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Acoustic streaming, fluid mixing, and particle transport
by a Gaussian ultrasound beam in a cylindrical container

Jeffrey S. Marshall1,a) and Junru Wu2
1School of Engineering, The University of Vermont, Burlington, Vermont 05405, USA
2Department of Physics, The University of Vermont, Burlington, Vermont 05405, USA

(Received 18 June 2015; accepted 21 September 2015; published online 7 October 2015)

A computational study is reported of the acoustic streaming flow field generated by a
Gaussian ultrasound beam propagating normally toward the end wall of a cylindrical
container. Particular focus is given to examining the effectiveness of the acoustic
streaming flow for fluid mixing within the container, for deposition of particles in
suspension onto the bottom surface, and for particle suspension from the bottom
surface back into the flow field. The flow field is assumed to be axisymmetric with the
ultrasound transducer oriented parallel to the cylinder axis and normal to the bottom
surface of the container, which we refer to as the impingement surface. Reflection of
the sound from the impingement surface and sound absorption within the material at
the container bottom are both accounted for in the computation. The computation also
accounts for thermal buoyancy force due to ultrasonic heating of the impingement
surface, but over the time period considered in the current simulations, the flow is
found to be dominated by the acoustic streaming force, with only moderate effect of
buoyancy force. C 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4932232]

I. INTRODUCTION

Application of ultrasound in a container, where the ultrasound propagates downward toward
the bottom surface of the container, generates an acoustic streaming flow that leads to circulatory
fluid motion within the container. Ultrasound is used in a wide variety of fluid processes, both to
mix ingredients and to break up heterogeneities in the fluid. Some common applications include
blending of multiphase compounds (such as cement),1,2 mixing of biological assays,3 mixing of
fluids within microfluidic devices,4,5 mixing of food products such as bread dough or chocolate,6

mixing of resins and curing agents during manufacture of plastics and composites,7 mixing of
antimicrobial fluids in dental operations,8 and enhanced blending of chemical compounds dur-
ing chemical reactions.9–11 Numerous companies now sell ultrasonic mixers and applications are
rapidly expanding.

Ultrasonic cleaners are used for removal of particles from a surface, particularly in the wafer
manufacturing industry. Use of focused ultrasound directed toward a surface in a liquid bath can
produce small cavitation bubbles on the surface.12–14 Lamminen et al.15 showed that oscillation and
collapse of the cavitation bubbles act to detach particles from the surface and acoustic streaming
associated with oscillating bubbles acts to transport particles away from the surface. Ultrasonic
cleaning efficiency is improved by use of an ionic solution, for which electrostatic field forces
contribute to removal of the particles from the surface.16 Effectiveness of acoustic forcing for sur-
face cleaning in air was demonstrated by Chen and Wu.17 Fuhrmann et al.18 showed that a standing
acoustic wave can effectively improve the efficiency of an aerodynamic particle removal approach.

Acoustic streaming and radiation forces have also been used successfully to manipulate
particles on a surface and to sort particles by size.19,20 A few applications have used ultrasound to

a)Author to whom correspondence should be addressed. Electronic mail: jeffm@cems.uvm.edu. Telephone: 1 (802) 656-
3826.
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deposit adhesive particles held in suspension onto a surface. For instance, a common practice in
ultrasound-assisted drug delivery is to confine the drug within a liposome, which is then transported
to the target site via an ultrasonic wave.21 Ultrasound can also be used in such applications to con-
trol release of the drug from the liposomes.22 Ma et al.23 recently reported successful development
of a system that uses ultrasound to transport liposomes filled with antimicrobial fluid from a suspen-
sion in a microplate well to a biofilm along the well bottom, and which then further uses ultrasound
to enhance liposome penetration into the biofilm. The method was shown to successfully kill bacte-
rial cells within the biofilm when the antimicrobial fluid was released following liposome bursting.

Acoustic waves have also been used to induce particle clustering at the nodal points of
the sound waves. Wiklund et al.24 reported on an ultrasonic particle concentrator that uses a
standing-wave resonator to induce clustering of particles from suspension in a 96-well microplate
array. Agrawal et al.25 showed that significant particle transport and clustering can be obtained
by acoustic streaming even at very low frequency oscillations (e.g., 100 Hz) using an experiment
in which particles collect at the nodes of a capillary wave. A theoretical and numerical study
explaining the physics of particle clustering in oscillatory straining flows was given by Marshall.26

A series of simulations of acoustic streaming motions in a two-dimensional rectangular
container were reported by Aktas and Farouk,27 where the streaming was produced by oscillation
of the left-hand wall of the rectangular container. The simulations exhibited different numbers of
circulatory cells in the container depending on the container aspect ratio and the amplitude of
wall motion. Extension of this work for differentially heated top and bottom walls was reported
by Aktas and Ozgumus.28 Nonlinear acoustic streaming in a two-dimensional rectangular container
was investigated computationally by Daru et al.29 An experimental study examining the effect of
two different bottom materials on acoustic streaming in a closed cylindrical container was reported
by Wiklund et al.,30 which used particle image velocimetry (PIV) to measure the ring-like vortical
acoustic streaming flow in the container. Suri et al.31 showed that off-axis application of ultrasound
in a cylindrical container can be used to induce chaotic mixing. In these experiments, two ultra-
sound transducers were used, one aligned axially at some offset distance from the cylinder axis and
one placed at the side of the cylinder. An experimental study of the acoustic streaming transient flow
field was reported by Mitome et al.32 for streaming flow in a large rectangular container, activated
by a transducer placed at the container side. Because the transducer was much smaller than the
dimensions of this container, the container wall boundaries did not play a significant role in the
transient flow development.

