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Abstract

Aims

In ecology and conservation biology, the number of species

counted in a biodiversity study is a key metric but is usually a biased

underestimate of total species richness because many rare species

are not detected. Moreover, comparing species richness among

sites or samples is a statistical challenge because the observed num-

ber of species is sensitive to the number of individuals counted or

the area sampled. For individual-based data, we treat a single, em-

pirical sample of species abundances from an investigator-defined

species assemblage or community as a reference point for two es-

timation objectives under two sampling models: estimating the

expected number of species (and its unconditional variance) in

a random sample of (i) a smaller number of individuals (multinomial

model) or a smaller area sampled (Poisson model) and (ii) a larger

number of individuals or a larger area sampled. For sample-based

incidence (presence–absence) data, under a Bernoulli product

model, we treat a single set of species incidence frequencies as

the reference point to estimate richness for smaller and larger

numbers of sampling units.

Methods

The first objective is a problem in interpolation that we address

with classical rarefaction (multinomial model) and Coleman

rarefaction (Poisson model) for individual-based data and with

sample-based rarefaction (Bernoulli product model) for incidence

frequencies. The second is a problem in extrapolation that we

address with sampling-theoretic predictors for the number of

species in a larger sample (multinomial model), a larger area

(Poisson model) or a larger number of sampling units (Bernoulli

product model), based on an estimate of asymptotic species

richness. Although published methods exist for many of these

objectives, we bring them together here with some new estimators

under a unified statistical and notational framework. This novel

integration of mathematically distinct approaches allowed us to

link interpolated (rarefaction) curves and extrapolated curves to

plot a unified species accumulation curve for empirical examples.

We provide new, unconditional variance estimators for classical,

individual-based rarefaction and for Coleman rarefaction, long

missing from the toolkit of biodiversity measurement. We illustrate

these methods with datasets for tropical beetles, tropical trees and

tropical ants.

Important Findings

Surprisingly, for all datasets we examined, the interpolation (rarefac-

tion) curve and the extrapolation curve meet smoothly at the refer-

ence sample, yielding a single curve. Moreover, curves representing

95% confidence intervals for interpolated and extrapolated richness

estimates also meet smoothly, allowing rigorous statistical compar-

ison of samples not only for rarefaction but also for extrapolated

richness values. The confidence intervals widen as the extrapolation

moves further beyond the reference sample, but the method gives

reasonable results for extrapolations up to about double or triple

the original abundance or area of the reference sample. We found

that the multinomial and Poisson models produced indistinguishable

results, in units of estimated species, for all estimators and datasets.

For sample-based abundance data, which allows the comparison of

all three models, the Bernoulli product model generally yields lower

richness estimates for rarefied data than either the multinomial or the

Poisson models because of the ubiquity of non-random spatial

distributions in nature.
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INTRODUCTION

Exhaustive biodiversity surveys are nearly always impractical

or impossible (Lawton et al. 1998), and the difficulties inherent

in estimating and comparing species richness from sampling

data are well known to ecologists and conservation biologists.

Because species richness increases non-linearly with the num-

ber of individuals encountered, the number of samples col-

lected or the area sampled, observed richness is inevitably

a downward biased estimate of true richness. ‘Adjustment’

for differences in sampling effort by calculating simple ratios

of species per individual or species per unit of sampling effort

seriously distorts richness values and should never be relied

upon (Chazdon et al. 1999). For assessing and comparing spe-

cies accumulation curves or rarefaction curves, methods that

are based on an explicit statistical sampling model provide

a straightforward resolution for many applications (Gotelli

and Colwell 2011).

In many biodiversity studies, the basic units are individuals,

ideally sampled randomly and independently, counted and

identified to species. We refer to such data as ‘individual

based’. In many other studies, the sampling unit is not an in-

dividual, but a trap, net, quadrat, plot or a fixed period of sur-

vey time. It is these sampling units, and not the individual

organisms, that are sampled randomly and independently. If

the number of individuals for each species appearing within

each sampling unit can bemeasured or approximated, we refer

to the resulting data as ‘sample-based abundance data’. For

many organisms, especially microorganisms, invertebrates or

plants, only the incidence (presence or absence) of each spe-

cies in each sampling unit can be accurately recorded.We refer

to such a dataset as ‘sample-based incidence data’ (Gotelli and

Colwell 2001).

For individual-based data, we treat a single, empirical sample

of species abundances, which we refer to as the ‘abundance ref-

erence sample’ from an investigator-defined species assemblage

or community as a reference point for two estimation prob-

lems: (i) estimating the expected number of species (and its

variance) in a random sample of a smaller number of indi-

viduals or a smaller area sampled and (ii) estimating the

number of species (and its variance) that might be expected

in a larger number of individuals or a larger area sampled.

The first is an ‘interpolation’ problem that is addressed with

classical rarefaction and Coleman rarefaction. The second

is an ‘extrapolation’ problem that we address with sampling-

theoretic predictors for the number of species in a larger sam-

ple or larger area based on an estimated asymptotic species

richness.

For sample-based incidence data, the statistical equivalent

of the abundance reference sample is the ‘incidence reference

sample’, the set of incidence frequencies among the sampling

units, one frequency for each observed species over all sam-

pling units. For interpolation and extrapolation, we treat these

incidence frequencies in nearly the sameway that we treat the

list of species abundances in a single abundance reference sam-

ple (with appropriate statistical modifications), to estimate

richness for smaller and larger numbers of sampling units.

For sample-based abundance data, the abundances are either

first converted to incidences (presence or absence) before ap-

plying incidence-based methods or else abundances are

summed across sampling units and individual-based (abun-

dance) methods are applied to the sums.

Both interpolation and extrapolation from an empirical ref-

erence sample can be viewed as estimating the form of the un-

derlying species accumulation curve. This curve is a plot of

species richness as a function of the number of individuals

or sampling units, including both smaller and larger numbers

of individuals or sampling units than in the reference sample.

We model the species accumulation curve as asymptotic to

an estimate of the species richness of the larger community

or assemblage represented by the empirical reference sample

(Fig. 1).

In this paper, for the interpolation (rarefaction) problem for

individual-based (abundance) data, we present a unified sta-

tistical framework for two distinct approaches: (i) a multino-

mial model for classical rarefaction (Heck et al. 1975; Hurlbert

1971; Sanders 1968; Simberloff 1979; Smith and Grassle 1977)

and (ii) a continuous Poisson model for Coleman’s ‘random-

placement’ rarefactionmethod (Coleman 1981; Coleman et al.

1982). For sample-based (incidence) data, we present a ‘Ber-

noulli product model’ for sample-based rarefaction (Shinozaki

1963, Ugland et al. 2003 and Colwell et al. 2004, with an in-

structive historical perspective by Chiarucci et al. 2008).

For the extrapolation problem, we present—in the same uni-

fying statistical framework as for interpolation—non-parametric

methods for projecting rarefaction curves beyond the size of the

reference sample under all three models. For the multinomial

model, first explored for extrapolation by Good and Toulmin

(1956), we rely on published work by Solow and Polasky

(1999), Shen et al. (2003) andChao et al. (2009). For the Poisson

model, we follow Chao and Shen (2004), in which the pioneer-

ing work by Good and Toulmin (1956) was discussed.

Alternative approaches to the extrapolation of individual-based

rarefaction curves include the little-used ‘abundification’

method of Hayek and Buzas (1997) and the mixture model

of Mao (2007). Extrapolating sample-based rarefaction curves

4 Journal of Plant Ecology
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beyond the incidence reference sample has been investigated by

Colwell et al. (2004), Mao et al. (2005), Mao and Colwell (2005)

andMao (2007), but those methods, although theoretically use-

ful andflexible, are based on rather complicatedmixturemodels.

Here, we take a simpler approach to extrapolation for the Ber-

noulli product model (e.g. Burnham and Overton 1978), in

hopes that it will be more widely applied.

The principal use of rarefaction curves has long been the

comparison of species richness among empirical samples that

differ in the total number of individuals (e.g. Lee et al. 2007;

Sanders 1968, among many others) or among sample-based

datasets that differ in the total number of sampling units

(e.g. Longino and Colwell 2011; Norden et al. 2009, among

many others). Rigorous comparison of rarefaction curves at

a common number of individuals or a common number of

sampling units requires computation of confidence intervals

for these curves. However, existing variance estimators for

individual-based (classical) rarefaction (Heck et al. 1975)

and for Coleman rarefaction (Coleman et al. 1982) are not

appropriate for this purpose because they are conditional on

the reference sample.

For sample-based rarefaction, Colwell et al. (2004) derived

an unconditional variance estimator, which we use as a model

to develop simple, approximate expressions for the uncondi-

tional variance for both classical rarefaction and Coleman’s

random-placement rarefaction, long missing from the toolkit

of biodiversity measurement and estimation for individual-

based data (Gotelli and Colwell 2011). These unconditional

variance expressions assume that the reference sample repre-

sents a random draw from a larger (but unmeasured) commu-

nity or species assemblage, so that confidence intervals for

rarefaction curves remain ‘open’ at the full-sample end of

the curve. In contrast, traditional variance estimators for rar-

efaction (e.g. Heck et al. 1975; Ugland et al. 2003) are condi-

tional on the sample data, so that the confidence interval closes

to zero at the full-sample end of the curve, making valid com-

parisons of curves and their confidence intervals inappropriate

for inference about larger communities or species assemblages.

