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Summary

� Humans have domesticated diverse species from across the plant kingdom, yet much of our

foundational knowledge of domestication has come from studies investigating relatively few

of the most important annual food crops. Here, we examine the impacts of domestication on

genetic diversity in a tropical perennial fruit species, mango (Mangifera indica).
� We used restriction site associated DNA sequencing to generate genomic single nucleotide

polymorphism (SNP) data from 106 mango cultivars from seven geographical regions along

with 52 samples of closely related species and unidentified cultivars to identify centers of

mango genetic diversity and examine how post-domestication dispersal shaped the geo-

graphical distribution of diversity.
� We identify two gene pools of cultivated mango, representing Indian and Southeast Asian

germplasm. We found no significant genetic bottleneck associated with the introduction of

mango into new regions of the world. By contrast, we show that mango populations in intro-

duced regions have elevated levels of diversity.
� Our results suggest that mango has a more complex history of domestication than previ-

ously supposed, perhaps including multiple domestication events, hybridization and regional

selection. Our work has direct implications for mango breeding and genebank management,

and also builds on recent efforts to understand how woody perennial crops respond to

domestication.

Introduction

Over the past 12 000 yr, humans have domesticated thousands of
species from across the plant kingdom (Meyer et al., 2012; Meyer
& Purugganan, 2013; Gaut et al., 2015). The process of crop
domestication is a special case of co-evolution that gradually
increases plant–human interdependence, and results in various
levels of intensity of cultivation and breeding (Clement, 1999;
Zeder, 2006; Pickersgill, 2007). As such, the domestication pro-
cess provides tractable systems in which to study convergent evo-
lution, gene flow, adaptation, diversification and genome
evolution (e.g. Arnold, 2004; Kovach et al., 2007; Purugganan &
Fuller, 2009; Meyer & Purugganan, 2013; Olsen & Wendel,
2013; The International Peach Genome Initiative, 2013; Wash-
burn et al., 2016). Understanding how these evolutionary forces
impact crop genetic diversity and characterizing the standing
genetic variation within cultivated germplasm is key to crop
improvement efforts (e.g. Iqbal et al., 2001; Burke et al., 2002;
Esquinas-Alc�azar, 2005; Doebley et al., 2006; Pickersgill, 2007;
Gross & Olsen, 2010; Miller & Gross, 2011; Kassa et al., 2012).
However, our current understanding of plant domestication is
founded on studies of highly domesticated annual staples like
cereals and grain legumes (e.g. Singh et al., 1991; Wang et al.,

1999; Matsuoka et al., 2002; Li et al., 2006; Londo et al., 2006;
Huang et al., 2012; Hufford et al., 2013; Saintenac et al., 2013;
Von Wettberg et al., 2018) and, consequently, there remain
many gaps in our understanding of the broader context of
domestication – across a wide span of taxonomic and geographi-
cal diversity, among species that have undergone different degrees
of domestication, and among species with different life-history
strategies (Miller & Gross, 2011; Meyer et al., 2012).

One of the central dogmas of domestication is that crops
undergo an often-severe decrease in genetic diversity in response
to three key bottleneck (or founder) events (Ladizinsky, 1985;
Cooper et al., 2001; Doebley et al., 2006; Van de Wouw et al.,
2010; Miller & Gross, 2011). During the initial stages of culti-
vation, as important traits are selected for or against, crops gen-
erally undergo a ‘domestication bottleneck’ (Cooper et al.,
2001; Van de Wouw et al., 2010). Compounding the primary
loss of diversity, many crops experience a secondary ‘dispersal
bottleneck’ when they are introduced into new geographical
regions (Cooper et al., 2001; Van de Wouw et al., 2010). Soy-
bean, for example, was subjected to an intense introduction bot-
tleneck when it was introduced from Asia into North America
(Hyten et al., 2006). The concept of a dispersal bottleneck is
connected to Vavilov’s premise of crop ‘centers of origin’, which
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posits that the geographical origin of a crop contains the great-
est variation of morphological types (Vavilov, 1987), thereby
implying a loss of diversity as a crop is dispersed. As breeding
and cultivation intensify, some crops suffer a tertiary ‘improve-
ment bottleneck’ (Cooper et al., 2001; Van de Wouw et al.,
2010). The drastic reductions in diversity incurred during these
three bottleneck events (primary, secondary, tertiary) can nega-
tively impact a crop’s ability to adapt to novel environments,
pests and diseases (e.g. Abbo et al., 2003; Esquinas-Alc�azar,
2005). However, the relative impacts of each bottleneck vary
both within and among crops, depending in large part on the
biology of the species itself.

Perennial crop species have recently received increased atten-
tion highlighting their relatively different trajectories under
domestication compared to annuals (Miller & Gross, 2011; Gaut
et al., 2015). In general, woody perennials retain greater levels of
genetic diversity under cultivation than do annual species (Miller
& Gross, 2011). For example, recent genome-wide analyses of
peach (Prunus dulcis) and its close relative almond (Prunus
persica) showed no evidence of genetic bottlenecks associated with
domestication in either species (Velasco et al., 2016), and similar
results have been found for grape (Vitis vinifera; Myles et al.,
2011) and apple (Malus x domestica; Gross et al., 2014). The rela-
tively weak primary domestication bottleneck observed in many
perennial species is largely a result of characteristics common to
the perennial life history: a long generation time and the predom-
inance of self-incompatibility (Miller & Gross, 2011). The
former means that perennial crops have experienced fewer gener-
ations of selection under domestication than their annual coun-
terparts (Pickersgill, 2007), whereas the latter explains how
perennials maintain high levels of heterozygosity despite the fact
that their per-unit-of-time mutation rates are far slower than in
annual species (Savolainen & Pyh€aj€arvi, 2007). In addition,
clonal propagation techniques common in woody perennial culti-
vation allow any individual – including F1 hybrids, triploids and
sterile or seedless parthenocarpic individuals – to be preserved for
posterity, effectively halting the domestication process in that
clone and potentially limiting the loss of genetic diversity in
perennial species (Zohary, 2004; Miller & Gross, 2011). How-
ever, not all perennial crops retain high levels of diversity: the
tropical species coffee (Coffea arabica), cacao (Theobroma cacao)
and pigeonpea (Cajanus cajan) have all experienced significant
losses of diversity during domestication (Anthony et al., 2002;
Aerts et al., 2013; Yang et al., 2013; Varshney et al., 2017).