Several recent studies have examined thermal effects in acoustic streaming flows, driven in part
by the fact that ultrasound emissions also lead to heating of the container walls through absorption
of the sound energy. The effect of a horizontal temperature gradient in a cavity subject to horizontal
acoustic wave propagation was examined numerically by Dridi et al.33,34 The flow field discussed
in these papers exhibited a series of bifurcations as the temperature gradient and acoustic intensity
were varied, where, in general, acoustic streaming was found to stabilize the thermal instability
when the sound intensity is sufficiently strong. The effect of acoustic streaming on the Rayleigh-
Bénard thermal instability problem, in which a vertical temperature gradient is applied on the fluid
in a direction orthogonal to an acoustic streaming flow along a channel, induced by horizontal
acoustic emissions, was examined numerically by Hadid et al.35 A numerical study of thermovis-
cous effects, arising mainly through the temperature and density dependence of the fluid viscosity,
on ultrasound-induced acoustic streaming in microchannels was reported by Muller and Bruus.36

The current paper reports on a computational study of acoustic streaming flow generated by a
Gaussian ultrasound beam propagating along the axis of a cylindrical container, directed toward the
container end-wall. The primary objective of the study was to characterize the potential of the flow
for fluid mixing, particle lift-off from the bottom surface, and deposition of adhesive particles onto
the bottom surface with different container heights and end-wall acoustic reflection coefficients. The
flow simulations were performed using an axisymmetric vorticity-streamfunction method. Thermal
heating of the end-wall material is computed and thermal buoyancy effects on the fluid field are
included in the flow computation, although for the time period and parameter values used in the
simulations thermal buoyancy is of secondary importance to the acoustic streaming force.
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The governing equations for the flow and temperature field and the computational method are
presented in Section II. A scaling analysis is also presented in this section to extract velocity and
temperature scales for this problem, which are subsequently used to define dimensionless variables.
Results for the flow and temperature fields are presented in Section III, followed by a discussion of
the effectiveness of this flow field for fluid mixing, particle removal from the surface, and particle
deposition onto the surface. Conclusions are presented in Section IV.

II. GOVERNING EQUATIONS AND COMPUTATIONAL METHOD
FOR ACOUSTIC STREAMING

The flow field is generated by an ultrasound transducer oriented along the axis of a cylindrical
container of radius L. The transducer is located along the top surface of a liquid of depth H and is
oriented normal to a solid end-wall of the container, which is a solid with thickness D. A Gaussian
acoustic beam of radius b propagates downward toward the cylinder end wall. The problem is
analyzed using a cylindrical polar coordinate system (r, θ, z) as shown in Figure 1. The velocity,
acoustic intensity, and temperature fields are assumed to be axisymmetric.

A. Governing equations for fluid and thermal fields

The fluid velocity field consists of an oscillating (ac) flow uac generated by the acoustic wave, a
second-order acoustic streaming (dc) flow generated by second-order effects, and a non-oscillatory
flow generated by thermal buoyancy. The second and third components of the velocity field are
lumped into the dc field u, which varies in time but over a much longer time span than the acoustic
period τ = 1/ f , where f is the acoustic frequency. Using the Boussinesq approximation with low
fluid Mach number, the governing equations for the dc velocity field are given by the continuity and
Navier-Stokes equations as

∇ · u = 0,
∂u
∂t
+ (u · ∇)u = − 1

ρ0F
∇p + g β(T − TA)ez + ν∇2u +

1
ρ0F

F. (1)

In these equations, ρ0F is the average fluid density, g is gravitational acceleration, β is the coef-
ficient of thermal expansion, ν is the kinematic viscosity, T is temperature, and TA is the ambient
temperature. The acoustic forcing term F is given by Nyborg37 as

F = −ρ0F ⟨(uac · ∇)uac + uac(∇ · uac)⟩ , (2)

FIG. 1. Sketch showing the computational domain used for the computations, showing the r -z plane of a cylindrical polar
coordinate system.



103601-4 J. S. Marshall and J. Wu Phys. Fluids 27, 103601 (2015)

where ⟨·⟩ denotes an average over the acoustic period τ. The first-order ac velocity field and the ac
acoustic pressure field satisfy

ρ0F
∂uac

∂t
= −∇pac,

∂2pac

∂t2 = c2
F∇2pac, (3)

where cF is the sound speed in the fluid. We let the radius of the beam source transducer a satisfy
the condition that kFa >> 1, where kF is the acoustic wave number in the fluid, and employ the
parabolic approximation38,39 to write the acoustic body force F as37,40–42

F =
2αF

cF
I, (4)

where αF is the acoustic pressure attenuation coefficient within the fluid.
The temperature field within the fluid is governed by the heat equation

∂T
∂t
+ u · ∇T = ηF∇2T +

qF

ρ0FλF
, (5)

where ηF = γF/ρ0FλF is the thermal diffusivity in the fluid, γF is the fluid thermal conductivity, qF

is the fluid volumetric heat supply, and λF is the fluid specific heat. In the solid, the temperature is
governed by

∂T
∂t
= ηS∇2T +

qS

ρ0SλS
, (6)

where ηS = γS/ρ0SλS is the thermal diffusivity in the solid, γS is the solid thermal conductivity, qS

is the solid volumetric heat supply, and λS is the solid specific heat. The volumetric heat supply
terms associated with attenuation of the acoustic beam in the fluid and solid, respectively, are given
by43

qF = 2αF I, qS = 2αSI, (7)

where I = |I| is the acoustic intensity magnitude.

B. Acoustic intensity field

In order to simplify the analysis, the acoustic wave generated by the transducer is assumed to
have the form of a Gaussian beam. This simplification is supported by the analysis and experimental
results of Moudjed et al.,44 who showed that the acoustic streaming generated by an acoustic trans-
ducer is closely approximated by that generated by a simple parallel wave approximation, even in
the transducer near field.

An analysis is given here for the case where the incident beam is normal to the bottom surface;
the more general case of arbitrary beam angle is examined by Norris.45 The acoustic pressure of
a Gaussian beam in the fluid generated by the transducer, pi, and the reflected beam, pr , from the
fluid-solid interface at z = 0 can be written as46,47

pi(r, z) = p0(A1(z)/B)1/2 exp[−A1(z)(r/b)2] cos[kF(H − z) − σt] exp[−αF(H − z)], (8a)

pr(r, z) = R p0(A2(z)/B)1/2 exp[−A2(z)(r/b)2] cos(kFz − σt) exp[−αFz], (8b)

where p0 is the acoustic pressure amplitude at the transducer surface, R is the acoustic pressure
reflection coefficient, b is the beam width, f is the acoustic frequency with circular frequency
σ = 2π f , and the diffraction coefficients A1 and A2 are given by

A1(z) = B

1 + B2
(
H−z
r0F

)2 , A2(z) = A1(0)
1 + A2

1(0)(z/r0F)2
. (9)