For all three models, we also provide unconditional variance

estimators for extrapolation, modeled on the estimators of

Shen et al. (2003) and Chao and Shen (2004).

For individual-based methods, we illustrate interpolation,

extrapolation and comparison between reference samples

from different assemblages using datasets from old-growth

and nearby second-growth forests in two regions of Costa Rica.

One dataset, from southwestern Costa Rica, is for beetles

(Janzen 1973a, 1973b) and the other, from northeastern Costa

Rica, is for trees (Norden et al. 2009). We illustrate sample-

based methods with biogeographical data for Costa Rican

ants sampled at five elevations along an elevational transect

(Longino and Colwell 2011). We use the unconditional vari-

ance formulas to construct 95% confidence intervals for both

interpolated and extrapolated values. For extrapolation, we

also show, for all three models, how to estimate the sample

size required to reach a specified proportion of the estimated

Figure 1: concepts and notation for interpolation (solid curves) and

extrapolation (dashed curves) from an abundance reference sample

(individual-based models) or an incidence reference sample (sam-

ple-based models), indicated by filled black circles, under three sta-

tistical models: (a) the multinomial model, (b) the Poisson model

and (c) the Bernoulli product model. Sest is the estimated asymptotic

number of species in the assemblage. The reference sample of n indi-

viduals (multinomial), the individuals found in area A (Poisson) or T

sampling units (Bernoulli product model) reveals Sobs species. Inter-

polation (rarefaction) shows the estimated number of species
~SindðmÞ found among m individuals, m < n (multinomial, Equation

4), the estimated number of species ~SareaðaÞ found area a, a < A (Pois-

son, Equation 6), or the estimated number of species ~SsampleðtÞ found
in t sampling units, t < T (Bernoulli product, Equation 17). Extrap-

olation shows the estimated number of species ~Sindðn+m�Þ found

among an augmented sample of n+m� (multinomial, Equation 9)

individuals, the estimated number of species ~SareaðA+ a�Þ found in

a larger area A+ a� (Poisson, Equation 12) or the estimated number

of species ~SsampleðT + t�Þ found in T + t� sampling units (Bernoulli

product, Equation 18), For extrapolation, ~m�
g estimates the number

of additional individuals (multinomial, Equation 11), ~a�
g the addi-

tional area (Poisson, Equation 14) and ~t
�
g the additional number

of sampling units (Bernoulli product, Equation 20), required to

reach proportion g of the asymptotic richness Sest.

Colwell et al. | Species accumulation curves 5
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asymptotic species richness, following the approach of Chao

and Shen (2004) and Chao et al. (2009).

THE MODELS
Individual-based (abundance) data

Consider a species assemblage consisting of N individuals, each

belonging one of S different species. Species i has Ni individu-

als, representing proportion pi =Ni=N of the total,+S

i=1
Ni =N.

A single, representative sample of n individuals, the reference

sample, is drawn at random from the assemblage, from an area

A units in size. Each individual in the reference sample is iden-

tified to species (or to some other consistently applied taxo-

nomic rank, DNA sequence similarity or functional group

assignment). The total number of species observed in the sam-

ple is Sobs, with the ith species represented by Xi individuals,

+S

i=1
Xi = n (only species with Xi > 0 contribute to Sobs in

the reference sample). We define the ‘abundance frequency

count’ fk as the number of species each represented by exactly

Xi = k individuals in the reference sample, 0< k< n. Formally,

fk = +S

i=1
IðXi = kÞ, where I(�) is an indicator function that

equals 1 when true and 0 otherwise, so that +n

k=1
kfk = n,

Sobs = +n

k=1
fk. The number of species present in the assem-

blage but not detected in the reference sample is thus repre-

sented as f0.

For most assemblages, no sampling method is completely

unbiased in its ability to detect individuals of all species

(e.g. Longino and Colwell 1997). For this reason, a ‘represen-

tative’ sample is necessarily defined as one that is random

within the capabilities of the sampling method in relation to

the taxon sampled. We use the term ‘assemblage’ to refer to

the set of all individuals that would be detected with this

sampling method in a very large sample. In other words, we

assume in this paper that the assemblage is the effectively

infinite sampling universe from which the reference sample

has been collected.

We consider two alternative sampling models for individ-

ual-based (abundance) data. In the ‘multinomial model’ for

classical, individual-based rarefaction (Hurlbert 1971), the

reference sample is of fixed size n, within which discrete

and countable organisms are assumed to be distributed among

speciesmultinomially. The assemblage has S species, in relative

abundances (proportions) p1; p2; . . . pS, so that the probability

distribution is

PðX1 = x1; . . . ;XS = xSÞ=
n!

x1! . . . xS!
px1
1 px2

2 . . . pxS

S : ð1Þ

The multinomial model assumes that the sampling proce-

dure itself does not substantially alter relative abundances

of species ðp1; p2; . . . ; pSÞ. We assume that, in most biological

applications, the biological populations in the assemblage

being sampled are sufficiently large that this assumption is

met. If this assumption is not met, the hypergeometric model,

which describes sampling without replacement, is technically

more appropriate (Heck et al. 1975), but in practice the two

probability distributions differ little if sample size (n) is small

relative to assemblage size (N).

In the ‘continuous Poisson model’ or Coleman rarefaction

(Coleman 1981), the reference sample is defined not by n,

the number of individuals sampled, but instead by a specified

area A (or a specified period of time), within which the ith

species occurs at a species-specific mean rate Aki, so that the

probability distribution is

PðX1 = x1; . . . ;XS = xSÞ=
YS

i=1

ðAkiÞxi
expð�AkiÞ

xi!
: ð2Þ

Based solely on information in the reference sample of n

individuals or the individuals from area A, counted and iden-

tified to species, we have these six complementary objectives

for abundance-based data (Fig. 1a and b): (i) to obtain an es-

timator ~SindðmÞ for the expected number of species in a random

sample of m individuals from the assemblage (m < n) or (ii) an

estimator ~SareaðaÞ for the expected number of species in a ran-

dom area of size a within the reference area of size A (a < A);

(iii) to obtain an estimator ~Sindðn+m�Þ for the expected num-

ber of species in an augmented sample of n + m* individuals

from the assemblage (m* > 0), given Sobs, or (iv) an estimator
~SareaðA+ a�Þ for the expected number of species in an aug-

mented area A + a* (a* > 0), given Sobs; and (v) to find an pre-

dictor ~m�
g for the number of additional individuals or (vi) the

additional area ~a�g required to detect proportion g of the esti-

mated assemblage richness Sest.

Sample-based incidence data

Consider a species assemblage consisting of S different species,

each of which may or may not be found in each of T indepen-

dent sampling units (quadrats, plots, traps, microbial culture

plates, etc.) The underlying data consist of a species-by-

sampling-unit incidence matrix, in which Wij =1, if species i

is detected in sampling unit j, and Wij =0 otherwise. The

row sum of the incidence matrix, Yi = +T

j=1
Wij; denotes the

incidence-based frequency of species i, for i = 1,2, . . ., S.

The frequencies Yi represent the incidence reference sample

to be rarefied or extrapolated. The total number of species ob-

served in the reference sample is Sobs (only species with Yi >

0 contribute to Sobs). We define the ‘incidence frequency

count’ Qk as the number of species each represented exactly

Yi = k times in the incidence matrix sample, 0< k< T . For-

mally, Qk = +S

i=1
IðYi = kÞ, so that +T

k=1
kQk = +S

i=1
Yi,

Sobs = +T

k=1
Qk. Thus, Q1 represents the number of ‘unique’

species (those that are detected in only one sample) and Q2

represents the number of ‘duplicate’ species (those that are

detected in only two samples), in the terminology of Colwell

and Coddington (1994), while Q0 denotes the number of spe-

cies among the S species in the assemblage that were not

detected in any of the T sampling units.

For sample-based incidence data, we consider a Bernoulli

product model for an incidence reference sample arising from

incidence frequencies in a fixed number T of replicate sampling

units. Assume that the probability of detecting species i in any

6 Journal of Plant Ecology
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one sample is hi, for i = 1, 2, . . ., S. Here,+S

i=1
hi may be greater

than 1. (For example, the detection probability of the first

species might be 0.6 and for the second species 0.8.) We

assume that each Wij is a Bernoulli random variable (since

Wij = 0 or Wij = 1), with probability hi that Wij = 1. Thus,

the probability distribution for the incidence matrix is

P
�
Wij =wij; i=1; 2; . . . ; S; j=1; 2; . . . ; T

�
=

YT

j=1

YS

i=1

h
wij

i ð1 � hiÞ1�wij =
YS

i=1

hyi

i ð1 � hiÞT � yi :
ð3Þ

This model has been widely used in the context of capture–

recapture models (e.g. Burnham and Overton 1978). The row

sums ðY1; Y2; . . . ;YSÞ are the sufficient statistics, and our anal-
ysis is based on the incidence frequency counts Qk defined

from ðY1;Y2; . . . ;YSÞ.
Based solely on information in the incidence reference sam-

ple of T sampling units, we have these three complementary

objectives for sample-based incidence data (Fig. 1c): (i) to ob-

tain an estimator ~SsampleðtÞ for the expected number of species

in a random set of t sampling units from the T sampling units

defining the reference sample (t < T), (ii) to obtain an estimator
~SsampleðT + t�Þ for the expected number of species in an aug-

mented set of T + t* sampling units (t* > 0) from the assem-

blage, given Sobs, and (iii) to find a predictor ~t
�
g for the

number of additional sampling units required to detect propor-

tion g of the estimated assemblage richness Sest.