The mango, Mangifera indica L. (Anacardiaceae) is a perennial
fruit tree that has been cultivated on the Indian subcontinent for
an estimated 4000 yr, where it is called ‘The King of Fruits’
(Mukherjee, 1949). This timeline places the domestication of
mango contemporaneously with that of citron (Citrus medica),
walnut (Juglans regia), peach (Prunus persica), sweet orange
(Citrus x sinensis), lychee (Litchi chinensis), lemon (Citrus limon)
and jujube (Ziziphus jujuba), and before that of the other domes-
ticated species in the poison ivy family: pistachio (Pistacia vera),
cashew (Anacardium occidentale), Peruvian peppertree (Schinus
molle), and jocote (Spondias purpurea) (Meyer et al., 2012).
Unpruned, mango trees can reach over 30 m in height and live

for more than a century, producing tons of fruit throughout their
lifetime.

Most authors presuppose a single domestication event for cul-
tivated M. indica (DeCandolle, 1884; Mukherjee, 1972; Vavilov,
1987; Mukherjee & Litz, 2009; Singh, 2016), and on the basis of
historical documents and artifacts, M. indica is thought to have
been cultivated in India for thousands of years before it was intro-
duced elsewhere (Mukherjee, 1949; Fig. 1). Buddhist monks
were likely the first to introduce mango outside its original range
of cultivation during their trips to Southeast Asia in the 4th and
5th centuries (Mukherjee, 1949). The mango began its westward
journey much later, when Persian traders brought the tree to East
Africa in the 9th or 10th centuries (Mukherjee, 1949). In the 16th
Century, as global botanical trade continued to grow, the Por-
tuguese likely reintroduced the mango into East Africa from their
territory in Goa (Mukherjee, 1949). The Portuguese would con-
tinue to facilitate mango’s range expansion, transporting it to
West Africa, and then to Brazil sometime around 1700 (Pope-
noe, 1920; Mukherjee, 1949). From there, mango spread
throughout the Caribbean, reaching Barbados in 1742 and
Jamaica by 1782 (Popenoe, 1920; Mukherjee, 1949). As a Span-
ish colony, Mexico had an unique history of introductions, with
mangoes arriving from the Caribbean as well as directly from the
Philippines, which also was under Spanish rule at the time (Pope-
noe, 1920; Mukherjee, 1949). It was not until 1833 that the first
mango reached the shores of Florida (Popenoe, 1920). In the
1900s, mango became the subject of intensive breeding programs
in South Florida, which produced many of today’s most impor-
tant commercial cultivars including ‘Tommy Atkins’, ‘Haden’,
‘Keitt’ and ‘Kent’ (Knight et al., 2009). For this reason, South
Florida has been termed a secondary center of domestication for
mango (Knight & Schnell, 1994).

Today, mango is one of the world’s most important fruits and
is grown in tropical and subtropical climates across the world
(FAO, 2003; FAOSTAT, 2018), with two primary cultivar types,
Indian and Indochinese, being differentiated by a suite of mor-
phological characters (Crane & Campbell, 1994). Indian culti-
vars tend to have an apparent color change when ripe, turning
orange or red, and are rounded with fibrous, strong-flavored
flesh. They also generally have a seed that is monoembryonic,
producing a single seedling. By contrast, Indochinese cultivars
tend to turn yellow or remain green when ripe, display a promi-
nent “nose” or “beak”, and have flesh that has little fiber and is
mild in flavor. Indochinese cultivars also typically have polyem-
bryonic seeds, containing a single zygotic embryo and multiple
embryos derived from the maternal nucellar tissue (Mukherjee &
Litz, 2009). Nucellar embryony is a rare trait in angiosperms,
although the phenomenon has been observed in at least three
other species of Mangifera (M. odorata, M. laurina, M. casturi;
(Kostermans & Bompard, 1993; Mukherjee & Litz, 2009; Lim,
2012a,b) and is found in another cultivated genus within the
order Sapindales, Citrus (Wang et al., 2017).

Despite its importance as a global food crop and its cultural
significance in many regions of the world, current ranges of wild
M. indica are not well-characterized. Although wild populations
have been reported from northeastern India, Bangladesh, Bhutan
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and Nepal, and may extend into Myanmar and northern Thai-
land (Kostermans & Bompard, 1993), these populations have
not been recently surveyed, have never been studied in a genetic
framework and are not represented in germplasm collections any-
where in the world. The IUCN’s red list currently categorizes
wild M. indica as ‘data deficient’ (IUCN, 2012). Other species in
the genus Mangifera are found from India to the Solomon
Islands, with the region of highest diversity in Malesia.

Phylogeographical studies can elucidate the origins of crops
and reveal the impacts of domestication on these species (e.g.
Olsen & Schaal, 1999; Salamini et al., 2002; Londo et al.,
2006; Gunn et al., 2011; Kassa et al., 2012; Loor Solorzano
et al., 2012). Although a lack of accessible wild M. indica popu-
lations precludes investigations of a primary bottleneck associ-
ated with the initial domestication of mango, the recent and
well-documented history of mango’s human-mediated migra-
tion into new regions of the world provides an opportunity to
determine whether the species experienced a secondary genetic
bottleneck during successive founder events. Although many
previous studies have provided insight into the molecular diver-
sity and genetic structure of mango cultivars within specific
regions, including Kenya (Sennhenn et al., 2013), Myanmar
(Hirano et al., 2010), China (Luo et al., 2011), Colombia
(Diaz-Matallana et al., 2009), Brazil (Dos Santos Ribeiro et al.,
2012), Iran (Shamili et al., 2012) and, especially, India (Ravis-
hankar et al., 2000, 2015; Kumar et al., 2001; Karihaloo et al.,
2003; Damodaran et al., 2012; Vasugi et al., 2012; Surapaneni
et al., 2013), only a handful have examined mango cultivars
originating across a broad geographical range. Works by Sch-
nell et al. (2006) and Dillon et al. (2013), both of which used
microsatellite markers, found Southeast Asian mango cultivars
to be the most differentiated from other populations, whereas
Sherman et al. (2015) found population structure between
Asian and Western mango cultivars using single nucleotide
polymorphisms (SNPs).