In (9), B is the Gaussian coefficient at the transducer, r0F = πb2 f /cF is the Rayleigh distance in
the fluid, and H − z and z are the distances to the top of the fluid container and to the fluid-solid
interface, respectively, from a point with coordinates (r ,z) within the fluid domain. The temporally
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averaged acoustic intensity with reflection can be expressed by

I(r, z) = f

1/ f
0

ptvt dt = f *
,

p2
0

ρ0FcF
+
-

1/ f
0

(pi + pr)(pi − pr) dt, (10)

where the total acoustic pressure is pt = pi + pr and the particle velocity is vt = vi + vr =
pi

ρ0FcF
+

pr
ρ0F(−cF) . Substituting (8) into (10) and performing the integration gives the acoustic intensity in the
fluid as

I(r, z) = I0[A1(z)/B] exp[−2A1(z)(r/b)2] exp[−2αF(H − z)]
−R2I0[A2(z)/B] exp[−2A2(z)(r/b)2] exp[−2αFz], (11)

where I0 is the centerline acoustic intensity at the transducer surface.
The acoustic intensity of the Gaussian beam that penetrates into the solid (z < 0) is given by

I(r, z) = (1 − R2)I0[A3(z)/B] exp[−2A3(z)(r/b)2] exp(2αSz). (12)

The diffraction function A3(z) has the same form as A2(z) in (9), but with r0F replaced by the
Rayleigh distance r0S = πb2 f /cS in the solid. While for completeness we have shown the attenu-
ation terms in the fluid in (11), as well as the acoustic heating term in the fluid in (5), it is noted
that in many cases these terms have very small effect since the acoustic attenuation coefficient in the
fluid (e.g., water, αF � 0.056 m−1) is often small compared to that in the solid (e.g., polyurethane,
αS � 140 m−1), where values above are given for ultrasound frequency f = 2.25 MHz.47

C. Scaling and dimensionless equations

The variables are non-dimensionalized using the initial beam width b as a length scale and
the convective time scale t0 = b/U0. Since the cylindrical vessel is sufficiently short that the entire
domain can be considered to lie in the near-field of the acoustic streaming jet, a velocity scale U0
can be determined by balancing the order of magnitude of the inertia and acoustic forcing terms,42

giving

U0 =

(
2αFb
ρ0FcF

I0

)1/2

. (13)

The scale of the temperature increase T0 is determined by balancing the acoustic energy flux I0 on
the solid surface with the convective energy loss flux from the surface, given by Newton’s law of
cooling as h(T − TA) where h is the heat transfer coefficient at the liquid-solid interface, giving the
scale of the temperature change as

T0 =
I0

h
. (14)

Using these scales, dimensionless variables are defined (using primes) by

u′ = u/U0, T ′ = (T − TA)/T0, ω′ = ωt0, ψ ′ = ψ/U0b2

I ′ = I/I0, x′ = x/b, t ′ = t/t0.
(15)

In the above, ω = ∇ × u is the vorticity vector and ψ is the Stokes streamfunction, defined for
axisymmetric flows in terms of the velocity components u = u(r, z, t)er + w(r, z, t)ez by

u = −1
r
∂ψ

∂z
, w =

1
r
∂ψ

∂r
. (16)

Dropping the primes on the dimensionless variables, the governing equations for axisymmetric
flow are written in terms of the vorticity ω = ω(r, z, t)eθ and the Stokes stream function as

∂2ψ

∂r2 −
1
r
∂ψ

∂r
+
∂2ψ

∂z2 = −rω, (17)



103601-6 J. S. Marshall and J. Wu Phys. Fluids 27, 103601 (2015)

∂ω

∂t
+ u

∂ω

∂r
− uω

r
+ w

∂ω

∂z
= − Gr

Re2

∂T
∂r
+
∂I
∂r
+

1
Re


∂2ω

∂r2 +
1
r
∂ω

∂r
− ω

r2 +
∂2ω

∂z2


, (18)

where Re = U0b/ν and Gr = g βT0b3/ν2 are the Reynolds and Grashof numbers. The governing
equations for the dimensionless temperature field in the fluid and in the solid are

∂T
∂t
+ u

∂T
∂r
+ w

∂T
∂z
=

1
PrF Re


∂2T
∂r2 +

1
r
∂T
∂r
+
∂2T
∂z2


+

2α′F I0

ρ0FλFT0U0
I(r, z) for z > 0, (19)

∂T
∂t
=

1
PrS Re


∂2T
∂r2 +

1
r
∂T
∂r
+
∂2T
∂z2


+

2α′SI0

ρ0SλST0U0
I(r, z) for z ≤ 0, (20)

where PrF = ν/ηF and PrS = ν/ηS are the Prandtl numbers in the fluid and solid, respectively, and
α′F = αFb and α′S = αSb are the corresponding dimensionless attenuation coefficients.

The solution domain consists of a cylindrical container with no-slip walls on the side, top,
and bottom. Acoustic streaming leads to a non-zero effective slip velocity on the walls given by
Rayleigh as

uslip = −
3
4
σ−1U(x)dU

dx
, (21)

where U(x) is the inviscid velocity just outside the viscous boundary layer and x is distance along
the boundary in the direction of flow. It is assumed that the sound frequency is in the ultrasonic
range, so that σ−1 is sufficiently small that the Rayleigh slip may be neglected (i.e., σb/U0 >> 1).
With this approximation, the dimensionless boundary conditions on the sides of the computational
domain are given by

on r = 0 : u = 0, ω = −∂w
∂r
= 0,

∂T
∂r
= 0, (22a)

on r = L/b: u = 0, w = 0,
γw
γF

b
τw

(T − Text) + ∂T
∂r
= 0, (22b)

on z = H/b: u = 0, w = 0,
∂T
∂z
= 0, (22c)

on z = −D/b: u = 0, w = 0,
∂T
∂z
= 0. (22d)

In this equation, γw is the thermal conductivity of the side wall, τw is the side wall thickness, and
Text is a constant temperature external to the side wall (which is set equal to the initial tempera-
ture within the computational domain). At the interface z = 0 between the solid and the fluid, the
boundary condition is

u = 0, w = 0, γF
∂T
∂z

�����z=0+
= γS

∂T
∂z

�����z=0−
, T |z=0+ = T |z=0−. (23)

D. Computational method

Systems (17)-(20) are solved using the Crank-Nicholson time advancement algorithm. The
spatial derivatives are approximated by centered differences in the diffusive terms and by upstream-
weighted differences in the convective terms, where the latter are given by

u
∂T
∂r

�����i, j
�

1
2∆r

ui, j[(1 − εi, j)(Ti+1, j − Ti, j) + (1 + εi, j)(Ti, j − Ti−1, j)] (24)

and where εi, j = γ sign(ui, j). The coefficient γ is a weighting constant, such that 0 ≤ γ ≤ 1,
where γ = 0 corresponds to the second-order centered difference scheme and γ = 1 corresponds
to the first-order upstream difference. It was found that robust results with no sign of convective
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TABLE I. Dimensionless parameters used for the “basic problem” in the numerical simulations, with assumed ultrasound
frequency 2.25 MHz.

