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Dynamical climatic model for time to
flowering in Vigna radiata
Konstantin Kozlov1 , Alena Sokolkova1, Cheng-Ruei Lee2, Chau-Ti Ting2, Roland Schafleitner3,
Eric Bishop-von Wettberg4, Sergey Nuzhdin5 and Maria Samsonova1*

From Fifth International Scientific Conference “Plant Genetics, Genomics, Bioinformatics, and Biotechnology”
(PlantGen2019)
Novosibirsk, Russia. 24–29 June 2019

Abstract

Background: Phenology data collected recently for about 300 accessions of Vigna radiata (mungbean) is an
invaluable resource for investigation of impacts of climatic factors on plant development.

Results: We developed a new mathematical model that describes the dynamic control of time to flowering by daily
values of maximal and minimal temperature, precipitation, day length and solar radiation. We obtained model
parameters by adaptation to the available experimental data. The models were validated by cross-validation and used
to demonstrate that the phenology of adaptive traits, like flowering time, is strongly predicted not only by local
environmental factors but also by plant geographic origin and genotype.

Conclusions: Of local environmental factors maximal temperature appeared to be the most critical factor
determining how faithfully the model describes the data. The models were applied to forecast time to flowering of
accessions grown in Taiwan in future years 2020-2030.

Keywords: Vigna, Mungbean, Model, Climatic factors, GWAS

Background
Among the cultivated species in the legume family, mung-
bean (Vigna radiata (L.) Wilczek), also known as green
gram) has become one of the important crops across Asia
and beyond, showing a steady increase in global produc-
tion (FAO 2018). This short duration legume crop fits
easily as a rotation crop into cereal based production sys-
tems, adding nitrogen to the soil for the following crop,
and providing additional income for farmers. Mungbean
is a valuable source of protein and contains high amounts
of the essential micronutrients folate and iron. Beyond
the agronomic value of mungbean, certain features make

*Correspondence: m.g.samsonova@gmail.com
1Peter the Great St. Petersburg Polytechnic University, 29 Polytechnicheskaya,
195251 St.Petersburg, Russia
Full list of author information is available at the end of the article

it a well-suited model organism among legume plants
due to its relatively small genome size, short life-cycle,
self-pollination, and close genetic relationship to other
important legume crops. Mungbean is often produced in
marginal areas or during hot seasons, where abiotic stress
limits its productivity. Mungbean yellow mosaic disease
(Begomovirus strains), which is transmitted by whitefly
(Bemisia tabaci) has significant impacts on yields as well
harvests [1].
Biodiverse collections of mungbean and related species

are available in various genebanks, e.g. at the World
Vegetable Center (Taiwan), in the National Bureau of
Plant Genetic Resources (India), in the Institute of
Crop Germplasm Resources (China), the Plant Genetic
Resources Conservation Unit (USA), the genebank of the
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International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you
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indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative
Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made
available in this article, unless otherwise stated in a credit line to the data.
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Commonwealth Scientific and Industrial Research Orga-
nization (Australia), and Plant Genetic Resources Pro-
gram (Pakistan). The collection at the N.I. Vavilov All-
Russian Institute of Plant Genetic Resources (Russia) con-
tains 1,478 accessions of V. radiata and 230 of V. mungo
[2, 3]. Various core collections have been established
to improve the access to mungbean biodiversity in
breeding [4].
It has been shown that high yielding mungbean vari-

eties should possess larger leaf area, higher total dry mass
production ability, superior crop growth rate at all growth
stages, and high relative growth rate and net assimilation
rate at vegetative stage which would result in superior
yield components [5]. Analysis of international mungbean
trials suggested strong genotype-by-environment (G x E)
interactions [6] some of which were related to physio-
logical traits including time to flowering and maturity.
Time to flowering in mungbean is subject to both genetic
[7], and environmental control [8]. Inconsistency of seed
yield often experienced in mungbean, is due to its differ-
ential response of genotypes to various growing season
or conditions. In general, productivity of a plant is influ-
enced by management, and in addition by several factors
such as climate, soil type, photoperiodic response and
micro-environments. Thus, the significance of genotype x
environment interaction for obvious reason deserves high
priority in any crop improvement program. Promising
genotypes need to be evaluated in multi-environmental
tests over several years for identification of the stable and
widely adapted genotypes [9].
Molecular markers are routinely utilized worldwide

in all major crops as a component of breeding. The
pace of development of molecular markers, establish-
ment of marker-trait associations for important agro-
nomic traits has been accelerated breeding in other pulses
[10], but so far, progress in marker-assisted selection as
a part of mungbean breeding programmes has been very
limited [11].
In the past, there have been several efforts to develop