INDIVIDUAL-BASED INTERPOLATION
(RAREFACTION)
The multinomial model (classic rarefaction)

For the multinomial model (classical rarefaction), we need to

estimate the expected number of species SindðmÞ in a random

set of m individuals from the reference sample (m < n) (Fig. 1a).

If we knew the true occurrence probabilities ðp1; p2; . . . ; pSÞ of
each of the S species in the assemblage, we could compute

SindðmÞ= +
S

i=1

½1 � ð1 � piÞm�= S � +
S

i=1

ð1 � piÞm:

Instead, we have only the reference sample to work from,

with observed species abundances Xi. Smith and Grassle

(1977) proved that the minimum variance unbiased estimator

(MVUE) for SindðmÞ is

~SindðmÞ= Sobs � +
Xi >0

��
n � Xi

m

���
n

m

��
:

They showed that this expression is also the MVUE for the

hypergeometric rarefaction model, which assumes sampling

without replacement. Because the MVUE is the same for

the hypergeometric and the multinomial models, we can

relax our assumption about sampling effects on assemblage

abundances. In terms of frequency counts fk, the estimator

becomes

~SindðmÞ= Sobs � +
n

k=1

��
n � k

m

���
n

m

��
fk: ð4Þ

If we define

akm =

�
n � k

m

���
n

m

�
=
ðn � kÞ!ðn � mÞ!
n!ðn � k � mÞ! for k< n � m;

akm =0 otherwise;

then

~SindðmÞ= Sobs � +
n

k=1

akm fk:

Assume that the occurrence probabilities ðp1; p2; . . . ; pSÞ can
be treated as a random vector from a multivariate distribution

with identical marginal distributions, implying that the abun-

dance frequency counts follow approximately a multinomial

distribution. If we can estimate the full richness S of the assem-

blage with an estimator Sest, then an approximate uncondi-

tional variance r2indðmÞ of rarefied richness ~SindðmÞ is given by

r2indðmÞ= +
n

k=1

ð1 � akmÞ2fk � ~SindðmÞ2=Sest: ð5Þ

This variance is based on an approach similar to that used by

Burnham and Overton (1978) for a jackknife estimator of pop-

ulation size in the context of capture–recapture models. Smith

and Grassle (1977) provide an unconditional variance formula

of ~SindðmÞ, but their expression for the variance is difficult to

compute. We postpone specification of Sest for a later section.

The Poisson model (Coleman rarefaction)

For the Poisson model (Coleman rarefaction), we need to es-

timate the expected number of species SareaðmÞ in a random

area of size a within the reference area of size A (a < A)

(Fig. 1b). If we knew the true Poisson occurrence rate

ðk1; k2; . . . ; kSÞ of each of the S species in the assemblage, we

could compute

SareaðaÞ= +
S

i=1

½1 � expð� akiÞ�= S � +
S

i=1

½expð� akiÞ�:

Instead, based on species abundances Xi in the reference

sample, Coleman (1981) showed that

~SareaðaÞ= Sobs � +
Xi >0

�
1 � a

A

	Xi

:

This estimator is the MVUE for SareaðaÞ (Lehmann and

Casella 1998, 108–9). In terms of frequency counts fk, the

estimator becomes

~SareaðaÞ= +
n

k=1

�
1 �

�
1 � a

A

	k
�

fk: ð6Þ

If we can estimate the full richness S of the assemblage by

an estimator Sest, then an expression for the unconditional

variance r2areaðaÞ of rarefied richness ~SareaðaÞ is given by
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r2areaðaÞ= +
n

k=1

�
1 �

�
1 � a

A

	k
�2

fk � ~SareaðaÞ2=Sest: ð7Þ

Coleman et al. (1982) provide an estimator for the variance

of ~SareaðaÞ conditional on the reference sample. We postpone

specification of Sest for a later section.

Comparing the multinomial and Poisson models for

interpolation

How different are the rarefaction estimates of species richness

estimators under the multinomial and the Poisson models?

FromEquations (4) and (6), the estimates from the twomodels

can be compared by computing

D~Sða;mÞ= ~SindðmÞ � ~SareaðaÞ=


Sobs � +

n

k=1

akmfk

�
�
�

Sobs � +
n

k=1

�
1 � a

A

	k

fk

�
:

D~Sða;mÞ= +
n

k=1

�
1 � a

A

	k

fk � +
n

k=1

akmfk: ð8Þ

If we assume that individuals are randomly and indepen-

dently distributed in space, then a=A � m=n and

D~SðmÞ= +
n

k=1

h
ð1 � m=nÞk � akm

i
fk:

Colwell and Coddington (1994) and Brewer andWilliamson

(1994) showed that, for most datasets, D~S is quite small be-

cause both ð1� m=nÞk
and akm approach zero as subsample size

m approaches the reference sample size n, and the frequency

count fk also becomes small at larger k. Thus, D~S is very small

except for small values of m. In a later section, we compare the

two methods using an example from tropical beetles (Janzen

1973a, 1973b). If individuals are not randomly distributed but

are aggregated intraspecifically, both methods will overesti-

mate the number of species for a smaller number of individuals

m or a smaller area a (Chazdon et al. 1998; Colwell and

Coddington 1994; Colwell et al. 2004; Gotelli and Colwell

2001; Kobayashi 1982).

INDIVIDUAL-BASED EXTRAPOLATION
The multinomial model

For the multinomial model, the extrapolation problem is to es-

timate the expected number of species Sindðn +m�Þ in an aug-

mented sample of n + m* individuals from the assemblage

(m* > 0) (Fig. 1a). If we knew the true occurrence probabilities

p1; p2; . . . ; pS of each of the S species in the assemblage, given

Sobs, we could compute

Sindðn+m�Þ= Sobs + +
S

i=1

h
1 � ð1 � piÞm�

i
ð1 � piÞn:

Instead, we have only the reference sample to work from,

with observed species abundances Xi and their frequency

counts fi. Based on work by Solow and Polasky (1999), Shen

et al. (2003) proposed an estimator for Sindðn+m�Þ,

~S ind

�
n +m�

�
= Sobs + f̂ 0

�
1 �

�
1 � f1

nf̂ 0

�m��

� Sobs + f̂ 0

�
1 � exp

�
� m�

n

f1

f̂ 0

��
; ð9Þ

where f̂ 0 is an estimator for f0, number of species present

in the assemblage, but not observed in the reference

sample.

Any estimator of f0 is a function of the frequencies

ðf1; f2; . . . ; fnÞ. Thus, ~Sindðn+m�Þ can be expressed as a function

of ðf1; f2; . . . ; fnÞ and @~S=@fi, the partial derivative of ~Sindðn+m�Þ
with respect to the variable fi. Based on this expression, a stan-

dard asymptotic statistical method gives a variance estimator

for ~Sindðn+m�Þ,

vârð~Sindðn +m�ÞÞ= +
n

i=1

+
n

j=1

@~S

@fi

@~S

@fj

côv
�

fi; fj

	
; ð10Þ

where côvðfi; fjÞ= fi½1� fi=ðSobs + f̂ 0Þ� for i= j and

côvðfi; fjÞ= � fifj=ðSobs + f̂ 0Þ for i 6¼ j. (For simplicity, we write
~S for ~Sindðn + m�Þ in the right-hand side of Equation 10.)

See Shen et al. (2003, their Equation 11) for details. We post-

pone specification of f̂ 0 for a later section.

Based on the estimator in Equation (9) for ~Sindðn+m�Þ, Chao
et al. (2009) showed that we can estimate the number of ad-

ditional individuals ~m�
g required, beyond the reference sample,

to detect proportion g of the estimated assemblage richness Sest
as

~m�
g =

nf1

2f2
log

�
f̂ 0

ð1 � gÞSest

�
; Sobs=Sest < g<1: ð11Þ

The Poisson model

For the Poisson model, the objective is to estimate the

expected number of species ~SareaðA + a�Þ in an augmented

area A + a* (a* > 0) (Fig. 1b). If we knew the true Poisson

occurrence rates ðk1; k2; . . . ; kSÞ of each of the S species in

the assemblage, we could compute, given Sobs,

SareaðA+ a�Þ= Sobs + +
S

i=1

½1 � expð � a�kiÞ�expð�AkiÞ:

Working from species abundances Xi in the reference

sample, Chao and Shen (2004) proposed an estimator for
~SareaðA + a�Þ,

~SareaðA+ a�Þ= Sobs + f̂ 0

�
1 � exp

�
� a�

A

f1

f̂ 0

��
: ð12Þ

We postpone specification of f̂ 0, which estimates the species

present in the assemblage but not observed in the reference

sample, for a later section.