Parameters for fluid and container Parameters for end-wall solid (polyurethane)

Reynolds number, Re 400 Solid Prandtl number, PrS 2.2
Grashof number, Gr 300 Acoustic reflection coefficient, R 0.08
Fluid Prandtl number, PrF 4.6 Attenuation coefficient, αSb 1.5
Volumetric thermal expansion coefficient, βT0 0.0004 Solid Rayleigh distance, r0/b 47
Fluid height, H/b 1.0 Thermal conductivity ratio, γF/γS 85
Attenuation coefficient, αFb 0.0006
Container radius, L/b 1.5
Solid thickness, D/b 0.1
Fluid Rayleigh distance, r0/b 55
Duty cycle 10%
Acoustic wavelength, λ/b 0.063

instability were obtained with 10% upstream differencing for the vorticity transport equation and
30% upstream difference for the heat and scalar concentration transport equations.

The boundary conditions for the streamfunction are chosen to satisfy the no-penetration condi-
tion on the boundaries, and the boundary conditions for vorticity are chosen to satisfy the symmetry
condition on r = 0 and the no-slip condition on the other boundaries. The vorticity boundary condi-
tion on a no-slip wall is specific using the Thom equation.48 The equation for the axial velocity on
the symmetry axis can be reduced using a Taylor series expansion about r = 0 to

w(0, z, t) = 2
∂2ψ

∂r2

�����r=0
. (25)

A Gauss-Seidel iteration method is used to solve the resulting matrix equation with a relative error
of 10−6 and dimensionless time step of ∆t = 0.001. The Courant-Friedrichs-Lewy (CFL) number is
less than 0.1 for all computations.

The flow problem has a large number of dimensionless parameters. Many of these parameters
were held constant in the paper with values corresponding to a “basic problem,” and then values
were varied only for a selected group of parameters that most influenced the problem under investi-
gation. The basic problem specification was motivated by applications in which ultrasound is used
for mixing or particle manipulation, such as in a microplate well, as is used in several biological
sampling applications. Solid properties were based on polyurethane end wall material, which has a
low acoustic reflection coefficient.49 Detailed parameter values are given in Table I.

A grid independence study was performed with four different grids, labeled grid A–D, ranging
between about 30 000 and over 2.2 × 106 evenly spaced grid points in the r-z plane. Maximum and
minimum values of different parameters in the steady-state condition are listed in Table II. The flow
fields on all four grids were similar, although for the most refined grid (grid A) the grid cells were
sufficiently small that computer round-off error started to degrade the solution, particularly for the
streamfunction equation. The computations reported in the paper were conducted using grid B, or a
grid with the same resolution as grid B for cases with variable container height.

TABLE II. Steady-state values for grids A-D, with N grid points.

Grid N Tmax Ts,max ωmax ωmin wmin

A 2 203 201 0.5739 0.012 01 2.880 −1.313 −0.1094
B 551 601 0.5701 0.012 34 2.961 −1.199 −0.1120
C 125 751 0.6786 0.013 39 2.928 −1.185 −0.1106
D 31 626 0.6664 0.013 20 2.917 −1.181 −0.1104
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III. ACOUSTIC STREAMING FIELD

A. Flow and temperature fields

The acoustic field is activated at time t = 0, at which time the fluid is at rest and both the
fluid and its container are at the ambient temperature TA. The ultrasound beam has two significant
effects—(a) the acoustic intensity gives rise to a body force within the fluid, given by (4), which
induces a downward flow oriented toward the cylinder end-wall and (b) the sound absorption within
the end-wall solid heats up the end-wall material. Both of these effects occur fairly quickly after the
impulsive start and evolve toward a quasi-steady state flow field. For instance, Figure 2 shows pro-
files of the fluid axial velocity w and solid temperature T at different times after the impulsive start,
leading up to the steady state solutions (indicated by dashed lines). The downward axial velocity
field (Figure 2(a)) is driven by a region of negative azimuthal vorticity which is generated by the
radial gradient of the acoustic body force. The resulting downward axial flow vanishes at both the
transducer surface and the impingement surface (the cylinder end-wall), and it attains a maximum
at a height of about 40% of the distance from the end-wall surface to the transducer. We note that
all variables plotted here and elsewhere in the paper refer to time-averages over the period of the
ultrasound wave. The temperature field of the solid, shown in Figure 2(b), has a maximum value on
the bottom surface of the end-wall material, at which an adiabatic boundary condition is imposed.
The heat flux into the fluid leads to a slightly increased top surface temperature of the end-wall
material, but the change in top surface temperature is nearly two orders of magnitude smaller than
the maximum bulk temperature change within the end-wall material.

Contour plots of the steady-state flow field are giving in Figure 3, as well as streamlines of the
acoustic streaming velocity field. The acoustic intensity (Fig. 3(a)) is observed to decrease rapidly
within the solid as the sound is absorbed by the solid material, resulting in high temperature values
within the most active absorption region in Fig. 3(b). The acoustic streaming velocity field (Fig. 3(c))
has the form of a confined vortex ring, with downward flow near the axis of the cylindrical container
and upward return flow along the container sides. This acoustic streaming field is very similar in
structure to the short-time quasi-steady state field reported in the experimental study of Ma et al.23 as
well as to the acoustic streaming field shown in the review by Wiklund et al.,30 both of which examine
a similar configuration. The azimuthal vorticity field (Fig. 3(d)) is dominated by a large region of
negative vorticity in a toroidal shape, which is generated by the acoustic body force, and thin regions
of positive vorticity near the walls generated by the no-slip boundary condition.