molecular markers and linkage maps associated with
agronomic traits for the genetic improvement of mung-
bean and, ultimately, breeding for cultivar development
to increase the average yields of mungbean. The recent
release of a reference genome of the cultivated mungbean
(V. radiata var. radiata VC1973A) and an additional de
novo sequencing of a wild relative mungbean (V. radiata
var. sublobata) has provided a framework for mungbean
genetic and genome research that can be expanded for
genome-wide association and functional studies to iden-
tify genes related to specific agronomic traits [12, 13].
Moreover, the diverse gene pool of wild mungbean com-
prises valuable genetic resources of beneficial genes that
may be helpful in widening the genetic diversity of culti-
vated mungbean [3, 12].

To effectively harness molecular markers, crop phenol-
ogy models that integrate genotypic variation can be crit-
ical tools [14]. A number of simulation models have been
developed for other species of cultivated Vigna, as well
as mungbean. Bambara groundnut (Vigna subterranea),
an important oil seed crop that is phenotypically simi-
lar to groundnut has been examined with the AquaCrop
model [15]. While the results of these simulations are
preliminary, they confirm the view that bambara ground-
nut is a potential future crop suitable for cultivation in
marginal agricultural production areas. Future research
should focus on crop improvement to improve current
yield of bambara groundnut [15]. The APSIMmodel could
be utilised to characterise growing environments which
could in turn be used to minimise other contributors to G
x E interactions, including managing phenology to match
target production environments. This approach has been
used in sorghum [16]. However, the APSIM model needs
further improvement and validation for its future use to
assist breeding programs [17].
However the models developed in the pre-genomic era

considered genotype influence at best as a set of given
“genetic coefficients” that do not correspond to actual
genes [18]. Mathematical models and tools that combine
genetic and climate data to predict agronomic traits will
greatly benefit breeders by simulating the performance
of any given well-characterized genotype in any given
well-characterized environment [19, 20].
Natural selection shapes genetic variation of a popula-

tion and thereby determines local adaptation [21]. The
signatures of adaptations in genome can be revealed
by association between environmental conditions at a
site of an accession’s origin and SNPs [22]. GWAS is a
good method to identify associations between genomic
regions and traits, however its design usually requires
controlled planting of replicated accessions. This can
quickly become logistically challenging and expensive,
especially in multi-environmental trails. Cropmodels may
complement GWAS approaches by accounting for the
influence of environment at accession sampling sites.
In this work we built a new dynamical model for time

to flowering in 296 accessions of mini core collection of
Vigna radiata phenotyped during four field trials in dif-
ferent years and two locations. We further used the model
to investigate the effects of adaptation of genotypes to
environmental factors. Finally, we forecast the time to
flowering for the years 2020-2030 using generated daily
weather.

Results
ANOVA test applied to the whole dataset showed that
the differences in mean time to flowering between coun-
tries of origin are statistically insignificant with criterion
value F = 1.383 and p = 0.125. Consequently, time to
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flowering is not explained by a simple linear dependence
on the country of origin and climatic control functions are
to be found.
To find parameters of models (15) and (17) we per-

formed for each model 10 optimization runs of Differ-
ential Evolution Entirely Parallel method for each value
of λ = 1, 10, 50, 100, 150, 200, 300, 500, 1000, 1500, 2000.
Different seeds for random number generator were used
for each run.

Amodel with the country of origin information
To select the best model for further investigation we com-
pared model and data and plotted the sum of squared
differences in time to flowering against median absolute
difference in this trait (see Fig. 1). The best model should
minimize both criteria and hence corresponds on the
graph to the closest to the origin dot at the bottom left
corner.
The selected model is defined by (1)–(6). In this model

the average error (root mean square) in time to flower-
ing prediction is 11.6 days (λ = 50), the resource amount
Y needed to flower is 40.27 and the coefficient threshold
Bmin = 0.63.

�y(i, t) = 0.83 · F0 + 4.45 · F1 + 0.13 · F2 + 9.57 · F3

+ 5.75 · F4 +
4∑

n=0
�nFn

F0 = rain
dl − 12.995

F1 =
(

(dl − 12.995) − 1
dl − 12.995

)
· 1
tmin − 0.109768

F2 =
(
rain + 1

tmax − 29.9983

)

F3 = 1
rain − 20.582

F4 =
(

1
srad − 2.60235

+ 1
tmin − 0.109768

)

(1)

where Fn are climatic control functions and �n (2)–(6)
describe an added impact of n-th function on plants from
different countries of origin.