Here, we use SNP markers from double digest restriction site
associated DNA sequencing (ddRADseq; Peterson et al., 2012)
to explore geographical patterns of diversity in mango cultivars
within genebank collections that originated from different geo-
graphical regions. As a reduced representation genomic tech-
nique, RADseq identifies SNPs from across the genome (Miller
et al., 2007; Baird et al., 2008), and has proven to be a useful tool
for investigating population structure and phylogeography in
nonmodel organisms, including crop species (e.g. Xu et al., 2014;
Atchison et al., 2016; Pan et al., 2016; Singh, 2016; Gao et al.,
2017; Stetter et al., 2017). We aim to (1) determine the geo-
graphical distribution of genetic diversity in mango, (2) test
whether India represents a ‘center of diversity’ for mango, and
(3) quantify the secondary genetic bottleneck mango underwent
during its migration to Africa and the Americas. Our work has a
three-fold impact, informing management practices for mango
germplasm resources, providing a better understanding of the
genomic impacts of domestication on cultivated mango, and
adding to the growing body of literature that seeks to understand
how perennial plants evolve under domestication.

Materials and Methods

Sampling

In order to explore the geographical distribution of genetic diver-
sity in mango, we selected 113 cultivars from mango genebanks
in South Florida (Fairchild Tropical Botanic Garden (FTBG),
US Department of Agriculture’s Subtropical Horticulture
Research Station (USDA)) that originated in seven different geo-
graphical regions: India, Southeast Asia (Indochina (Myanmar,
Thailand, Cambodia, Laos, Vietnam) and Malesia (Malaysia,
Indonesia, the Philippines)), Africa (limited germplasm required
pooling of all African samples), South America, Mexico, the
Caribbean (Cuba, Jamaica, Haiti, the Dominican Republic) and

4th–5th Centuries

17th Century

1700 

Mid-1700s 

Mid-1800s 
c. 2000 

   B.C.E.9th–16th Centuries

Fig. 1 Map of the human-mediated migration of the mango across the globe. Colors represent the geographical populations of mango cultivars analyzed
in this study and correspond to labels used throughout the results. Times shown were estimated based on historical documentation (Mukherjee, 1949). The
mango is thought to have originated in India, Nepal, Bangladesh, and Bhutan (red), and domesticated in India c. 4000 yr ago. It was first dispersed into
Southeast Asia (blue, Indochina; green, Malesia) during the 4th–5th centuries BCE, then into East and West Africa (purple) between the 9th and 17th

centuries, South America (Brazil, orange) in 1700, the Caribbean (pink) and Mexico (yellow) during the mid-1700s, and Florida (brown) during the
mid-1800s. Mexico received introductions both from the Caribbean and from the Philippines.
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Florida (Fig. 2; Table S1). We attempted to sample the most
morphologically and geographically diverse and characteristic
mangoes from each region, emphasizing historical cultivars
whenever possible. Additionally, we collected leaves of 54 sam-
ples of unidentified cultivars of Mangifera indica and closely
related Mangifera species from FTBG, Miami-Dade Fruit and
Spice Park, Singapore Botanic Garden, Gardens by the Bay (Sin-
gapore), Purwodadi Botanic Garden (East Java, Indonesia),
Bogor Botanic Garden (West Java, Indonesia), the Forestry
Research Institute of Malaysia (Kepong Malaysia), Pasoh Forest
Arboretum and Reserve (Simpang Pertang, Malaysia), and indi-
vidual collectors (Table S1). Fresh leaf samples were stored at
�80°C or dried in silica and stored at 4°C. DNA was extracted
from each sample using the DNEasy plant mini kit (Qiagen) or,
when necessary, a modified CTAB protocol (Doyle & Doyle,
1990).

RADseq library preparation and locus assembly

Three ddRADseq libraries were prepared following the protocol
of Peterson et al. (2012). The 167 samples for this study were
combined with 121 other samples (sequenced for a complimen-
tary study). High molecular weight DNA (300–1000 ng) was
digested with NlaIII and MluCI (New England Biolabs, Ipswich,
MA, USA). Custom-designed oligonucleotides containing
unique barcode sequences were ligated onto each individual
before pooling eight samples into 12 separate sublibraries per lane
(36 sublibraries across three lanes total). Pippin Prep (Sage
Science, Beverly, MA, USA) was used to size-select 350-bp inserts
(tight size selection, 425 bp, external marker). Short-cycle PCR
was performed in sextuplicate to amplify and add an unique
index to sublibraries, which were then quality-checked on an Agi-
lent Bioanalyzer DNA High Sensitivity Chip (Agilent, Santa
Clara, CA, USA). For libraries where overamplification was
observed, nontarget DNA was removed by size-selection on Pip-
pin Prep, with a subsequent Bioanalyzer quality-check. Each of
the three libraries was sequenced at The University of Southern
California’s Genome and Cytometry Core in a rapid run of Illu-
mina HiSeq 2500 as a single lane of 150-bp single-end reads.

The program FASTQC v.0.11.4 (Andrews, 2010) was used to
check the overall quality of raw fastq files for each sublibrary.
After demultiplexing reads within each sublibrary based on the
individual barcode, seven individuals from this study were
excluded based on low sequencing coverage; additionally, two
individuals were removed from the cultivar dataset after prelimi-
nary analysis showed them to be outliers and likely misidentified
Mangifera species. In total, 158 samples were analyzed: 106 sam-
ples from known mango cultivars and 52 from closely related
species or unidentified accessions (Table S1).