B. Effect of container height

A series of computations were performed using the same parameter values as in the basic flow,
but varying the container height from H = 1 to 8. Azimuthal vorticity contours and streamlines for

FIG. 2. Variation of (a) axial velocity and (b) temperature along the symmetry axis at times t = 5 (A, red), 10 (B, blue), 15
(C, green line), 25 (D, orange line), 40 (E, black line), and at steady state (dashed line). Figure (b) is plotted only within the
solid (0 ≤ z ≤ 0.1), and in (a) the region occupied by the solid is indicated by grey shading.
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FIG. 3. Contour plots for dimensionless variables for the basic flow, including (a) magnitude of acoustic intensity, (b)
temperature, (c) acoustic streaming velocity magnitude, and (d) azimuthal vorticity. The fluid is located above the dashed
line at z = 0 and the solid is located below this line. Streamlines indicate the direction of acoustic streaming flow in the
quasi-equilibrium state.

cases with H = 2, 4, and 8 are shown in Figure 4, and the maximum and minimum values of azimuthal
vorticity and the maximum value of the temperature are plotted as a function of H in Figure 5. For
all container heights examined, a single recirculating flow forms with center of circulation located
between z = 0.5 and 1. The maximum temperature of the solid remains nearly constant as H changes,
but a marked increase is observed in bothωmax and |ωmin| as H increases, with nearly linear variation
in each case. The fluid flow is driven by the acoustic streaming body force, which acts primarily when
fluid elements are traveling within about a radius of unity from the cylinder axis, during the downward
stroke of the recirculation pattern. This negative vorticity is pushed radially outward near the bottom
of the fluid container, causing the vorticity to intensify as it stretches. Taller containers exhibit higher
vorticity magnitudes than shorter containers because the fluid elements spend a longer time exposed
to the acoustic body force as they travel downward near the fluid axis.

C. Effect of reflection coefficient

The effect of end-wall reflection coefficient R on the flow field was evaluated by repeating the
basic flow simulation with values of reflection coefficient R = 0.3 and 0.6, and all other parameters
held fixed. The computations are performed with no acoustic reflection from the top surface, which
is particularly reasonable either for low reflection coefficient values or for a transducer made of a
polymeric material, such as Polyvinylidene fluoride (PVDF). Because of the lack of upper surface
reflections and the low duty cycle, no standing wave effects are assumed to occur. The simulated flow
field was observed to have the same qualitative structure for all values of R examined. A plot showing
the time variation of different quantities for cases with different reflection coefficients is given in
Figure 6, where the data are collapsed by dividing by the normalization factor 1 − R2, which is the
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FIG. 4. Contour plots showing azimuthal vorticity and streamlines in different height containers: (a) H = 2, (b) H = 4, (c)
H = 8.

coefficient in (12) multiplying the percentage of the incident acoustic intensity that passes into the
solid. The maximum temperature within the solid and the maximum and minimum vorticity values
are observed to exhibit a high degree of data collapse, whereas the maximum surface temperature
at the solid-fluid interface and the maximum velocity magnitude of the acoustic streaming flow have
good data collapse for the cases with R = 0.08 and 0.3 but somewhat weaker collapse for the case with
R = 0.6. A high degree of data collapse for the maximum solid temperature and the minimum negative
vorticity makes sense since both acoustic body force (4) and acoustic heat source (7), responsible for
generating the solid temperature rise and the negative vorticity, are linear in the acoustic intensity.

It is interesting that while all of the other variables involved in the simulation attain a nearly con-
stant value by about t = 100, the maximum fluid-solid interface surface temperature Ts,max continues
to increase throughout the computation. For this reason, we refer to the flow field that develops as
a “quasi-steady state,” since not all variables are constant. It is possible that over sufficient time the
fluid-solid interface temperature could increase sufficiently so as to cause thermal instability of the
flow field, leading the apparent steady-state acoustic streaming flow to transition into a second type of

FIG. 5. Plot showing change in maximum (circles) and minimum (squares) azimuthal vorticity values (solid lines, left-hand
axis) and maximum substrate temperature (deltas, dashed line, right-hand axis) as functions of height H of the liquid in the
cylindrical container.
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FIG. 6. Time variation of the (a) maximum temperature within the end-wall solid, (b) end-wall top surface temperature,
(c) maximum velocity magnitude, and (d) maximum and minimum vorticity, normalized by the coefficient (1−R2), for cases
with R = 0.08 (A, black line), 0.3 (B, red line), and 0.6 (C, blue line).

flow field dominated by thermal buoyancy. We did not observe this transition for the time periods and
parameter values for which the current computations were conducted, but in a separate experimental
study of a similar problem we have observed such a transition after the acoustic streaming state has
persisted for sufficient time.23

This configuration bears some resemblance to the classic Rayleigh-Bénard problem, involving
flow through a two-dimensional channel across which is applied a finite temperature gradient. The
Rayleigh number Ra ≡ Gr · Pr has a critical value of 1707.7 in the inviscid Rayleigh-Bénard problem,
whereas the Rayleigh number based on the scaling in Table I for the current problem is 1380. Finite
Reynolds number is observed to increase the critical Rayleigh number value. The effect of acoustic
streaming on critical Rayleigh number was discussed by Hadid et al.35

IV. PARTICLE ROLLING AND REMOVAL FROM THE IMPINGEMENT SURFACE

Particle transport on the impingement surface is important for applications in which ultrasound
is used to clean particles from a surface.16–18 Particle transport along the impingement surface is
dominated by particle rolling motion driven by the wall shear stress. Collisions of particles can result
in some particles being pushed upward off of the impingement surface, allowing them to be entrained
into the flow field.50 The radial shear stress along the impingement surface is plotted in Figure 7 for
the basic flow, as well as for the different container heights examined in Figure 4 and the different
reflection coefficients examined in Figure 6. The shape of the shear stress profile is similar in all cases,
with zero shear stress at the cylinder axis (r = 0) and side wall (r = L), and peak shear stress near the
half-way radial location between the axis and the side wall. The shear stress magnitude increases as
the container height is increased (approximately linearly in H) and it decreases as the reflection coef-
ficient is increased (approximately in proportion to the factor 1 − R2). For high container heights, we



103601-12 J. S. Marshall and J. Wu Phys. Fluids 27, 103601 (2015)

FIG. 7. Shear stress profile on bottom surface for polyurethane for (a) different container heights H and (b) different
reflection coefficients R (b). In (a), we set the parameters as in the basic flow with height H = 1 (A, black line), 2 (B, red line),
4 (C, blue line), and 8 (D, green line). In (b), we set the parameters as in the basic flow with reflection coefficient R = 0.08
(A, black line), 0.3 (B, red line), and 0.6 (C, blue line).

also note the occurrence of a region with negative shear stress near r = L, which indicates the presence
of a small recirculation region in the corner of the container near r = L, as observed in Figure 4.