�0 =
− 3.14988 · TH − 3.06907 · IN − 3.7083 · AF − 3.08391 · PK
− 3.96199 · IR − 3.00246 · PH + 0.641678 · BR − 2.4291 · US

− 3.10886 · AU − 3.23838 · Unknown − 2.05882 · FR
+ 0.635819 · KR

+ 0.851436 · TR − 2.04774 · NG − 2.05237 · VN+0.638283 · NL
− 0.638868 · TW − 1.01931 · KE

(2)

�1 =
− 3.17194 · TH + 5.29528 · IN
− 9.33767 · AF + 2.71034 · PK + 8.32015 · IR
− 5.29786 · PH − 9.11154 · BR − 1.99994 · US + 1.48757 · AU
+ 7.79404 · Unknown + 2.83045 · FR + 4.30076 · TR − 9.17855 · NG
− 7.81195 · VN − 8.69424 · IQ + 2.64235 · NL + 6.252 · TW
− 5.80664 · MX + 3.24466 · KE

(3)

�2 =
+ 4.26732 · TH − 7.58479 · IN
− 8.24155 · AF − 1.13634 · PK + 7.28225 · IR + 9.38162 · PH
+ 5.94218 · BR − 3.79285 · US + 4.46692 · AU + 1.25946 · Unknown
− 1.59303 · FR − 2.44954 · KR − 6.54573 · TR − 8.54903 · NG
+ 9.20973 · VN + 2.88583 · IQ + 5.73987 · NL − 9.83768 · TW
+ 4.34869 · MX − 9.4759 · KE

(4)

�3 =
+ 9.29626 · IN + 1.05261 · AF
− 1.82252 · PK + 2.40813 · IR + 5.6705 · PH − 5.5971 · BR
+ 5.61499 · US + 4.50366 · Unknown + 1.04956 · FR+9.14113 · KR
+ 7.68653 · TR − 4.25743 · NG − 6.3334 · VN − 2.64341 · IQ
− 5.88418 · NL − 2.45877 · TW + 3.098 · KE

(5)

�4 =
+ 9.65241 · TH
+ 8.48755 · IN + 3.99315 · AF − 7.8144 · PK − 5.41556 · IR
− 8.92499 · PH − 2.06275 · BR + 6.47815 · US + 2.7679 · AU
− 3.88322 · FR − 4.23494 · KR + 8.47326 · TR + 2.2374 · NG
+ 4.6434 · VN + 7.29815 · IQ − 5.41947 · NL − 9.54991 · TW
− 3.33689 · MX − 8.30075 · KE

(6)

In formulae (2)–(6) two-letter country codes are used
instead of indicator variables d for countries of origin:
Thailand (TH), India (IN), Afghanistan (AF), Pakistan
(PK), Iran (IR), Philippines (PH), Brazil (BR), USA (US),
Australia (AU), France (FR), Korea (KR), Turkey (TR),
Vietnam (VN), Nigeria (NG), Iraq (IQ), Netherlands (NL),
Taiwan (TW),Mexico (MX), Kenya (KE). The interactions
between country of origin and environment account for
12% of variation in time to flowering. The comparison
between experimental data and model solution for each
country of origin is presented in Fig. 2. Though an aver-
age error of the model is rather low the range of model
solutions is less than that of actual time to flowering in
data. This can be due to the fact that the model describes
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Fig. 1Models with country of origin information. Each model is represented with a dot and the best one is marked as large red dot

the influence of country of origin on time to flowering
and does not account for individual variation of this trait
among accessions attributed to one country.
Impacts of climatic factors on time to flowering were

estimated by comparison of prediction errors between
original model and the one with the factor of inter-
est excluded. It appeared that the impact of day length
was 2.3%, precipitation – 8.3%, solar radiation – 5.4%,
maximal and minimal temperature – 76.2% and 7.8%,
respectively.
To compare the impacts of climatic factors between

countries we calculated theMann-Whitney-Wilcoxon test
for mean values of impacts for each pair of countries (Tab.
S3). We identified 118 pairs of countries of origin with
statistically significant differences between impacts of cli-
matic factors, of which maximal temperature accounts for
differences in 109 pairs.

Amodel with genotype information
The best model for further investigation was selected
as minimizing both the sum of squared differences and
median absolute difference in flowering time between
model and data. The selected model was obtained with
λ = 150 and defined by (7)–(12) (Fig. 3). The root mean
square error in flowering time, resource amount needed
to flower, and the coefficient threshold were 11.8 days,
Y = 56.55, and Bmin = 6.283, respectively.