Chao and Shen (2004, their Equation 2.13) also proposed

a variance estimator for ~SareaðA+ a�Þ (we write ~S for
~SareaðA+ a�Þ in the right-hand side of the following formula),
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vârð~SareaðA+ a�ÞÞ= +
n

i=1

+
n

j=1

@~S

@fi

@~S

@fj

côv
�

fi; fj

	
; ð13Þ

where côvðfi; fjÞ is defined as for Equation (10) above.

Given this estimator for SareaðA + a�Þ, it follows from Chao

and Shen (2004) that an estimator ~a�g for the additional area

required to detect proportion g of the estimated assemblage

richness Sest is

~a�g =
Af1

2f2
log

�
f̂ 0

ð1 � gÞSest

�
; Sobs=Sest < g<1: ð14Þ

Estimating the number of species present in the

assemblage but not observed in the reference sample

for individual-based data

Several estimators in the previous two sections require either

an estimate of f0, the number of species present in the assem-

blage but not observed in the reference sample or an individ-

ual-based estimate for the full richness of the assemblage, Sest.

Many estimators of the form Sest = Sobs + f̂ 0 are available (Chao

2005). The simplest (Chao 1984), widely known as Chao1

(Gotelli and Colwell 2011), is Sest Chao1 = Sobs + f̂ 0 Chao1, where

f̂ 0 Chao1 = f 21 =
�
2f2

�
; for f2 > 0; ð15aÞ

or

f̂ 0 Chao1 = f1ðf1 � 1Þ=½2ðf2 +1Þ� for f2 = 0: ð15bÞ

For the individual-based empirical examples in this paper, we

have used the Chao1 estimator, above, which Chao (1984)

proved is a minimum estimator of asymptotic species richness.

For assemblages with many rare species, the abundance-

based coverage estimator (ACE) (Chao and Lee 1992; Chao

et al. 2000; Chazdon et al. 1998) is often a more appropriate

estimator of asymptotic richness (Chao and Shen 2004),

Sest ACE = Sobs + f̂ 0 ACE. ACE takes into account the frequency

counts for rare species f1; f2; . . . ; fk; . . . ; fR, where R is a cutoff

frequency between rare and common species in the reference

sample. Thus, Srare = +S

i=1
Ið0 <Xi <RÞ with summed abun-

dance Xrare = +S

i=1
XiIðXi <RÞ. These counts and an estimate

of sample coverage, ĈACE = 1� f1=Xrare, are used to compute

a squared coefficient of variation, bc2ACE, and the estimator

f̂ 0 ACE,

bc2ACE =max

(
Srare

ĈACE

+R

k=1
kðk � 1Þfk�

+R

k=1
kfk

	�
+R

k=1
kfk � 1

	 � 1; 0

)
:

f̂ 0 ACE =
Srare

ĈACE

+
f1

ĈACE

bc2ACE � Srare: ð16Þ

The expression forbc2ACE, above, is for the multinomial model.

For the Poisson model, the summation in the denominator

should be replaced by ð+R

k=1
kfkÞ2. Chao and Shen (2004) rec-

ommended R = 10 as rule of thumb, with exploration of other

values suggested for samples with large coefficients of variation.

SAMPLE-BASED INTERPOLATION
(RAREFACTION)
The Bernoulli product model

For the Bernoulli product model (sample-based rarefaction),

we need to estimate the expected number of species

SsampleðtÞ in a random set of t sampling units from among

the T sampling units defining the incidence reference sample

(t < T) (Fig. 1c). If we knew the true detection probabilities

h1; h2 . . . ; hS of each of the S species in the assemblage, we could

compute

SsampleðtÞ= +
S

i=1



1 � ð1 � hiÞt

�
= S � +

S

i=1

ð1 � hiÞt:

Instead, we have only the incidence reference sample to

work from, with observed species incidence frequencies Yi.

The MVUE for SsampleðtÞ is

~SsampleðtÞ= Sobs � +
Yi >0

��
T � Yi

t

���
T

t

��
: ð17Þ

This analytic formula was first derived by Shinozaki (1963)

and rediscoveredmultiple times (Chiarucci et al. 2008). Colwell

et al. (2004, their Equation 5) provide a mathematically equiv-

alent equation in terms of the incidence frequency counts Qk

similar to our Equation (4). This estimator has long been called

‘Mao Tau’ in the widely used software application ‘EstimateS’

(Colwell 2011). Colwell et al. (2004, their Equation 6) devel-

oped an estimator for the unconditional variance in terms of

the frequency counts Qk, similar to our Equation (5), that

requires an incidence-based estimator Sest for assembly richness

S. We postpone specification of Sest for a later section.

SAMPLE-BASED EXTRAPOLATION
The Bernoulli product model

For the Bernoulli product model, the extrapolation problem is

to estimate the expected number of species SsampleðT + t�Þ in an

augmented set of T + t* sampling units (t* > 0) from the assem-

blage (Fig. 1c). If we knew the true detection probabilities

h1; h2 . . . ; hS of each of the S species in the assemblage, given

Sobs, we could compute

SsampleðT + t�Þ= Sobs + +
S

i=1

h
1 � ð1 � hiÞt�

i
ð1 � hiÞT :

Based on a derivation by Chao et al. (2009), we have the

estimator

~Ssample

�
T + t�

�
= Sobs + Q̂0

�
1 �

�
1 � Q1

Q1 +TQ̂0

�t��
� Sobs + Q̂0

�
1 � exp

�
� t�Q1

Q1 + TQ̂0

��
:

ð18Þ

Expressing ~SsampleðT + t�Þ as a function of ðQ1;Q2; . . . ;QT Þ,
and using an asymptotic method, we obtain an approximate

variance formula
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vârð~SsampleðT + t�ÞÞ= +
T

i=1

+
T

j=1

@~S

@Qi

@~S

@Qj

côv

�
Qi;Qj

�
; ð19Þ

where côvðQi;QjÞ=Qi½1� Qi=ðSobs + Q̂0Þ� for i= j and

côvðQi;QjÞ= � QiQj=ðSobs + Q̂0Þ for i 6¼ j. (For simplicity, we

write ~S for ~SsampleðT + t�Þ in the above variance formula.)

Equations (18) and (19), above, both require an estimate of

Q0, the number of species present in the assemblage but not

detected in any sampling units. We postpone specification

of an estimator for Q0 for the next section.

Based on the estimator in Equation (18) for ~SsampleðT + t�Þ,
the number of additional sampling units ~t

�
g required to detect

proportion g of the estimated assemblage richness Sest is

~tg� �
log

h
1 � T

ðT � 1Þ
2Q2

Q2
1

ðgSest � SobsÞ
�

log

�
1 � 2Q2

ðT � 1ÞQ1 +2Q2

� ; Sobs=Sest < g<1:

ð20Þ

Estimating the number of species present in the

assemblage but not observed in the reference sample

for sample-based incidence data

The extrapolation estimators for the Bernoulli product model

require either an estimate of Q0, the number of species present

in the assemblage but not observed in the sampling units com-

prising the incidence reference sample, or a sample-based es-

timate for the full richness of the assemblage, Sest. Many

estimators of the form Sest = Sobs + Q̂0 are available (Chao

2005). The simplest (Chao 1987), widely known as Chao2

(Gotelli and Colwell 2011), is Ŝest Chao2 = Sobs + Q̂0 Chao2, where

Q̂0 Chao2 =

�

T � 1
��

T
�


Q2
1=
�
2Q2

��
for Q2 > 0 ð21Þ

or

Q̂0 Chao2 = ½ðT � 1Þ=T �½Q1ðQ1 � 1Þ=½2ðQ2 +1Þ� for Q2 = 0:

ð22Þ

For the sample-based incidence example in this paper, we

have used the Chao2 estimator, above, which Chao (1987)

showed is aminimum estimator of asymptotic species richness.

For assemblages with many rare species, the incidence-

based coverage estimator (ICE; Chazdon et al. 1998; Lee

and Chao 1994) is often a more appropriate estimator of

asymptotic species richness (Chao and Shen 2004),

Ŝest ICE = Sobs + Q̂0 ICE:

ICE takes into account the frequency counts for rare species

ðQ1;Q2; . . . ;Qk; . . . ;QRÞ, where R is a cutoff frequency between

infrequent and frequent species in the reference sample. Thus,

the number of species that occur in fewer than R sampling

units is Sinfreq = +S

i=1
Ið0 <Yi <RÞ with summed incidence

frequencies Yinfreq = +S

i=1
YiIðYi <RÞ. These counts, the num-

ber of sampling units that include at least one infrequent

species (Tinfreq), and an estimate of sample coverage,

ĈICE = 1� Q1=Yinfreq, are used to compute a squared coefficient

of variation, c2ICE, and the estimator Q0 ICE:

bc2ICE =max

(
Sinfreq

ĈICE

Tinfreq�
Tinfreq � 1

� +R

k=1
kðk � 1ÞQk�

+R

k=1
kQk

	2
� 1; 0

)

Q̂0 ICE =
Sinfreq

ĈICE

+
Q1

ĈICE

bc2ICE � Sinfreq: ð23Þ

We recommend R = 10 as rule of thumb, with exploration of

other values suggested for samples with large coefficients of

variation.