The particle dynamics on the impingement surface is controlled by the driving torque Md and
the resistance torque Mr , where Md is related to the fluid force on the particle and Mr is related to
adhesive force between the particle and the impingement surface. The driving torque can be written
for a particle with diameter d as

Md = Fd(d/2), (26)

where the fluid drag force is given for cases with small particle Reynolds number by

Fd = 3πdµ f (u − v), (27)

and where µ is the fluid viscosity and u and v are the fluid and particle radial velocities, respectively.
The coefficient f represents an adjustment to the Stokes drag law caused by the proximity of the wall,
which for a particle resting on the wall is given by King and Leighton51 as f = 1.70. Assuming that
the particle diameter is much smaller than the boundary layer thickness at the wall, the fluid velocity
can be approximated in terms of the wall shear stress as u = dτw/2µ.

An expression for the resistance torque under the action of van der Waals adhesion was given by
Dominik and Tielens52 as

Mr = 4FC

(
a
a0

)3/2

bcrit, (28)

where FC = 3πγd/2 is the critical normal force for particle pull-off given by Johnson-Kendall-
Roberts (JKR) theory,53 γ is the particle adhesive surface energy, a is the contact region radius with
equilibrium value a0 = (9πγd2/4E)1/3, and E = Y/2(1 − σ2) is the effective elastic modulus, which
is written in terms of the particle’s Young’s modulus Y and Poisson ratio σ. The coefficient bcrit is
the critical particle displacement tangent to the surface before onset of rolling. Values of bcrit/d were
obtained experimentally by Ding et al.54 for polymer microspheres (7.5 µm diameter) and found to
lie in the range 0.01-0.03.

Particle rolling does not begin until the driving torque exceeds the resistance torque. Setting
Md = Mr and assuming that the particle is at equilibrium in the direction normal to the surface, so
that a/a0 � 1, gives the critical wall shear stress for onset of particle rolling as

τcrit =
8γ
f d

(
bcrit

d

)
� 0.094 γ/d, (29)

where in the latter expression we set bcrit/d � 0.02. When τw < τcrit, the particles adhere to the
surface without rolling. When τw > τcrit, the particles roll on the surface with a radial velocity v ,
which is obtained by solution of the particle angular momentum equation



103601-13 J. S. Marshall and J. Wu Phys. Fluids 27, 103601 (2015)

FIG. 8. Evolution of the area-based concentration profile of particles on the impingement surface for the steady-state basic
flow with critical shear stress τcrit= 0.002. The dashed line shows the initial concentration field and solid lines are drawn at
times t = 100 (black), 200 (red), and 300 (blue).

I
dΩ
dt
= Md − Mr , (30)

where I = md2/10 is the particle moment of inertia and Ω = 2v/d is the particle rotation rate.
For small values of the particle Stokes number St ≡ τp

τ f
= mU

3πµ dL
, the particle velocity can be

approximated by the local equilibrium solution

veq =
d

2µ
(τw − τcrit). (31)

Here, m = πρpd3/6 is the particle mass, ρp is particle density, U and L are characteristic fluid
velocity and length scales, and τp and τf are the particle and fluid time scales.

The area-based concentration c(r, t) is defined as the area on the impingement surface covered
by particles divided by the total surface area. In cylindrical polar coordinates, the governing equation
for c is given by

∂c
∂t
+

1
r
∂

∂r
(rcv) = 0. (32)

Numerical simulations for the concentration field were performed by solving (32) using the equilib-
rium solution (31) for velocity, which assumes small Stokes number and neglects particle collisions.
Equation (32) was discretized using a Crank-Nicholson approach with forward differencing in time
and centered differencing in space. A plot showing the evolution of the area-based concentration field
with time is given in Figure 8 for a case with critical shear stress τcrit = 0.002 and initial concentration
c(r,0) = 0.01. There is no change in concentration in regions where τw < τcrit, which are found both
near the cylinder axis and near the side wall. In the central region where τw > τcrit, the concentration
is observed to decrease with time for small r and increase with time for larger r . Over long time,
the particles would exhibit an island of “stranded” particles around the cylinder axis, be depleted
from the mid-radius region, and exhibit a large spike in concentration just before the point where
τw = τcrit. As the concentration within this spike grows, particles would become increasingly likely
to collide with each other, resulting in particles being pushed out into the flow field.

V. FLUID MIXING

Ultrasound beams are commonly used to mix fluids within a container. A demonstration of fluid
mixing by the acoustic-streaming flow is shown in Figure 9 for a case where the container is initially
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FIG. 9. Contours of the indicator field φ(t, r, z) illustrating a mixing process by the acoustic streaming flow following an
impulsive start, for the basic flow at times (a) t = 5, (b) 50, (c) 100, and (d) 150.

half filled with one fluid and then filled the rest of the way with a second fluid with the same properties
as the first fluid. The two fluids are miscible and diffuse into each other with a Schmidt number
Sc = ν/D = 1000, where ν is the fluid kinematic viscosity and D is the mass diffusion coefficient
of the fluid. An indicator field φ(t,r, z) is used to indicate the amount of each fluid present, with φ
initially set equal to unity in the lower fluid and equal to two in the upper fluid. The indicator field is
evolved by the dimensionless advection-diffusion equation

∂φ

∂t
+ u

∂φ

∂r
+ w

∂φ

∂z
=

1
Sc Re


∂2φ

∂r2 +
1
r
∂φ

∂r
+
∂2φ

∂z2


. (33)

Two distinct stages of the mixing process are observed in Figure 9. During the first stage (typically
called “macro-mixing”), the primary function of the mixing process is to generate increasingly sharp
gradients of the φ field. As the gradients of φ increase with the formation of thin striations of the two
fluids, the rate of diffusion across these striations also increases. During the second stage (typically
called “micro-mixing”), the mixing process is dominated by diffusion of the φ field, resulting at the
end of this process in a nearly homogeneous mixture.