Raw reads were processed using the ipyRAD bioinformatic
pipeline (Eaton, 2014) on Florida International University’s high
performance computing cluster (FIU HPCC) using default
parameters except for: maxdepth = 1000, max_barcodes_mis
match = 1, filter_adapters = 2, and clust_threshold = 0.95 using de
novo clustering. The threshold for clustering reads within and
between individuals was set to 0.95 to account for previous

reports of high heterozygosity within mango (Sherman et al.,
2015; Singh, 2016; Kuhn et al., 2017) and because the full
dataset included closely related Mangifera species. For population
genetic analysis of the 106 mango cultivars, ipyRAD was used to
produce a file containing a single randomly selected (unlinked)
single nucleotide polymorphism (SNP) from each locus for
downstream analyses. To produce a dataset for phylogenetic anal-
ysis, which can tolerate relatively large amounts of missing data,
we performed filtering (ipyRAD step 7) for the complete dataset
of 158 individuals using the parameter min_samples_locus = 33.
For analysis of the full dataset of 158 individuals with STRUCTURE
software, we used a custom python script to remove loci that had
< 10% missing data and individuals < 50% missing data per indi-
vidual. Because population genomic analyses are less tolerant of
missing data than phylogenetic analysis, we filtered the dataset
for the subset of 106 mango cultivars in ipyRAD using the
parameter min_samples_locus = 4, then used a custom python
script to filter loci that contained > 10% missing data and indi-
viduals that had > 50% missing data across all loci, and finally
filtered out loci with a minor allele frequency < 0.01 using the
R/POPPR package (Kamvar et al., 2014).

Phylogenetic analysis

A maximum-likelihood phylogeny for the dataset of 158 individ-
uals (min_samples_locus = 33) was estimated from the concate-
nated SNP dataset (64 331 variable sites, 40 767 parsimony-
informative sites) using IQ-TREE (Nguyen et al., 2015) including
model selection performed with an ascertainment bias to correct
for only including variable loci (-m TEST+ASC; Kalyaanamoor-
thy et al., 2017), 1000 ultrafast bootstrap replicates (-bb 1000;
Hoang et al., 2018) and 1000 bootstrap replicates of the Shi-
modaira–Hasegawa approximate likelihood ratio test (-alrt 1000;
SH-aLRT; Guindon et al., 2010). The model selection imple-
mented in IQ-TREE identified TVM+F+ASC+G4 as the best-fit
model according to Bayesian Information Criterion (BIC). The
phylogeny was rooted with the species M. gedebe, which has been
identified as sister to all other sampled species (E. Warschefsky &
E.J.B. von Wettberg, unpublished) using the program MESQUITE

(Maddison & Maddison, 2018). The tree was visualized and
annotated using the R/APE (Paradis et al., 2004) and R/GGTREE
(Yu et al., 2017) packages.

Population structure and admixture

In order to detect population structure and admixture within the
106 mango cultivars, K-means clustering was conducted in the
Bayesian software STRUCTURE v.2.3.4 (Pritchard et al., 2000;
Falush et al., 2003; Hubisz et al., 2009). For the dataset, lambda
was estimated by averaging the mean value of lambda with K = 1
across 10 independent runs of 100 000 iterations with a 10 000
step burn-in period. Using the estimated value of lambda for the
dataset, 10 runs of 100 000 iterations followed by a 10 000 step
burn in were performed for K = 1–8. The optimal value of K was
determined using STRUCTUREHARVESTER v.0.6.94 (Earl &
vonHoldt, 2012) according to the DK method of Evanno et al.
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Fig. 2 Photographs of fruit from 35 mango cultivars from seven geographical regions (indicated by color bar below photo) included in this study. From left
to right, by row: (1) African cultivars (purple) Hindi Besanara, Piva, Sabre, Diab and Tyler; (2) South American cultivars (orange) Azucar, Fairchild,
Lancetilla, Extrema and Vallenato; (3) Caribbean cultivars (pink) Madame Francis, Peach, Baptiste, San Felipe and Number 11; (4) Floridian cultivars
(brown) Valencia Pride, Tommy Atkins, Kent, Keitt and Joellen; (5) Indian cultivars (red) Mallika, Langra Benarsi, Alphonso, Royal Special and Totapuri;
(6) Phillipine cultivar (green) Carabao, and Mexican cultivars (yellow) Ataulfo, Manilita, Oro and Esmeralda; and (7) Southeast Asian (Malesian) cultivar
(green) Aeromanis; Southeast Asian (Indochinese) cultivars (blue) Pyu Pyu Kalay, Nam Doc Mai, Saigon, and Swethintha.
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(2005). Results were summarized with CLUMPP v.1.1.2 (Jakobsson
& Rosenberg, 2007) using the greedy option (M = 2) for K = 1–8,
with G0 similarity and 1000 random permutations. The results
were visualized using DISTRUCT v.1.1 (Rosenberg, 2004), and
individuals were labeled by population. Genetic structure also
was analyzed for the full dataset in a similar manner. Addition-
ally, principal component analysis (PCA) was used to visualize
population structure within the dataset of 106 mango cultivars in
the R/ADEGENET package (Jombart, 2008; Jombart & Ahmed,
2011). Analysis of population structure was performed for the fil-
tered full dataset (158 individuals, min_samples_locus = 4 with
< 10% missing data per locus, < 50% missing data per individ-
ual; 612 unlinked SNP markers) using the same methods as for
the dataset of 106 individuals. For the dataset of 106 cultivars
and the full dataset, the average population assignment for each
region/species also was calculated from STRUCTURE results.

Indices of genetic diversity

Common measures of genetic diversity were calculated for the
seven populations of mango cultivars using the dataset of 364
SNPs. Observed heterozygosity (HO), gene diversity (HE, the
expected heterozygosity within subpopulations assuming Hardy–
Weinberg Equilibrium), and the inbreeding coefficient (FIS) were
calculated in the R/HIERFSTAT package (Goudet, 2005). Addi-
tional packages were used to calculate allelic richness (rarefied to
account for population size; POPGENREPORT; Adamack & Gru-
ber, 2014), per site nucleotide diversity (p) (calculated from all
loci, including invariant sites; PEGAS; Paradis, 2010), private alle-
les (POPPR; Kamvar et al., 2014), and percentage polymorphism
(ADEGENET; Jombart, 2008; Jombart & Ahmed, 2011).