�y(i, t) = 6.65 · F0 + 7.18 · F1 + 6.22 · F2 + 0.95 · F3 + 0.57 · F4

+
4∑

n=0
�nFn

F0 = rain
(rain − 18.6471)2

F1 = 1
dl − 0.02289

F2 = 1
tmin − 1.37714

F3 =
(

1
dl − 0.02289

+ 1
tmax − 26.7143

)

F4 = 1
rain − 18.6471

(7)

where Fn are climatic control functions and �n describe
the influence of n-th function on plants with different alle-
les. In (8)–(12) instead of indicator variables d from (17)
the names of SNP groups are used represented by SNP
number and allele combination where ’A’ and ’R’ denote
alternative and reference alleles, respectively. The plants
with allele combinations included in �n get an additional
impact of function Fn.

�0 =
+ 7.4509 · snp4AR − 8.16384 · snp6RR + 7.69515 · snp7RR
− 7.99183 · snp9AR

(8)

2020, 20(Suppl 1):202
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Fig. 2 Comparison between actual and predicted days to flowering for plants from different countries of origin. Each dot corresponds to one plant

�1 =
+ 9.22877 · snp1RR + 9.28055 · snp3AR
+ 7.15876 · snp3RR + 8.25876 · snp5AA + 7.92461 · snp5AR
− 9.27385 · snp6AR + 7.54713 · snp7AA − 6.7873 · snp7RR
+ 6.79649 · snp8AR − 6.41667 · snp8RR + 7.17566 · snp9RR
+ 8.43357 · snp10AA

(9)

�2 =
+ 7.37262 · snp1AA + 9.13604 · snp1RR
+ 9.12136 · snp2RR + 9.98666 · snp3RR + 9.22927 · snp5AA
− 9.23385 · snp5AR + 9.71658 · snp7RR

(10)

�3 =
+ 9.01623 · snp1AA
+ 8.91822 · snp3AA + 7.17114 · snp3AR

+ 8.60211 · snp4AA
+ 7.46585 · snp5AA + 7.2088 · snp5AR

+ 9.67968 · snp5RR
+ 7.62143 · snp6RR − 6.30424 · snp7AA

+ 8.76958 · snp7AR
− 9.81541 · snp8RR + 6.84716 · snp10AR − 8.12269 · snp10RR

(11)

2020, 20(Suppl 1):202
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Fig. 3Models with the information about genotype. Each dot is a model and the best model is represented by large red dot

�4 =
− 7.59475 · snp1AA − 7.87434 · snp1AR + 6.31816 · snp1RR
− 7.60708 · snp3AR + 9.05006 · snp3RR + 8.54655 · snp5RR
+ 9.38654 · snp6RR + 8.29729 · snp7AA − 9.73811 · snp7AR
− 8.2692 · snp9AA − 7.24539 · snp10AA

(12)

The comparison between experimental data and model
solution is presented in Fig. 4. Though a model accurately
predicts time to flowering for many samples the values
over 57 days are underestimated. This can be due to the
fact that the samples of this kind make a limited impact on
objective function as their frequency in the dataset is low
(see the histogram in Fig. 5).
The model ability to generalize to independent datasets

was further validated with 4-fold cross-validation test
using 75% of samples of the whole dataset for training
and 25% of samples for testing. The T-test for compar-
ison of means of root mean square differences between
training and test sets showed no statistically significant
difference (P = 0.17 > 0.05). The root mean square
error in flowering time was then compared with Mann-
Whitney-Wilcoxon test and again we found no statistically
significant differences between training and testing, 28.44
and 30.41 days, respectively.

The genotype-by-environment interactions accounted
for 19% of the error in this model according to (20).
Impacts of climatic factors on time to flowering were
estimated by comparison of prediction errors between
original model and the one with the factor of interest
excluded. The obtained results showed that the impact of
day length was 20%, precipitation – 2.5%, maximal and
minimal temperature – 63.5% and 14%, respectively.
To understand how climatic factors affect time to flow-

ering in accessions with different allele combinations the
Mann-Whitney-Wilcoxon test was applied to compare
mean values of factor impacts for combination pairs.
We identified 309 pairs with different response to cli-
matic factors (see Tab. S4). For example, accessions with
allele combinations SNP1AA and SNP1AR or SNP1AA
and SNP1RR respond differently to day length and min-
imal temperature, while accessions with allele combi-
nations SNP2AA and SNP2AR, SNP3AA and SNP3AR,
SNP4AA and SNP4AR, SNP7AA and SNP7AR, SNP8AA
and SNP8AR, SNP9AA and SNP9AR respond differently
to all factors.