EXAMPLES
Tropical beetles: individual-based rarefaction and

extrapolation (multinomial model)

Janzen (1973a, 1973b) tabulated many data sets on tropical

foliage insects from sweep samples in southwestern Costa Rica.

We selected two beetle data sets (‘Osa primary’ and ‘Osa

secondary’) to compare beetle species richness between old-

growth forest and second-growth vegetation on the Osa

Peninsula. The species frequency counts appear in Table 1.

Janzen’s study recorded 976 individuals representing 140

species in the Osa second-growth site and 237 individuals of

112 species in the Osa old-growth site. From the unstandard-

ized raw data (the reference samples), onemight conclude that

the second-growth site has more beetle species than the old-

growth site (140 vs. 112; Fig. 2c, solid points). However, the

sample sizes (number of individual beetles) for the two sam-

ples are quite different (976 vs. 237 individuals, Fig. 2a and b).

When the sample size in the second-growth site is rarefied

down to 237 individuals to match the size of the old-growth

Table 1: beetle species abundance frequency counts from two sites on theOsa Peninsula in southwestern Costa Rica (Janzen 1973a, 1973b)

(a) Osa second growth: Sobs = 140, n = 976

i 1 2 3 4 5 6 7 8 9 10 11 12 14 17 19 20 21 24 26 40 57 60 64 71 77

fi 70 17 4 5 5 5 5 3 1 2 3 2 2 1 2 3 1 1 1 1 2 1 1 1 1

(b) Osa old growth: Sobs = 112, n = 237

i 1 2 3 4 5 6 7 8 14 42

fi 84 10 4 3 5 1 2 1 1 1
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Figure 2: individual-based interpolation (rarefaction) and extrapolation from two reference samples (filled black circles) of beetles from south-

western Costa Rica (Janzen 1973a, 1973b), illustrating the computation of estimators from Fig. 1a for the multinomial model, with 95% un-

conditional confidence intervals. (a) Osa old-growth forest sample. (b) Osa second-growth forest sample (c) Comparison of the curves from

the samples in (a) and (b). Based on observed richness, Sobs, the Osa second-growth assemblage (with 140 species in the reference sample)

is richer in species than the Osa second-growth assemblage (with 112 species in the reference sample), but after rarefying the second-growth

sample to 237 individuals tomatch the size of the old-growth sample (open black circle), the second-growth sample has only 70 species. Clearly the

old-growth assemblage is richer, based on these samples.
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sample (Fig. 2c, open point), using the multinomial model

(Equation 4), the ordering of the two sites is reversed. The in-

terpolated species richness for 237 individuals in the second-

growth site is only 70, considerably less than primary site, with

112 species. Moreover, the 95% confidence intervals do not

overlap (Fig. 2c).

Individual-based rarefaction of abundance data, like the

interpolation analysis above, has been carried out in this

way for decades. Here, we apply individual-based rarefaction

and extrapolation to the same reference sample for the first

time. Applying the multinomial model (Equation 9) to the

Janzen dataset to increase the sample size (number of individ-

uals) in each site yields the extrapolated curves (broken line

curves) for each site is shown in Fig. 2. Even though the

mathematical derivations for interpolation and extrapolation

are fundamentally different, the interpolation and extrapola-

tion curves join smoothly at the single data point of the

reference sample.

In Table 2a, using the multinomial model (classical rarefac-

tion), we show for the Osa old-growth data (Sobs = 112, n = 237

in the reference sample): (i) values for the interpolated esti-

mate ~SindðmÞ, for values of m from 1 up to the reference sample

size of 237 individuals (Equation 4), along with the uncondi-

tional standard error (SE, Equation 5) values that are used to

construct the 95% confidence intervals shown in Fig. 2a and c;

(ii) the extrapolated estimate ~Sindðn+m�Þ (Equation 9), where

m* ranges from 0 to 1 000 individuals, along with the uncon-

ditional SE (Equation 10); and (iii) the number of additional

individuals ~m�
g required to detect proportion g of the estimated

assemblage richness (Equation 11), for g = 0.3 to 0.9, in incre-

ments of 0.1. In Fig. 2a, we plot the multinomial rarefaction

curve and extrapolation curve up to a sample size of 1 200

individuals and show the predicted number of individuals

need to reach for g = 0.6. The corresponding values and curves

for the Osa second-growth data (Sobs = 140, n = 976 in the ref-

erence sample) are shown in Table 2b and Fig. 2b.

Table 2: individual-based interpolation, extrapolation and prediction of additional individuals required to reach gSest, under the

multinomial model, for beetle samples from two sites on the Osa Peninsula in southwestern Costa Rica (Janzen 1973a, 1973b)

Rarefaction Extrapolation Individuals prediction

m ~SindðmÞ SE m* ~Sindðn +m�Þ SE g ~m�
g

(a) Osa old-growth site, Sobs = 112, n = 237. The extrapolation is extended to more than five times of the reference sample size, in order to compare with the

Osa second-growth curve (b); see Table 2(b).

1 1.00 0.00 0 112 9.22 0.3 80.60

20 15.89 1.95 100 145.74 12.20 0.4 234.04

40 28.44 3.00 200 176.25 15.38 0.5 415.52

60 39.44 3.85 400 228.80 22.58 0.6 637.64

80 49.40 4.57 600 271.77 30.84 0.7 924.00

100 58.62 5.22 800 306.93 39.79 0.8 1327.60

120 67.29 5.83 1 000 335.68 48.96 0.9 2017.56

140 75.54 6.42

160 83.48 7.00

180 91.16 7.57

200 98.63 8.15

220 105.92 8.73

237 112.00 9.22

(b) Osa second-growth site, Sobs = 140, n = 976. The extrapolation is extended to double the reference sample size.

1 1.00 0.00 0 140.00 8.43 0.5 28.91

100 44.30 4.36 100 147.00 8.87 0.6 477.30

200 64.43 5.31 200 153.66 9.34 0.7 1055.37

300 78.83 5.85 400 166.02 10.34 0.8 1870.12

400 90.58 6.25 600 177.21 11.46 0.9 3262.94

500 100.83 6.60 800 187.34 12.68

600 110.11 6.95 1 000 196.51 13.99

700 118.72 7.32

800 126.80 7.70

900 134.45 8.11

976 140.00 8.43
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For both samples, the unconditional variance, and thus

the 95% confidence interval, increased with sample size.

For extrapolation, the SE values are relatively small up to

a doubling of the reference sample, signifying quite accurate

extrapolation in this range. For the Osa old-growth site

(Table 2a; Fig. 2a), the extrapolation is extended to five times

of the original sample size in order to compare with the Osa

second-growth curve. This long-range extrapolation (>33

the original sample size) inevitably yields very wide confi-

dence intervals. For the Osa second-growth site (Table 2b;

Fig. 2b), the extrapolation is extended only to double the

reference sample size (not fully shown in Fig. 2b) yielding

a quite accurate extrapolated estimate with a narrow

confidence interval.

Based on Fig. 2, even though the Osa old-growth site extrap-

olation for large sample sizes exhibits high variance, the old-

growth and second-growth confidence intervals do not overlap

for any sample size considered. This implies that beetle species

richness for any sample size is significantly greater in the

old-growth site than that in the second-growth site for sample

size up to at least 1 200 individuals.

Tropical beetles: individual-based rarefaction and

extrapolation (Poisson model)

In addition to applying estimators based on the multinomial

model, we also analysed the Janzen beetle dataset with estima-

tors based on the Poisson model, including Coleman area-based

rarefaction (Equations 6 and 7), area-based extrapolation

(Equations 12 and 13), and estimation of the additional area re-

quired to detect proportion g of the estimated assemblage rich-

ness Sest (Equation 14). The results for theOsa old-growth beetle

sample appear in Table 3a and the results for the Osa second-

growth beetle sample in Table 3b. Comparison of the results for

the Poisson model estimators (Table 3) with the corresponding

results for the multinomial model estimators (Table 2) reveals

a remarkable similarity that makes sense mathematically be-

cause the distribution for the Poisson model (Equation 2),

conditional on the total number of individuals, is just the

Table 3: individual-based interpolation, extrapolation and prediction of additional area required to reach gSest, under the Poisson model,

for beetle samples from two sites on the Osa Peninsula in southwestern Costa Rica (Janzen 1973a, 1973b)

Rarefaction Extrapolation Area prediction

a ~SareaðaÞ SE a* ~SareaðA+ a�Þ SE g ~a�
g

(a) Osa old-growth site, Sobs = 112, A = 237. The extrapolation is extended to more than five times of the reference sample size, in order to compare with the

Osa second-growth curve (b).