Population differentiation

In order to test for significant genetic differentiation between mango
cultivars originating from the geographical regions represented in
this dataset (India, Southeast Asia (Indochina & Malesia), Africa,
the Americas, the Caribbean, Mexico, and Florida), pairwise values
of population differentiation (FST of Weir & Cockerham, 1984)
between populations of cultivars were calculated in GENODIVE

v.2.0b27 (Meirmans & Van Tienderen, 2004) and significance was
evaluated with a Bonferoni correction for multiple tests. To examine
population differentiation within 106 mango cultivars, we per-
formed AMOVA (Excoffier et al., 1992; Michalakis & Excoffier,
1996) in the software GENODIVE v.2.0b27 (Meirmans & Van Tien-
deren, 2004) under an infinite allele model and with 999 permuta-
tions to test for significant differences. Before the AMOVA, missing
data were filled in with randomly drawn alleles determined by the
overall allele frequencies.

Results

Sequencing and assembly

We obtained 201 811 265 raw reads for the 158 individuals
(excluding a total of nine low coverage and outlier samples

from the original 167) analyzed in this study (average
1 277 286, standard deviation 541 376; Table S1; NCBI Bio-
project PRJNA517351; NCBI SRA Accessions SRR8521837–
SRR8521844). The FASTQC results indicated that reads were
of high quality across the entire 150 bp length. Because
RADseq datasets often have large amounts of missing data,
filtering parameters can have a major impact on the overall
size of the dataset. The complete dataset for 158 individuals,
which included all variable sites and allowed for large
amounts of missing data, contained 64 331 SNPs; after filter-
ing loci with > 10% missing data and individuals with > 50
missing data, the dataset included 612 unlinked SNP markers.
The subset for 106 mango cultivars recovered 364 unlinked
SNPs that had a minor allele frequency > 0.01% from the
994 loci (some invariant) recovered in at least 90% of
individuals.

Phylogenetic hypothesis

The maximum-likelihood phylogeny of the full dataset of 158
individuals provides information at both the intraspecific and
interspecific levels (Fig. 3). Ultrafast bootstrap support values
can be considered strong only when > 95% (Hoang et al.,
2018), whereas SH-aLRT bootstrap values can be considered
strong at > 80% (Guindon et al., 2010), and nodes with strong
support from both measures were identified (Fig. 3). The
species M. pentandra, M. casturi, M. gedebe and M. zeylanica
were recovered as monophyletic (some with unidentified or
putatively identified individuals included in their monophyletic
groups), with high support from both ultrafast bootstrapping
and SH-aLRT bootstrapping. A number of clades consisting
solely of samples of uncertain identity also were recovered.
Within the core clade of M. indica, three subclades were recov-
ered, though support values for these clades were low. In gen-
eral, Indochinese and Malesian samples were recovered in
separate clades compared to cultivars from other regions of the
world. The first clade consists of two Indonesian (‘Aeromanis’,
‘Gedong Ginco’), two African (‘Diab’, ‘Hindi Besanara’) and
two Indochinese (‘Golek’, ‘Sig Siput’) cultivars along with sam-
ples identifed as M. lalijiwa, and unidentified samples, most of
which were collected in Indonesia. The second clade consists of
primarily Indochinese samples and also includes one Floridian
sample (‘Joellen’) and one African sample (‘Ewais’). Notably,
within the second clade two Mexican cultivars (‘Ataulfo’ and
‘Manila’) form a monophyletic group with the lone Philippine
cultivar (‘Carabao’), corroborating the historical documentation
which indicates that some Mexican mango germplasm was
introduced directly from the Philippines. The third clade of
M. indica primarily contains cultivars from India, Florida,
South America, the Caribbean and Africa, but also includes five
Indochinese cultivars (‘Myatrynat’, ‘Swethintha’, ‘Saigon’,
‘Maha Chanok’ and ‘Cac’) and the remaining three Mexican
cultivars (‘Oro’, ‘Manila’ and ‘Esmeralda’). Although some cul-
tivars from within particular regions are recovered as closely
related to one another, there is not strong geographical struc-
ture within the clade.
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Population structure

The population structure of the subset of 106 mango cultivars
was first examined with the program STRUCTURE to identify
genetic groups, which found K = 3 to be optimal using the DK
method of Evanno, though additional informative structure is
observed for K = 2 and 4 (Fig. 4a–c). For K = 3, populations from
Florida and India have similar compositions, with high levels of
ancestry from group two, moderate levels of admixture from
group three, and low levels of admixture from group one. The
majority of individuals in the Caribbean and South American
populations have the highest level of ancestry from group three,
with moderate levels of admixture from population two and low
levels of admixture from group three. As a whole, the Southeast
Asian cultivars are distinct from cultivars from other regions,
with high levels of ancestry from group one and low to moderate
contributions from groups two and three. African cultivars are
inferred to have high levels of admixture among the three groups,
with great variability in inferred ancestry across individuals. Simi-
larly, most cultivars from Mexico show high levels of admixture
from the three groups. Indicative of the ongoing exchange of
germplasm across the world, all populations include some indi-
viduals that deviate from the overall pattern for that population.
These results also are supported when examining the average of
all individuals within each population (Table S2a–c).

Population structure also was examined for the full dataset of
612 unlinked SNPs from 158 individuals (Fig. 4d–f). Individu-
als were sorted and labeled by species or population. Using the
DK method of Evanno, K = 2 was found to be the optimal num-
ber of populations, though we observed additional informative
structure for K = 3 and 4. For K = 3, mango cultivars from
Florida, the Caribbean, South America, Africa (with the excep-
tion of two individuals), and India show high levels of shared
ancestry from a single group and only a few individuals indicate
low levels of admixture with a secondary group. By contrast,
almost all cultivars from Indochina and Malesia show high levels
of admixture with the second group. Admixed ancestry from
groups one and two was also found in M. casturi, M. pentandra
and M. lalijiwa. Both M. gedebe and M. laurina are assigned to
group three with little evidence of admixture. A few individuals,
including three cultivars from Africa, both samples of
M. zeylanica, and multiple unidentified samples from Florida
and Malesia, were inferred to be of admixed ancestry between
groups one and three or between all three groups. The unidenti-
fied accessions in Florida and Malesia were highly variable, with
individuals assigned to group one, group three, or showing
admixture between two or more of the populations. Of note, no
individuals are inferred to have > 60% ancestry from group two.
The average assignment of individuals from geographical regions
showed similar results (Table S3a–c).