Different measures of mixing efficiency have been proposed by a wide range of investigators,
and a summary and assessment of the different measures is given by Bothe.55 A common measure
of degree of mixing is given by the root-mean-square φrms of the indicator function, defined by

φ2
rms =

2
HL2

H
0

L
0

[φ(t,r, z) − φ̄]2 rdrdz, (34)

where the mean value is computed from
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FIG. 10. Plot showing time variation of (a) the root-mean-square of the indicator field and the mixing measure Im and (b)
the mixing length scale for the mixing process shown in Figure 9.

φ̄ =
2

HL2

H
0

L
0

φ(t,r, z) rdrdz. (35)

An intensity of mixing Im can then be defined by

Im = 1 −


IS = 1 − φrms

φrms,max
, (36)

where IS = φ2
rms/φ

2
rms,max is Danckwert’s intensity of segregation measure56 and the maximum vari-

ance φ2
rms,max for a segregated binary mixture is given by φ2

rms,max = φ̄(1 − φ̄). A plot showing time
variation of both φrms and Im is given in Figure 10(a).

Since φrms = φrms,max for any completely segregated system, the above measures are only useful
for indicating the amount that one fluid has diffused into the other (micro-mixing), and not the initial
stage in which thin striations are formed (macro-mixing). A measure characterizing the macro-mixing
stage was suggested by Bothe55 called the integral scale of segregation, denoted by Lm. This measure
is given for the current problem by

L−1
m =

2
HL2

H
0

L
0

∥∇φ∥ rdrdz. (37)

A plot of Lm as a function of time is shown in Figure 10(b). The plots in Figure 10 demonstrate the
two stages of mixing quite clearly. During the macro-mixing stage (corresponding to an approximate
time interval 0 < t < 50), the values of φrms and Im are nearly constant, but the mixing length scale
Lm decreases rapidly to a value of about 20% of its initial value. During the micro-mixing stage
(corresponding to an approximate time interval 50 < t < 120), the mixing length scale Lm remains
approximately constant while the value of Im increases from close to zero to about 0.8. This stage of
rapid mixing is then followed by a period of more gradual mixing as the fluids become completely
homogeneous, during which the mixing length scale Lm increases and Im gradually approaches unity.

One shortcoming of the mixing measures discussed up to now is that they refer to the indicator
field φ and thus are specific to a particular initial configuration of the two fluids. Measures have also
been proposed which characterize the potential for a fluid flow to induce mixing which deal only
with the flow. Since the formation of thin fluid striations through a stretching process is an essential
part of efficient mixing processes, these fluid measures typically characterize the degree of stretching
inherent in the fluid flow. The rate of stretching in a fluid flow is controlled by the rate of deformation
tensor D, which is the symmetric part of the velocity gradient. The three eigenvalues of D, denoted
by λ1, λ2, and λ3 where λ1 ≥ λ2 ≥ λ3, are equal to the maximum, inflection, and minimum values
of the rate of logarithmic stretching Λ̇/Λ, respectively, where Λ is the stretch of a material line
segment along one of the principal directions of D and for an incompressible flow λ1 + λ2 + λ3 = 0.
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FIG. 11. Contours of the normalized energy dissipation rate, ε/µ, and the maximum logarithmic rate of stretching, λ1, for
the case in Figure 9 at steady state.

The potential of a flow for mixing is sometimes assumed to be related to the energy dissipation rate
ε = 2µDijDij, particularly for turbulent flows. The rate of dissipation can be written in terms of the
eigenvalues of D as

ε/µ = 2Di jDi j = 2(λ1
2 + λ2

2 + λ3
2). (38)

An alternative mixing measure is given by the largest eigenvalue λ1 of D, which is equal to the
maximum value of the rate of logarithmic stretching at a point. Since D is symmetric, the eigenvalues
of D can be computed very efficiently using the Smith algorithm.57

An example showing contour plots for both the rate of dissipation ε/µ and the largest eigenvalue
λ1 of D for the steady-state flow field is given in Figure 11. These plots can be used to identify
regions of high and low stretching rate in the fluid flow. The contours in both plots are very similar,
as might be expected from relationship (38). The average value of λ1 over the flow field gives a
global measure of the degree of stretching in a fluid flow, which we denote by Save. A plot of the ratio
Save/(1 − R2) is given in Figure 12 for cases with reflection coefficients R ranging from 0.08 to 0.6.
This ratio varies only by about 6% as the reflection coefficient is changed.

VI. PARTICLE DEPOSITION FROM A SUSPENSION

Particle deposition on the impingement surface under the basic flow field described in Section III
was examined using a three-dimensional adhesive discrete element method (DEM). The computation

FIG. 12. Plot showing the flow stretching measure Save, defined as the average value of the largest eigenvalue λ1 of D over
the flow field, normalized by 1−R2, as a function of reflection coefficient R.
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used the steady-state axisymmetric flow field to specify the fluid velocity field on a three-dimensional
grid in a cylindrical polar coordinate system, with 51 grid points in the azimuthal (θ) direction. The
fluid velocity and acoustic intensity on a moving particle were obtained by interpolation from this
grid onto the particle location. The particles were transported by a semi-implicit numerical solution
of the particle momentum and angular momentum equations, given by

m
dv
dt
= FF + FA, I

dΩ
dt
=MF +MA, (39)

where v and Ω are the particle velocity and rotation rate, m and I = 2mr2
p/5 are the mass and

moment of inertia of a particle of radius rp, FF and MF are the force and torque induced on the
particle by the fluid, and FA and MA are the force and torque induced on the particle by the sum
of adhesion and elastic collision effects. The adhesion and collision forces were obtained using a
soft-sphere DEM, with the normal elastic force determined by the well-known JKR theory53 and
the Dominik and Tielens expression (27) used for the rolling resistance torque.52 A normal damping
force model of Tsuji et al.58 with zero restitution coefficient was used to account for both fluid and
viscoelastic damping within the solid. A sliding resistance force and torque and a twisting resistance
torque were also used to inhibit sliding and twisting motion, although generally for small particles
rolling dominates over sliding motions. A complete account of the adhesive DEM theory was given
by Marshall,59 to which we refer the reader for details on the governing equations and numerical
methods.