1 0.98 0.00 0 112.00 9.22 0.3 80.60

20 15.83 1.93 100 145.72 12.20 0.4 234.04

40 28.37 2.99 200 176.22 15.38 0.5 415.52

60 39.38 3.84 400 228.75 22.58 0.6 637.64

80 49.35 4.56 600 271.72 30.84 0.7 924.00

100 58.58 5.21 800 306.86 39.78 0.8 1327.60

120 67.26 5.82 1 000 335.61 48.96 0.9 2017.56

140 75.52 6.41

160 83.46 6.99

180 91.15 7.57

200 98.62 8.15

220 105.92 8.73

237 112.00 9.22

(b) Osa second-growth site, Sobs = 140, A = 976. The extrapolation is extended to double the reference sample size.

1 0.98 0.17 0 140.00 8.43 0.5 28.91

100 44.23 4.35 100 147.00 8.87 0.6 477.30

200 64.38 5.31 200 153.65 9.34 0.7 1055.37

300 78.81 5.85 400 166.01 10.34 0.8 1870.12

400 90.57 6.24 600 177.20 11.46 0.9 3262.94

500 100.82 6.60 800 187.33 12.68

600 110.10 6.95 1 000 196.50 13.99

700 118.71 7.32

800 126.79 7.70

900 134.44 8.11

976 140.00 8.43
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multinomial model (Equation 1). Moreover, the similarity

applies not only to rarefaction (as previously noted by Brewer

andWilliamson 1994) but also to extrapolation. Figure 3 shows

just how close the results based on the two models are for this

example. For interpolation and extrapolation, the difference is

always less than one-tenth of one individual (assuming for the

Poissonmodel that individuals are randomly and independently

distributed in space, so that a=A � m=n). Thismeans that round-

ing to the nearest individual consistently yields precisely the

same values under both models. For this reason, we do not plot

the results from the Poisson model because the figure would be

identical to Fig. 2, with the Poisson variables in Fig. 1b

substituted for the multinomial variables in Fig. 1a. In addition,

estimates of the additional area required to detect proportion g

of the estimated assemblage richness under the Poisson model

(Table 3, from Equation 14) are identical to the estimates of the

additional number of individuals required to reach proportion g

of the estimated assemblage richness under the multinomial

model (Table 2, from Equation 11).

Tropical trees: individual-based rarefaction and

extrapolation (multinomial model)

Norden et al. (2009) compared species composition of trees,

saplings and seedlings in six 1-ha forest plots spanning three

successional stages in lowland forests of northeastern Costa

Rica. We selected data for tree stems>5 cm diameter at breast

height in three samples from this dataset, all located within La

Selva Biological Station. One of the samples represents an old-

growth plot (Lindero El Peje [LEP] old growth, Sobs = 152, n

= 943) and two were from second-growth forest plots, one

of them 29 years old (LEP second growth, Sobs = 104, n =

1 263) and the other 21 years old in 2006 (Lindero Sur, Sobs
= 76, n = 1 020), following pasture abandonment. The species

frequency counts for the three plots appear in Table 4.

The results for interpolation and extrapolation from these

three reference samples, under themultinomial model, appear

in Table 5 and Fig. 4a. For each of the three samples, Table 5

shows: (i) species richness values for the interpolated estimate
~SindðmÞ, under the multinomial model (classical rarefaction,

Equation 4), for values of m from 1 up to the reference sample

size for each sample (n = 943, 1 263 or 1 020 individuals),

along with the unconditional SE (Equation 5) values that

are used to construct the 95% confidence intervals shown

in Fig. 4a, and (ii) the extrapolated estimate ~Sindðn +m�Þ, where

m* ranges from 0 to 1 500, 1 200 or 1 400 individuals (for the

three samples), so that all samples are extrapolated to roughly

2 400 individuals, along with the unconditional SE (Equation

10).

In Fig. 4a, we plot the multinomial rarefaction curves and

extrapolation curves up to a sample size of 2 400 individuals.

Clearly the number of species at any plotted sample size (be-

yond very small samples) is significantly greater for LEP old

growth than in either of the two samples from second-growth

forest. The number of species in the plot of intermediate age,

LEP second growth, significantly exceeds the number of spe-

cies in the youngest plot, Lindero Sur, for sample sizes

Table 4: Species abundance frequency counts for tree samples from three forest sites in northeastern Costa Rica (Norden et al. 2009)

(a) LEP old growth, Sobs = 152, n = 943

i 1 2 3 4 5 6 7 8 9 10 11 13 15 16 18 19 20 25 38 39 40 46 52 55

fi 46 30 16 12 6 5 3 4 5 4 1 3 1 1 1 1 4 3 1 1 1 1 1 1

(b) LEP older (29 years) second growth, Sobs = 104, n = 1 263

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 20 22 39 45 57 72 88 132 133 178

fi 33 15 13 4 5 3 3 1 2 1 4 2 2 1 2 1 1 1 1 1 1 1 1 2 1 1 1

(c) Lindero Sur younger (21 years) second growth, Sobs = 76, n = 1 020

i 1 2 3 4 5 7 8 10 11 12 13 15 31 33 34 35 66 72 78 127 131 174

fi 29 13 5 2 3 4 1 2 2 1 2 2 1 1 1 1 1 1 1 1 1 1

Figure 3: richness estimated by the multinomial model versus the

Poisson model for the Osa old-growth beetle sample (Janzen 1973a,

1973b). The numbers on the ordinate show the magnitude of the mul-

tinomial estimate minus the Poisson estimate, in ordinary arithmetic

units, scaled logarithmically only to spread out the values vertically

so they can be seen. Although the multinomial estimate is consistently

higher, the difference never exceeds one tenth of one species, so the

results rounded to the nearest species are identical.
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between 500 and 1 600 individuals, based conservatively on

non-overlapping confidence intervals. Due to the

prevalence of rare species in old-growth tropical forests

and widespread dispersal limitation of large-seeded animal-

dispersed species, tree species richness is slow to recover

during secondary succession and may require many decades

to reach old-growth levels, even under conditions favorable

to regeneration.

Tropical ants: sample-based rarefaction and

extrapolation for incidence data (Bernoulli product

model)

Longino and Colwell (2011) sampled ants at several elevations

on the Barva Transect, a 30-km continuous gradient of wet

forest on Costa Rica’s Atlantic slope. For this example, we

use results from five sites, at 50-, 500-, 1 070-, 1 500- and

2 000-m elevation, to illustrate sample-based rarefaction and

extrapolation. The sampling unit consisted of all worker ants

extracted from a 1-m2 forest floor plot, applying amethod called

‘mini-Winkler extraction’. Because ants are colonial and the

colony is the unit of reproduction, scoring each sampling unit

for presence or absence of each species makes more sense than

using abundance data (Gotelli et al. 2011). A sample-by-species

incidence matrix was therefore produced for each of the five

sites. The incidence frequency counts for the five sites appear

in Table 6.

The results for sample-based interpolation and extrapola-

tion from these five sites (at five elevations), under the Ber-

noulli product model, appear in Table 7 and Fig. 4b. For each

of the five samples, Table 7 shows: (i) values for the interpo-

lated estimate ~SsampleðtÞ, under the Bernoulli product model

(Equation 17), for values of t from 1 up to the reference sam-

ple size T for each elevation (T = 599, 230, 150, 200, 200 sam-

pling units), along with the unconditional SE values (Colwell

et al. 2004, their Equation 6) that are used to construct the

95% confidence intervals shown in Fig. 4b; and (ii) the

Table 5: Individual-based interpolation and extrapolation, under

the multinomial model, for tree samples from three forest sites in

northeastern Costa Rica (Norden et al. 2009)

Rarefaction Extrapolation

m ~SindðmÞ SE m* ~Sindðn +m�Þ SE

(a) LEP old growth, Sobs = 152, n = 943

1 1.00 0.00 0 152.00 5.35

20 16.72 1.82 100 156.56 5.55

40 28.88 2.72 200 160.53 5.79

60 38.51 3.24 300 163.98 6.08

80 46.57 3.59 400 166.99 6.42

100 53.54 3.84 500 169.61 6.79

200 79.28 4.46 600 171.90 7.18

300 96.99 4.69 700 173.88 7.59

400 110.49 4.81 800 175.61 8.00

500 121.32 4.88 900 177.12 8.40

600 130.28 4.96 1 000 178.43 8.80

700 137.83 5.04 1 100 179.57 9.18

800 144.28 5.15 1 200 180.57 9.55

900 149.84 5.28 1 300 181.43 9.89

943 152.00 5.35 1 400 182.19 10.22

1 500 182.84 10.52

(b) LEP older (29 years) second growth, Sobs = 104, n = 1 263

1 1.00 0.00 0 104.00 5.19

20 12.96 2.17 100 106.52 5.33

40 20.14 2.72 200 108.87 5.49

60 25.62 3.02 300 111.05 5.66

80 30.25 3.24 400 113.08 5.86

100 34.30 3.43 500 114.97 6.08

200 49.47 3.99 600 116.73 6.31

300 59.92 4.25 700 118.37 6.56

400 67.94 4.40 800 119.89 6.83

500 74.50 4.50 900 121.31 7.11

600 80.06 4.58 1 000 122.63 7.39

700 84.88 4.65 1 100 123.86 7.69

800 89.14 4.73 1 200 125.00 7.99

900 92.93 4.81

1 000 96.35 4.90

1 100 99.46 5.00

1 200 102.32 5.11

1 263 104.00 5.19

(c) Lindero Sur younger (21 years) second growth, Sobs = 76, n = 1 020

1 1.00 0.00 0 76.00 4.76

20 11.51 2.19 100 78.72 4.95

40 17.08 2.68 200 81.22 5.16

60 21.16 2.94 300 83.50 5.40

80 24.52 3.12 400 85.59 5.66

Table 5:

Continued

Rarefaction Extrapolation

m ~SindðmÞ SE m* ~Sindðn +m�Þ SE

100 27.41 3.26 500 87.51 5.95

200 38.15 3.65 600 89.26 6.25

300 45.72 3.83 700 90.87 6.58

400 51.77 3.95 800 92.34 6.91

500 56.90 4.05 900 93.69 7.26

600 61.41 4.16 1 000 94.92 7.61

700 65.44 4.28 1 100 96.05 7.97

800 69.09 4.42 1 200 97.09 8.33

900 72.40 4.56 1 300 98.03 8.68

1 000 75.43 4.73 1 400 98.90 9.03

1 020 76.00 4.76
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extrapolated estimate ~SsampleðT + t�Þ, where t* ranges from 401

to 800 sampling units, to extrapolate all elevations to 1 000

sampling units (Equation 18), along with the unconditional

SE (Equation 19).

DISCUSSION

In this paper, we developed a unified theoretical and notational

framework for modeling and analyzing the effects on observed

species richness of the number of individuals sampled or the

number of sampling units examined in the context of a single,

quantitative,multispecies sample (an abundance reference sam-

ple) or a single set of incidence frequencies for species among

sampling units (an incidence reference sample). We compared

three statistically distinct models, one based on the multinomial

distribution, for counts of individuals (Fig. 1a), the second based

on the Poisson distribution, for proportional areas (Fig. 1b), and

the third based on aBernoulli product distribution, for incidence

frequencies among sampling units (Fig. 1c).

For interpolation to samples smaller than the reference

sample, these correspond to classical rarefaction (Hurlbert

1971), Coleman rarefaction (Coleman 1981) and sample-

based rarefaction (Colwell et al. 2004). For the first time,

we have linked these well-known interpolation approaches

with recent sampling-theoretic extrapolation approaches, un-

der both the multinomial model (Shen et al. 2003) and the

Poisson model (Chao and Shen 2004), as well as to methods

for predicting the number of additional individuals (multino-

mial model, Chao et al. 2009) or the amount of additional area

(Poisson model, Chao and Shen 2004) needed to reach

a specified proportion of estimated asymptotic richness. For

the Bernoulli product model, we have developed new estima-

tors, using a similar approach, for sample-based extrapolation

(Fig. 1c). The fundamental statistics for all these estimators are

the abundance frequency counts fk—the number of species

each represented by exactly Xi = k individuals in a reference

sample (e.g. Tables 1 and 4)—for individual-based models,

or the incidence frequency counts Qk—the number of species

that occurred in exactly Yi = k sampling units (e.g. Table

6)—for sample-based models.

This novel integration of mathematically distinct approaches

allowed us to link interpolated (rarefaction) curves and extrap-

olated curves to plot a unified species accumulation curve for

empirical examples (Figs 2 and 4). Perhaps the most surprising

(and satisfying) result is how smoothly the interpolated and

extrapolated moieties of the curve come together at the refer-

ence sample, in all examples we have investigated. The remark-

able degree of concordance between multinomial and Poisson

estimators (e.g. Fig. 3), not only for interpolation (as anticipated

by Brewer andWilliamson [1994] and Colwell and Coddington

[1994]) but also for extrapolation (as first shown here), was

a second surprise, although the two models are closely related,

as discussed earlier. We see little reason, for individual-based

data, to recommend computing estimators based on one model

over the other (although Coleman curves are computationally

Figure 4: (a) individual-based interpolation (rarefaction) and ex-

trapolation from three reference samples (filled black circles) from

1-ha tree plots in northeastern Costa Rica (Norden et al. 2009) un-

der the multinomial model, with 95% unconditional confidence

intervals. Species richness in the old-growth plot (LEP old growth,

shown in red) consistently exceeds the richness in second-growth

plot, LEP second growth (29 years old, shown in green) and Lindero

Sur second growth (21 years old, shown in blue). Richness in LEP

(green) significantly exceeds richness in Lindero Sur (blue) for sam-

ple sizes between 500 and 1 600 individuals, based conservatively

on non-overlapping confidence intervals. (b) Sample-based inter-

polation (rarefaction) and extrapolation for reference samples

(filled black circles) for ground-dwelling ants from five elevations

on the Barva Transect in northeastern Costa Rica (Longino and Col-

well 2011) under the Bernoulli product model, with 95% uncondi-

tional confidence intervals. Because each sampling unit is a 1-m2

plot, what Fig. 4b plots on the ‘species’ axis are actually estimates

of species density, the number of species in multiples of a 1-m2 area.

(See the Discussion for information on approximating species rich-

ness from species density.) Maximum species density is found at the

500-m elevation site, consistently exceeding the species density at

both higher and lower elevations. Species density drops significantly

with each increase in elevation above 500 m, based conservatively

on non-overlapping confidence intervals.
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less demanding than classical rarefaction), and no reason what-

soever to compute both.

The ability to link rarefaction curves with their correspond-

ing extrapolated richness curves, complete with unconditional

confidence intervals, helps to solve one of most frustrating

limitations of traditional rarefaction: ‘throwing away’ much

of the information content of larger samples, in order to

standardize comparisons with the smallest sample in a group

of samples being compared. The ant dataset (Fig. 4b) (Longino

and Colwell 2011), which spans an elevation gradient from

lowland rainforest at 50-m elevation to montane cloud forest

at 2 000 m, is an excellent example. Typical of tropical moun-

tains, ants are scarce and represent few species above ;1 500

m on this transect. Datasets range from 200 sampling units

(with only 270 incidences) at the 2 000 m site, up to 599

sampling units (with 5 346 incidences) at the 50-m site. (Each

incidence is the occurrence of one species in one sampling

unit.)

Because each sampling unit is a 1-m2 plot, in the ant study,

what Fig. 4b plots on the ‘species’ axis are actually estimates of

ant species density (species per area) at multiples of 1-m2 spa-

tial scale. To convert the plot to approximations of species rich-

ness for the local assembly at each elevation, the curves could

be rescaled from ‘samples’ to ‘incidences’ for each elevation

separately and replotted together on a new graph with

‘incidences’ as the X-axis (Longino and Colwell 2011). Rescaling

to incidences can also be useful for any organisms that, like

ants, live colonially or that cannot be counted individually

(e.g. multiple stems of stem-sprouting plants or cover-based

vegetation data).

The same approach to approximating species richness is

recommended, but with re-scaling to individuals instead of

incidences, for rarefaction of sample-based abundance data-

sets. For these datasets, abundances can first be converted

to incidences (presence or absence) before applying incidence-

based rarefaction. Then, differences in density (the number

of individuals per sampling unit) among datasets can be

accounted for by rescaling the X-axis of sample-based rarefac-

tion and extrapolation curves to individuals (Chazdon et al.

1998; Gotelli and Colwell 2001, 2011; Norden et al. 2009).

With rescaling to individuals, however, strong among-sample

differences in dominance can produce misleading results.

Analytical methods (classical rarefaction and Coleman rar-

efaction) have existed for decades for estimating the number of

species in a subset of samples from an individual-based dataset.

Confidence intervals for those estimates have always been

based on conditional variances because unconditional varian-

ces for individual-based classical rarefaction and Coleman

curves have until now remained elusive. Suppose we wish

to compare two reference samples differing in number of

individuals, with sample Y larger than sample X. The two

samples may be drawn from either the same assemblage or

from two different assemblages. The conditional variance of

the larger sample Y is appropriate for answering the question:

‘Is the number of species recorded in the smaller sample, X,T
a
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statistically different from the richness of a random sample of

the same size drawn from the larger reference sample, Y ? ’

(The conditional variance of sample X is zero for the full sam-

ple.) In contrast, ecologists would usually prefer to answer the

question, ‘Are the numbers of species recorded in samples X

and Y statistically different from the richness of random

samples, matching the smaller sample X in number of individ-

uals, from the assemblage or assemblages they represent?’

(Simberloff 1979). The latter question requires an estimate

of the unconditional variance for both samples. We present,

for the first time, simple and explicit variance estimators for

both fixed size (multinomial, Equation 5) and random-size

(Poisson, Equation 7) individual-based rarefaction models,

and we extend the potential for statistical comparison beyond

the size of reference samples by extrapolation.

Even when based on unconditional variances, the use of

confidence intervals to infer statistical significance (or lack

of it) between samples is not straightforward. In general, lack

of overlap between 95% confidence intervals (mean plus or

minus 1.96 SE) does indeed guarantee significant difference

in means at P < 0.05, but this condition is overly conservative:

samples from normal distributions at the P = 0.05 threshold

have substantially overlapping 95% confidence intervals.