Fig. 3 Maximum-likelihood phylogeny of the
full dataset of 158Mangifera accessions.
Label colors represent the seven populations
ofM. indica cultivars (red, India; purple,
Africa; orange, South America; pink, the
Caribbean; yellow, Mexico; brown, Florida;
and Southeast Asia (green, Malesia; blue,
Indochina)), closely related wildMangifera
species (black), and accessions of uncertain
identity (grey). Nodes with high support
(SH-aLRT ≥ 80% and ultrafast bootstrapping
≥ 95%) are indicated by a black circle.
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(a)

(b)

(c)

(d)

(e)

(f)

(g)

Fig. 4 Inferred population structure for 106 mango cultivars (a–c) and the full dataset of 158 individuals (d–f) as estimated by the software STRUCTURE and
visualized with the software DISTRUCT for two (a, d), three (b, e) and four (c, f) populations. Each vertical bar represents a single individual that is assigned
ancestry to one or more of the populations (shades of green). Individuals are sorted and labeled by geographical region or species identification (MSP,
MalesiaMangifera spp.; FSP, FloridaMangifera spp.) and are in the same order across all six plots (with the exception of two outliers from the African
population removed for the dataset of 106 cultivars). (g) Average population assignment for each geographical region in the dataset of 106 individuals for
the optimal K = 3.
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For analysis of the 106 mango cultivars using PCA, the first
principal component explained 9.58% of the variance whereas
the second explained 5.84% (Fig. 5). The PCA clustered cultivars
from Florida with those from India, whereas cultivars from the
Caribbean and South America showed some differentiation.
Mango cultivars from Southeast Asia were the most distinct, with
little overlap between Southeast Asian cultivars and those from
other regions. Cultivars from Africa and Mexico were the most
widely distributed, providing further evidence of the high varia-
tion in individual genetic composition for these populations.
Together, the results of clustering analyses indicate that Southeast
Asian cultivars contain unique genetic diversity that is not well
represented in cultivars from other regions of the world.

Genetic diversity and population differentiation

Measures of genetic diversity were calculated for the seven
populations of mango cultivars (Table 1) from the dataset of
364 unlinked SNPs. In general, levels of diversity were similar
across all populations, although the levels of diversity for the
African population were consistently high compared to other
populations, whereas diversity in the Floridian population was
relatively low. Levels of HO were highest for the Caribbean
and South America (0.2156 and 0.2154, respectively) and low-
est for Florida and India (0.1833 and 0.1815, respectively).

Africa had the highest levels of gene diversity (HE 0.2169),
whereas Florida had the lowest (0.1711). Values for the
inbreeding coefficient FIS ranged from 0.0425 (Africa) to
�0.0411 (Florida), indicating relatively low levels of inbreed-
ing in mango cultivars. Values of allelic richness differed little
between populations, with the highest levels found in the
African and Caribbean populations (1.2106 and 1.2107,
respectively) and the lowest found in the Floridian population
(1.1690). We observed the highest nucleotide diversity in the
African population (0.0671) and the lowest in the Floridian
population (0.0293). Percentage polymorphism varied from
83.52% in the Southeast Asian population to 54.40% in the
Mexican population. The number of private alleles was highest
in the Indochinese population (74), for which we measured
nearly five times as many private alleles as the next highest
population, India, which had 15.

Many pairs of populations were significantly differentiated
from one another by pairwise calculations of FST (Table 2). The
Floridian, Indian and Southeast Asian populations were signifi-
cantly different from all other populations. Additionally, the
Caribbean and African populations were significantly different.
The AMOVA found that a significant amount (7.6%) of the total
variation was segregated between populations (F = 0.076,
P = 0.001), with the majority of variation (91.8%) shared across
individuals (Table 3).

PC1: 9.58%

P
C

2:
 5

.8
4%

Fig. 5 Principal component (PC) analysis of
106 mango cultivars from seven
geographical populations. Axes are labeled
with the percentage of variation explained by
the corresponding PC. Colors represent the
seven populations ofMangifera indica
cultivars (red, India; purple, Africa; orange,
South America; pink, the Caribbean; yellow,
Mexico; brown, Florida; and Southeast Asia
(green, Malesia; blue, Indochina)).

� 2019 The Authors

New Phytologist� 2019 New Phytologist Trust
New Phytologist (2019) 222: 2023–2037

www.newphytologist.com

New
Phytologist Research 2031



Discussion

Here, we analyzed mango cultivars and closely related Mangifera
species to describe phylogeographical patterns of diversity, explic-
itly test whether India represents a ‘center of diversity’ for mango,
and quantify the genetic bottleneck that mango underwent as it
was introduced into new regions of the world. Collectively, our
results provide insight into global mango diversity as well as the
process of domestication in one of the world’s most important
perennial fruit crops.

Geographical distribution of diversity

Patterns of genetic diversity in crops can tell us about their history
of domestication. Our analysis of genetic structure within culti-
vated mango germplasm identified two primary groups, corre-
sponding to Indian and Southeast Asian cultivars, with a third, less
defined group representing Caribbean and South American culti-
vars. The differentiation between Indian and Southeast Asian culti-
vars supports previous genetic analysis of mango germplasm
diversity (Schnell et al., 2006; Dillon et al., 2013) and traditional
classification of mango cultivar types as Indian or Indochinese
(Crane & Campbell, 1994). Furthermore, the differentiation of
South American and Caribbean cultivars aligns with another recent
analysis of mango germplasm diversity, which found differentia-
tion between Asian and Western cultivars (Sherman et al., 2015).

In addition to the three groups of cultivars, our analysis of
population structure, principal components and nucleotide diver-
sity show that the African and Mexican cultivar populations have
high levels of admixture and diversity. In support of historical
documentation indicating that Mexico received germplasm
directly from the Philippines (Mukherjee, 1949), two of the five
Mexican cultivars cluster closely with the lone Philippine cultivar.
Whereas the Philippines is considered part of Malesia, the group
of Mexican and Philippine cultivars clusters with Indochinese
rather than Malesian cultivars in the phylogeny. Notably, the
African population has relatively high levels of diversity and
includes individuals that cluster with Indian and Southeast Asian
populations. The diversity of African populations may be an

artefact of sampling cultivars that are modern introductions
rather than historical cultivars, which are rare in germplasm col-
lections. Additional effort should be made to examine the diver-
sity of mango cultivars in Africa and identify traditional cultivars.

