greater number of
pseudo-absence locations. However, an un-
known percentage of these pseudo-absences are
actually instances of presence and therefore there
is little justification for penalizing presumed
over-prediction at the same cost as under-
predicting known occurrences.

We also note that, at least for ants of New
England, the predicted species distributions from
MaxLike are more sensible and in line with our
expectations from over 15 years of field experi-
ence in this system (e.g., Gotelli and Ellison 2002,
Ellison et al. 2012). For example, the likely
distribution of the widespread carpenter ant,
Camponotus novaeboracensis, is captured well by
MaxLike (Fig. 4B), but not nearly as well by
MaxEnt. In particular, MaxEnt without account-
ing for sampling bias down-weights the proba-
bility of occurrence of C. novaeboracensis in north
central New England where it is actually
widespread (compare Figs. 4B and 4H). Account-
ing for sampling bias produces higher predicted
probabilities of occurrence in northern New

England, but results in lower predicted proba-
bility of occurrence in southern New England
(Fig. 4N) and reduced model performance.
Similarly, whereas both MaxEnt without sam-
pling-bias correction and MaxLike inaccurately
predict the likely absence of the circumboreal C.
herculeanus in northern Maine (Fig. 4A, G), the
MaxLike predictions have much higher uncer-
tainty in this region (Fig. 5A)—which accurately
reflects the sparse data—than do the predictions
from MaxEnt (Fig. 5G, M). As for C. novaebor-
ancensis, accounting for sampling bias increases
the predicted probability of occurrence of C.
herculeanus in northern New England, but reduc-
es it in the south (Fig. 4M) to the detriment of
model performance.

MaxLike is not without its own set of
problems, however. For some species, the output
from different training and testing partitions of
the same data set varied greatly, leading to large
standard deviations in mapped probabilities of
occurrence, especially in regions where no
sample data were recorded (Fig. 5A–F). Howev-
er, this is perhaps a fair representation of the
uncertainty inherent in predicting species distri-
butions to unsampled regions using presence-
only data and small sample sizes. In contrast, the
MaxEnt projections were largely invariant with
different data runs and even in unsampled areas
of the geographic domain (Fig. 5G–R). This
invariance may reflect the precision of the
machine-learning algorithm, but yields a greater
degree of certainty than perhaps the data
warrant. In a few cases, MaxLike models
generated inappropriately low estimates of oc-
currence probability for sites that contained
occurrence records (e.g., Formica integra in Fig.
4C). On the other hand, MaxLike accurately
identified the climatic envelope of the warm-
climate, sandplain specialist Pheidole pilifera (Fig.
4E), but in the absence of a data layer for soil
type, overpredicted (albeit with little confidence;
Fig. 5E) its probability of occurrence in most
locations in southern New England. However,
MaxEnt underpredicted its occurrence in its true
range and overpredicted its occurrence further
north (Fig. 4K), especially when models account-
ed for sampling bias (Fig. 4Q), and with little
uncertainty (Fig. 5K, Q).

Both MaxEnt and MaxLike assume random
sampling, which is rarely possible with species
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occurrence records. For example, counties
throughout central and eastern Massachusetts
are more thoroughly sampled for ants than some
other areas of New England because of the large
number of myrmecologists historically associated
with Harvard University (Ellison et al. 2012).
Approaches for accounting for such sampling
bias, including strategies for the selection of
background points, are relatively well developed
for MaxEnt (e.g., Phillips et al. 2009, VanDerWal
et al. 2009), but remain unexplored for MaxLike.

For MaxEnt, a method for accounting for
sampling bias involves using all occurrence
records for a taxon of interest within a study to
estimate relative survey effort and to select
background data with same underlying bias
present in the occurrence data. This method,
known as ‘‘target-group background’’ (Phillips et
al. 2009), has been shown to generally improve
performance of MaxEnt models when averaged
across all species (e.g., Mateo et al. 2010, Syfert et
al. 2013), but not necessarily for all species or
regions (Phillips et al. 2009). We found that
accounting for sampling bias generally did not
improve the performance of MaxEnt, and in
some cases resulted in less robust models (Figs. 2,
4). The immediate reasons for the reduction in
model performance are not clear, but Phillips et
al. (2009) found that the improvement in model
performance realized when accounting for sam-
pling bias was positively related to the strength
of bias in the target-group presence records. We
speculate that the six species we modeled had
comparatively little sampling bias relative to that
present in the full target group of 132 recorded
New England ant species. To investigate this
further, we fit additional MaxEnt models with a
target-group background based only on the six
modeled species. We found that model perfor-
mance declined for two species and marginally
improved for three species relative to the full
target group. However, these changes were small
and model performance still did not exceed that
of models without sampling bias correction.
How sampling biases influence the relative
performance of MaxLike and MaxEnt is un-
known and requires further study.

Finally, it is also unknown how relative
performance is affected by variable selection,
routines for which are not implemented in the
current version of MaxLike. Given that several of

our study species had few occurrence records
and because we wished to emphasize the relative
performance of MaxEnt and MaxLike when both
models were given an identical set of environ-
mental variables as input, we were limited to a
relatively small set of environmental variables.
MaxLike projections also will be biased if the
relationship between covariates and detection
errors differs from the relationship between
covariates and the probability of occurrence
(Dorazio 2012). This potential issue, and many
others we have identified, are common to all
species distribution models, and are not unique
to MaxLike. For species distribution modeling,
MaxLike—and other models that are based on an
explicit sampling process (Warton and Shepherd
2010, Dorazio 2012)—should be considered as
important alternatives to the widely-used Max-
Ent framework.
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