The fluid forces are dominated by the drag force Fd and the acoustic radiation force Fa. Since
the particle Reynolds number is much smaller than unity and the particle concentration is small, the
Stokes drag force expression (27), with f = 1, can be used. The fluid viscous torque on the particle
is given by

MF = πµd3(1
2
ω −Ω), (40)

where ω is the fluid vorticity vector at the particle location.
A detailed study of the acoustic radiation force in a viscous fluid was presented by Doinikov60

and more recently by Xie and Vanneste.61 For the present computations, we consider neutrally
buoyant particles with nominal 20 µm diameter immersed in a liquid and subject to ultrasound
waves with frequency f = 2.2 Hz and wavenumber k = 8980 m−1. For this case, the ratio of the
particle radius to the acoustic wavelength λ = 2π/k is rp/λ � 0.015 << 1. The viscous penetration
length is δ =

√
2ν/ω, where ω = 2π f is the circular frequency, so that the ratio of the particle radius

to the viscous penetration length is rp/δ � 900 >> 1. For the regime where rp/λ << 1 << rp/δ,
Doinikov60 shows that the magnitude of the leading-order acoustic pressure force on the particle is
given by

Fa =
6πρ f |A|2(rpk)3δ

(2 + χ)2rp (1 − χ)2, (41)

where χ = ρ f /ρp is the ratio of fluid to particle density and A is the acoustic wave amplitude. The
acoustic amplitude is related to the acoustic intensity magnitude I by

|A|2 = 2I
ρ f ck2 , (42)

where c is the speed of sound. For a neutrally buoyant particle, χ = 1 and the force in (41) van-
ishes. For this case, Doinikov60 shows that the leading-order expression reverts to the inviscid King
equation,62 which can be written in terms of the acoustic intensity using (42) as

Fa =
4π
9

r2
p(krp)4

c
I. (43)

Defining the Stokes number St = 4ρpr2
pU/18µb and using the characteristic fluid velocity U given

by (13), the low Stokes-number approximation |u − v| = O(St U) for the particle slip velocity63 can
be used to write the ratio of the acoustic pressure force to the drag force as
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FIG. 13. Plot showing particles and associated particle velocity vectors in the x-y plane, for a slice −0.05 ≤ z ≤ 0.05 of the
computational domain. The particles are magnitude by a factor of 5 to make them visible. The transducer is located at the top
of the figure and the impingement surface is along the bottom.

Fa

Fd
∼ 2

27
rp(rpk)4I
µcU St

. (44)

For the case under consideration, the particle size is sufficiently small that the acoustic radiation
force has only a small effect on the particle motion.64

Simulations were performed with 25 675 particles which were initially distributed randomly
within the computational domain. A dimensionless adhesion parameter Φ is used to characterize the
magnitude of particle adhesive force relative to the particle inertia, defined by

Φ =
2γ

ρprpU2 , (45)

where γ is the particle adhesive surface energy density. Based on typical values of γ and the
parameters listed in Table I, the adhesion parameter was selected to have a value of order unity for
the reported computations, although computations with Φ = 0.1 and 10 were also performed.

A side view showing the particles and the particle velocity vectors at time t = 100 is given in
Figure 13. The acoustic transducer is located at the top of the figure and the impingement surface is
at the bottom of the figure. Only particles in the slice −0.05 ≤ z ≤ 0.05 are plotted in this figure. The
particle velocity vectors follow closely to the associated fluid velocity field due to the small value of
the Stokes number. We observe particles with very small velocity vector in the corners of the domain
and near the stagnation point as the acoustic streaming jet approaches the impingement surface. The
particles touching the impingement surface (i.e., captured particles) are counted as a function of
time and plotted in Figure 14(a) for cases with Φ = 0.1, 1, and 10. The number of captured particles
increases in a nearly linear fashion with time throughout the computation, although the overall number

FIG. 14. (a) Plot of the number of particles captured by the impingement surface as a function of time for cases with Φ= 0.1
(A, black line), 1.0 (B, red line), and 10 (C, blue line). (b) Top view of the particles touching the impingement surface at
t = 100, and their associated velocity vectors.
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remains small. A plot showing the motion of the captured particles on the impingement surface is
given in Figure 14(b), showing the velocity vectors associated with each particle. By viewing movies
of the captured particle motion, it is observed that particles on the impingement surface remain once
they have been captured and they slowly roll in the outward radial direction under the action of the
fluid flow. Particles close to the central stagnation point and particles close to the lateral wall exhibit
very little rolling motion, since in agreement with the results shown in Figure 8, the fluid shear stress
in these regions is too small to counteract the adhesive rolling resistance. New particles are gradually
added to the set of captured particles during the simulation time.

VII. CONCLUSIONS

The problem of fluid mixing and particle transport caused by the acoustic streaming flow
generated by a Gaussian ultrasound beam oriented along the axis of a closed cylindrical container
was examined using numerical simulations. The problem is relevant to a wide range of applications
in which acoustic radiation is used to mix liquids in a container, or in which ultrasound is used to
clean a surface or to enhance deposition of particles from solution onto a surface. The simulations
were performed using an axisymmetric vorticity-streamfunction approach, which was supplemented
by temperature computation both within the fluid and within the underlying solid.

The flow field generated by the acoustic streaming motion exhibits a downward-flowing jet that
impinges on the end wall of the cylindrical container (called the impingement surface), as well as an
upward-flow recirculation along the sides of the container to conserve mass. The overall flow field
has the form of a vortex ring in a bounded cylindrical regime. Increase in the container height causes
the fluid velocity to increase, since a longer expanse of the flow is subject to the acoustic body force,
but the qualitative nature of the flow is unchanged. A series of cases were examined with different
values of the impingement surface reflection coefficient R, and it is found that the fluid vorticity and
velocity fields and the solid temperature scale reasonably well with the intensity transmission factor
1 − R2. The fluid shear stress on the impingement surface was examined and shown to transport
particles radially outward, except for within a region near the cylinder symmetry axis and near the
cylinder wall, within which regions the shear stress is too weak to overcome the adhesive resistance
to particle rolling. It was shown that this flow can rapidly mix the fluid regions within the cylindrical
container, but that deposition of particles onto the bottom surface occurs at a much slower pace
when the particles are small (e.g., 20 µm diameter). When the particles are sufficiently large for the
acoustic radiation force to be of the same order of magnitude as the fluid drag force, the particle
settling rate would be much more rapid.
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