Centers of diversity and dispersal bottlenecks

Traditionally, crops are thought to have a center of diversity near
where they were originally domesticated (Vavilov, 1987) and expe-
rience a loss of this baseline diversity as the result of introduction
bottlenecks (Cooper et al., 2001; Van de Wouw et al., 2010).
However, relatively few studies have sought to quantify the intro-
duction bottlenecks experienced by perennial species during
domestication or test for centers of origin for these species.
Whereas most scholars believe that mango was domesticated in
India, the existence of two morphologically distinct mango cultivar
types has previously led some to suggest that Indochina played an
important role in the origin and domestication ofM. indica (Bom-
pard, 2009; Iyer & Schnell, 2009). Analyzing cultivars from seven
geographical regions, we find little evidence that mango has a cen-
ter of diversity in India or that it experienced a secondary genetic
bottleneck during its dispersal into new regions of the world. In
fact, by most measures, the Indian population of mango cultivars
has lower diversity than populations from other regions of the
world (Table 1). Similarly, although we find that the Southeast
Asian (Indochinese and Malesian) population contains unique
genetic variation, including a large number of private alleles
(Table 1; Fig. 5), it did not consistently have the highest measures
of diversity. Rather than mango germplasm having a center of
genetic diversity that aligns with a purported center of origin in
India or Southeast Asia, many measures of genetic diversity are
slightly elevated in regions where mango is introduced: Africa,
South America, the Caribbean and Mexico.

In the early 1900s, mango cultivation and breeding programs
intensified in the Americas, especially in South Florida, which
went on to produce many of today’s most commercially impor-
tant cultivars. The novel characteristics of these cultivars and their
success in the global market led South Florida to be dubbed a sec-
ondary center of domestication (Knight & Schnell, 1994),

Popula�on Ho HE Fis Ar π %Poly Ap 

Africa 0.2028 0.2169 0.0425 1.2106 4.03E-04 73.08 0
Caribbean 0.2156 0.2134 –0.0094 1.2105 3.42E-04 76.37 6
Florida 0.1833 0.1711 –0.0411 1.1690 2.03E-04 69.51 4
India 0.1815 0.1867 0.0221 1.1839 3.41E-04 74.45 15

Mexico 0.1967 0.2045 0.0172 1.1923 3.96E-04 54.40 2
S America 0.2154 0.2096 –0.0270 1.2030 3.69E-04 65.93 0
SE Asia 0.1956 0.1977 0.0108 1.1954 3.57E-04 83.52 74

For each column, warmer colors reflect lower values. HO, observed heterozygosity; HE, heterozygos-
ity within populations, aka ‘gene diversity’; FIS, inbreeding coefficient; Ar, allelic richness (rarefied to
account for population size); p, nucleotide diversity (calculated with invariant loci); %Poly, percent-
age polymorphic; Ap, private alleles.

Table 1 Measures of diversity for 106 mango
(Mangifera indica) cultivars from seven
geographical populations calculated from 364
unlinked single nucleotide polymorphism loci.
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although previous molecular work has shown this to be unfounded
(Schnell et al., 2006). Our results confirm that Florida is not a cen-
ter of mango genetic diversity. In fact, across all measures of popu-
lation structure and genetic diversity, we found Floridian mangoes
to have relatively low diversity compared to other populations
(Table 1; Figs 3, 4). Additionally, phylogenetic analysis (Fig. 2)
indicates that many of the Floridian cultivars appear to be closely
related to one another, including the three most commercially
important Floridian cultivars in this study, ‘Tommy Atkins’,
‘Kent’ and ‘Keitt’. This finding highlights an important concern in
perennial crop cultivation: the loss of diversity at the population
level, rather than the individual level. Although most perennial
species have high within-individual heterozygosity, they are often
clonally propagated and therefore commercial orchards have virtu-
ally no population-level diversity, putting them at risk for disease
outbreaks (Gross, 2012). The lack of diversity in commercial
orchards is exacerbated when the most important commercial cul-
tivars come from a narrow genetic base, as is the case for the three
Floridian cultivars.

Insight into mango domestication history

Collectively, our results suggest that the history of domestication
in mango has been more complex than assumed previously, and
may follow one or two other trends seen in perennial crops: mul-
tiple domestications and interspecific hybridization with con-
generic species (Miller & Gross, 2011; Warschefsky et al., 2014).
Both of these phenomena are common in the course of perennial
fruit crop domestication, a process that likely occurs on a broader
geographical scale and over a longer period of time than it does
in annual species (Miller & Gross, 2011). As reviewed by Miller

& Gross (2011), perennial fruit crops that are known to have
multiple origins include breadfruit (Artocarpus altilis), pecan
(Carya illinoinensis), hazelnut (Coryus avellana), coconut (Cocos
nucifera), olive (Olea europaea), apricot (Prunus armeniaca),
peach (Prunus persica), pear (Pyrus communis), red raspberry
(Rubus idaeus), blackberry (Rubus spp.) and jocote (Spondias
purpurea). The list of perennial fruit crops that are the result of
hybridization events between congeneric species (reviewed in
Miller & Gross, 2011) is much longer, but includes sweet orange
(Citrus sinensis), fig (Ficus carica), walnut (Juglans regia), avocado
(Persea americana) and grape (Vitis vinifera).