Payton et al. (2004) show that, for samples from two normal

Table 7: sample-based interpolation, extrapolation and

prediction of number of additional sampling units required to

reach gSest, under the multinomial product model, for ant samples

from five elevations in northeastern Costa Rica (Longino and

Colwell 2011)

Rarefaction Extrapolation Sampling units prediction

t ~SsampleðtÞ SE t* ~SsampleðT + t�Þ SE g ~t
�
g

(a) Elevation 50 m, Sobs = 227, T = 599

1 9.98 1.27 0 227.00 6.51 0.82 23.29

50 109.64 6.17 100 234.57 6.81 0.86 183.50

100 140.09 6.39 200 241.03 7.24 0.90 398.00

150 159.30 6.41 300 246.56 7.79 0.94 723.65

200 173.30 6.37 400 251.29 8.43 0.98 1424.02

250 184.27 6.33 401 251.33 8.44

300 193.23 6.30

350 200.79 6.28

400 207.32 6.27

450 213.06 6.29

500 218.19 6.34

550 222.83 6.41

599 227.00 6.51

(b) Elevation 500 m, Sobs = 241, T = 230

1 12.80 1.42 0 241.00 7.52 0.82 63.33

20 98.96 6.03 100 266.19 8.93 0.86 123.55

40 132.85 6.57 200 282.78 11.08 0.90 204.17

60 155.08 6.76 300 293.71 13.45 0.94 326.56

80 171.85 6.84 400 300.91 15.64 0.98 589.79

100 185.42 6.88 500 305.65 17.49

120 196.90 6.92 600 308.78 18.97

140 206.90 6.97 700 310.84 20.11

160 215.80 7.04 770 311.84 20.75

180 223.83 7.14

200 231.15 7.27

230 241.00 7.52

(c) Elevation 1 070 m, Sobs = 122, T = 150

1 11.53 1.51 0 122.00 4.50 0.84 5.06

20 68.06 4.59 100 135.00 5.95 0.86 22.53

40 85.18 4.57 200 141.06 8.00 0.88 42.71

60 95.91 4.44 300 143.88 9.63 0.90 66.57

80 103.97 4.36 400 145.19 10.69 0.92 95.77

100 110.41 4.34 500 145.80 11.32 0.94 133.42

120 115.68 4.37 600 146.09 11.67 0.96 186.49

140 120.07 4.44 700 146.22 11.87 0.98 277.20

150 122.00 4.50 800 146.28 11.97

850 146.30 12.00

(d) Elevation 1 500 m, Sobs = 56, T = 200

1 5.85 1.17 0 56.00 3.91 0.74 15.70

20 31.68 3.49 100 61.58 4.61 0.78 69.80

40 38.64 3.65 200 65.68 5.74 0.82 134.79

60 42.71 3.68 300 68.70 7.10 0.86 216.19

Table 7:

Continued

Rarefaction Extrapolation Sampling units prediction

t ~SsampleðtÞ SE t* ~SsampleðT + t�Þ SE g ~t
�
g

80 45.65 3.69 400 70.91 8.50 0.90 325.16

100 47.98 3.69 500 72.53 9.82 0.94 490.60

120 49.94 3.70 600 73.72 11.00 0.98 846.42

140 51.67 3.73 700 74.60 12.01

160 53.22 3.77 800 75.24 12.87

180 54.66 3.83

200 56.00 3.91

(e) Elevation 2 000 m, Sobs = 14, T = 200

1 1.36 0.43 0 14.00 0.49 0.99 28.00

20 8.60 1.25 100 14.21 0.63

40 10.59 1.12 200 14.24 0.70

60 11.62 0.95 300 14.25 0.72

80 12.31 0.82 400 14.25 0.73

100 12.81 0.70 500 14.25 0.73

120 13.19 0.62 600 14.25 0.73

140 13.49 0.56 700 14.25 0.73

160 13.71 0.52 800 14.25 0.73

180 13.88 0.50

200 14.00 0.49

The extrapolation is extended to 1 000 samples for each elevation.
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distributions with approximately equal variances, overlap or

non-overlap of 84% confidence intervals (mean plus or minus

1.41 SE) provide a more appropriate rule of thumb for infer-

ring a difference of mean at P = 0.05, and this approach has

been suggested by two of us for comparing unconditional

confidence intervals around rarefaction curves (Gotelli and

Colwell 2011). Unfortunately, the statisticians among us

(A.C., C.X.M. and S.-Y.L.) doubt that this approach is likely

to be accurate for the confidence intervals around rarefaction

(or extrapolation) curves, so the matter of a simple method

must be left for further study. Meanwhile, non-overlap of

95% confidence intervals constructed from our unconditional

variance estimators can be used as a simple but conservative

criterion of statistical difference. Mao and Li (2009) developed

a mathematically complicated method for comparing entire

rarefaction curves, but it has so far been little used.

All our examples (Tables 2, 3, 5 and 7; Figs 2 and 4) reveal

that the unconditional variance increases sharply with sample

size for extrapolated curves, and thus, the confidence interval

expands accordingly. As with any extrapolation, the estimate

becomes more uncertain the further it is extended away from

the reference sample. As a consequence, confidence intervals

that do not overlap at moderate sample sizes may do so at

larger sample sizes, even if the extrapolated curves are not con-

verging. An example of this phenomenon can be seen in the

lower two curves of Fig. 4a. We would suggest that extrapo-

lation is reliable, at most, only up to a tripling of the reference

sample size, or more conservatively, a doubling of sample size.

We have carried out simulations to investigate the perfor-

mance of the unconditional variance estimators (Equations5,

7, 10 and 13). The proposed unconditional variances perform

satisfactorily when sample size is relatively large because they

were derived by an asymptotic approach (i.e. assuming the

sample size is large). When sample size is not sufficiently large,

the unconditional variances tend to overestimate and, thus,

produce a conservative confidence interval. For small samples,

we suggest estimating variance by non-parametric bootstrap-

ping.

Under all three of the models we discuss, all our estimators

for extrapolated richness, as well as all our unconditional var-

iance estimators, require an estimate of asymptotic species

richness for the assemblage sampled. For this reason, the ac-

curacy of our extrapolation and variance estimators is of

course dependent upon the accuracy of the asymptotic rich-

ness estimates they rely upon. However, if and when better

estimators of assemblage richness become available, they

can simply be plugged into our equations wherever Sest, f̂0,
or Q̂0 appear in our equations.

Under the Poisson model, individual-based rarefaction

curves and species accumulation curves, because they rely

on area, assume that individuals are randomly distributed in

space, within and between species. The multinomial model

can be viewed as having the same assumption, or alternatively,

may be viewed as assuming that species need not be randomly

distributed, but that individuals have been recorded randomly

without regard to their position in space. Neither assumption is

realistic for a practical study of any natural assemblage, which

routinely exhibit spatial aggregation within species, as well as

spatial patterning in association and dissociation between spe-

cies. All such violations of the assumptions of spatial random-

ness lead to an overestimation of richness for a given number

of individuals or a given amount of accumulated space, com-

pared with what richness would be for actual smaller or larger

samples (Chazdon et al. 1998; Colwell and Coddington 1994;

Kobayashi 1982).

Sample-based approaches (e.g. estimators based on the

Bernoulli product model), using replicated incidence data

(or sample-based abundance data converted to incidence),

perform better in this regard as they retain some aspects of

the spatial (or temporal) structure of assemblages (Colwell

et al. 2004; Gotelli and Colwell 2001; Smith et al. 1985), al-

though sampling designs are nonetheless critical to avoiding

bias from spatial structure (Collins and Simberloff 2009;

Chiarucci et al. 2009). It may at first appear paradoxical that

a simple list of incidence frequencies (e.g. Table 6) retains any

information on the spatial structure of the biological popula-

tions sampled. But consider two equally abundant species in

the same assemblage, one with a very patchy spatial distribu-

tion and the other with all individuals distributed indepen-

dently and at random. With individual-based rarefaction,

the two species will be indistinguishable. In a sample-based

study of the same assemblage, however, the aggregated spe-

cies will generally have a lower incidence frequency (since

many individuals will end up some samples and none in others)

than the randomly distributed species. While accounting for

within-species aggregation, however, sample-based rarefaction

is blind to interspecific association or dissociation (Colwell et al.

2004, their Table 2).

When sample-based (replicate) data are not available, the

individual-based methods we present here can be applied,

with the understanding that spatial structure is ignored. To

model species aggregation explicitly, the current models could

be extended to a negative binomial model (a generalized form

of our Poisson model; Kobayashi 1982, 1983) and to a multi-

variate negative binomial model (a generalized form of our

multinomial) model. Extra parameters that describe spatial ag-

gregation would need to be introduced in the generalized

model, and thus, statistical inference would become more

complicated.

We plan to implement the rarefaction and extrapolation

estimators discussed in this paper in the freeware applications

EstimateS (Colwell 2011) and in iNEXT (http://chao.stat.

nthu.edu.tw/softwareCE.html).
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