In the case of mango, we find evidence supporting two culti-
vated gene pools that combine to create regions of elevated diver-
sity outside the center(s) of origin. Furthermore, our results
indicate that some of the genetic diversity present in modern-day
mangoes may not have originated in India: we find clear evidence
from indices of genetic diversity (percentage polymorphic, num-
ber of private alleles), phylogenetic analysis and two clustering
methods (principal components analysis, STRUCTURE), that South-
east Asian cultivars contain unique genetic diversity compared to
other populations of mango cultivars. Although the phylogenetic
relationships within the M. indica clade are not well supported,
the maximum-likelihood topology suggests that Southeast Asian
mango cultivars diverged earlier than M. indica cultivars from
other parts of the world. Bompard (2009) previously proposed
that, despite archaeological and linguistic evidence, M. indica
might have been domesticated independently in India and
Indochina. Another possibility is that mango was initially culti-
vated in Southeast Asia and later improved and further domesti-
cated in India. Still, the high number of congeneric species
endemic to Indochina and Malesia and previous evidence of inter-
specific hybrids in Mangifera (Kostermans & Bompard, 1993)
suggest that the novel diversity seen in Indochinese cultivars could
be the result of genetic introgression. However, given that
Caribbean and South American populations of mango exhibit
some differentiation from Indian populations, it remains possible
that the divergence seen between Indian and Southeast Asian
mango cultivars is the result of selection for environmental or cul-
tural and culinary purposes. In Southeast Asia, for example,
mango cultivars are commonly consumed in savory dishes at the
immature, ‘green’ stage, and there is undoubtedly some selection
for cultivars that are best when eaten at this early stage. Teasing

Table 2 Pairwise differentiation between seven geographical populations of mango (Mangifera indica) cultivars calculated from 364 unlinked single
nucleotide polymorphism loci.

India Africa S America Mexico Caribbean Florida SE Asia

India – 0.012* 0.002* 0.019* 0.001* 0.001* 0.001*
Africa 0.030 – 0.118 0.097 0.021* 0.001* 0.001*
S America 0.061 0.018 – 0.208 0.573 0.001* 0.001*
Mexico 0.047 0.026 0.014 – 0.092 0.001* 0.001*
Caribbean 0.060 0.025 �0.004 0.020 – 0.001* 0.001*
Florida 0.052 0.054 0.070 0.059 0.071 – 0.001*
SE Asia 0.093 0.088 0.125 0.084 0.140 0.133 –

Values of FST are given below the diagonal (bold indicates significant differences), and corrected P-values are given above the diagonal (*, a ≤ 0.044, with
Bonferroni correction for multiple comparisons).

Table 3 Analysis of molecular variance for 106 mango (Mangifera indica)
cultivars from seven geographical populations based on data from 364
unlinked single nucleotide polymorphism markers.

Source of variation Nested in % Variation F-stat F-value P-value

Within individual – 91.8 FIT 0.082 –
Among individual Population 0.7 FIS 0.007 0.215
Among population – 7.6 FST 0.076 *0.001

*, a ≤ 0.05.
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apart the seemingly complex history of domestication in mango
requires more thorough sampling of wild M. indica, Indian,
Indochinese, and Malesian mango cultivars and landraces, along
with additional samples from closely related Mangifera species in
India and Indochina, many of which were not included in the pre-
sent study.

Remaining gaps and future goals

We observed neither a center of diversity in India or Florida nor a
loss of diversity associated with mango’s dispersal into Africa and
the Americas, yet this line of inquiry deserves additional attention.
Given that population structure has been observed within Indian
mango germplasm (Ravishankar et al., 2000, 2015; Kumar et al.,
2001; Karihaloo et al., 2003; Damodaran et al., 2012; Vasugi
et al., 2012; Surapaneni et al., 2013; Singh, 2016), we made an
effort to include a diverse subset of Indian cultivars in our analy-
sis; however, it is possible that the individuals included here do
not fully encompass the diversity present in India. Additionally,
sampling from within Africa was restricted because of the limited
number of African cultivar accessions in the FTBG genebank.
Future efforts should be made to address the lack of African
germplasm in US collections and refine our understanding of the
phylogeography of mango in Africa, particularly given the diver-
sity which we observed in African germplasm.

Simulation studies have shown metrics of diversity calculated
from RADseq datasets may be inflated because of allele dropout
and large amounts of missing data (Gautier et al., 2012; Arnold
et al., 2013); therefore, we restricted the amount of missing data
in our dataset. Contrary to these expectations, our estimates of
gene diversity in mango were lower than those from the only
other comparable report. Sherman et al. (2015) estimated gene
diversity from transcriptome-derived single nucleotide polymor-
phism (SNP) markers in mango to have a median value of 0.28–
0.43, roughly 1.5–2-fold higher than the average values calcu-
lated here. The explanation for this discrepancy is not immedi-
ately clear; however, more recent empirical work indicates that
missing data may not inflate diversity indices in empirical
datasets as much as was proposed initially (Hodel et al., 2017).
One possibility for the observed differences in gene diversity
between studies is that low sequence coverage and low tolerance
for missing data at the interspecific level in the present study pro-
duced a dataset of highly conserved genomic regions, which are
inherently less diverse (Huang & Knowles, 2016). As we progress
toward a high-quality sequence of the mango genome (Singh,
2016; D. Kuhn, pers. comm.) better estimations of genome-wide
heterozygosity in mango will be possible.

Here, we tested whether mango incurred a dispersal bottleneck
by comparing cultivars from different regions of the world. How-
ever, the question of whether mango underwent a primary loss of
diversity during the initial phases of domestication cannot be
answered without including samples from mango’s wild progeni-
tors, although future analysis using coalescent simulations of
demography may help shed light on this issue. For a number of rea-
sons, it may be difficult to locate and identify mango’s wild progen-
itor populations. As a result of intensifying land use in the native

range of M. indica, it is possible that many populations of wild
M. indica have been extirpated. Additionally, whether the individu-
als in this region truly represent wild M. indica or whether they are
naturalized offspring of previously cultivated individuals may be
difficult to determine. Naturalized mango trees are frequently
observed in the Neotropics, and, to the casual observer, appear to
be wild (Bompard, 2009). Further complicating this problem is the
fact that many closely related Mangifera species bear remarkable
resemblance to cultivated mango, and common names of these
species are often translated to “wild mango” (Kostermans & Bom-
pard, 1993; E. Warschefsky, pers. obs.). The identification and
in situ and ex situ conservation of wild populations of M. indica
and its closest relatives is of critical importance to understanding
the history and improving the future of ‘The King of Fruits’.
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