Forecasting
Cross-validation performed above on the whole dataset
demonstrated that the model with genotype information
(17) has good predictive ability. However, for forecasting
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Fig. 4 Comparison of days to flowering predicted by the model with genotype information and data. Each dot corresponds to one plant. Straight
line corresponds to an ideal case, i.e. when predictions equal data

time to flowering of accessions one needs to be confi-
dent that the developed model can generalize to prospec-
tive datasets. As the number of datasets available to us
was limited, we considered as a “prospective” dataset the
dataset from year 2018 while building and validating the
model on the rest datasets. The data set for 1984, 1985
and 2016 years was split into validation (105 records)
and core datasets as described in Materials and meth-
ods. The data from 2018 (292 records) was saved for
prospective prediction. The 4-fold cross-validation was
then performed for the core dataset that resulted in 100
fitting runs. The T-test for comparison of means of root
mean square differences between training and test sets
was statistically insignificant (P=0.77>0.05). The Mann-
Whitney-Wilcoxon test also showed no statistically signif-
icant difference between training and testing, 26.20 and
27.08 days, respectively.
The best model was selected to minimize both the

sum of squared differences and median absolute differ-
ence between model and data. The root mean square
error in the time to flowering prediction was 5.8 days

(see Additional file 1). Next this model was applied to
predict time to flowering in both validation dataset and
“prospective” dataset from 2018 year. We found that the
root mean square errors for these datasets were 5.82 and
5.34 days, respectively. The median absolute difference in
days to flowering between data and model solution for
both validation and “prospective” datasets was also small
and equal to 3 and 4 days, respectively. The high accuracy
of the model solutions for test, validation and “prospec-
tive” datasets demonstrates its good predictive ability and
applicability for forecasting time to flowering.
The model (7)-(12) was applied to forecast time to

flowering of accessions from the whole dataset (293 acces-
sions) in future years 2020-2030 and in Taiwan. Three
replications of daily weather were generated for four RCPs
by MarkSim software.
We found that in comparison to available data time to

flowering decreases for all accessions in all four climate
change scenarios but different groups of accessions fol-
low distinct trajectories that can be combined into two
clusters, for which time to flowering is > 25 and < 25

2020, 20(Suppl 1):202
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Fig. 5 Histogram of times to flowering in the available dataset

days, respectively (Fig. 6). Trajectories in the first cluster
have small amplitude of fluctuations and flowering time
for groups of accessions doesn’t increase significantly in
the modeled period. Trajectories attributed to the sec-
ond cluster increase time to flowering in years 2023, 2025,
2029 and 2027 for rcp85, rcp60, rcp45 and rcp26, respec-
tively. Time to flowering slowly decreases starting from
year 2025 for rcp45 for trajectories in this cluster.
As it is evident from Fig. 7a,b the decrease in time to

flowering of all accessions is caused by the prevalent influ-
ence of temperature that is steadily growing, except the
drop in 2023 for rcp45. Fluctuations of time to flower-
ing can be explained by the fluctuations in precipitation
(Fig. 7c). Different trajectories that visualize differences
in response between accessions groups to climate change
are determined by different influence of climatic factors
and maximal temperature in particular on flowering time
of accessions with different allele combinations. This con-
clusion results from the formulae (7)-(12) in which given
the same dates of sowing and climate different time to
flowering can be obtained only for accessions with dif-
ferent allele combinations. Accessions in the first cluster
respond to the climate change almost monotonically and
have similar values of time to flowering for the modeled
period while accessions that form the second cluster after
2022 increase time to flowering and move closer to the
first cluster.

Discussion
In many tropical and subtropical locations mungbean
(Vigna radiata) is now an important legume, due to its
short duration, quick-cooking seeds, and capacity to fit
into warm seasons in crop rotations. Increasingly mung-
bean is also produced in more temperate regions, such
as central Asia, Australia, and the Southern Great plains
of the United States. In these settings flowering time is a
critical trait, as many rotational partners, such as wheat,
grown through the winter often are harvested relatively
late in the spring and mungbean production is shifted to
conditions, in which short duration is particularly critical
to set seed before cool weather begins.
Here we developed new mathematical models that

describe dynamic control of time to flowering in mung-
bean by daily values of maximal andminimal temperature,
precipitation, day length and solar radiation. For model
development a solution based on combination of Gram-
matical Evolution and Differential Evolution Entirely Par-
allel Method was implemented, in which the analytic form
of dependencies between predictors (climatic factors,
country of origin and genotypes) and phenotype (time to
flowering) is automatically inferred by a stochastic opti-
mization technique. This makes it possible to quickly
examine different fits to the data and select the optimal
one. The models were parameterization on a dataset of
293 mungbean accessions originated from 20 different
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Fig. 6 Forecast for time to flowering for 293 accessions averaged over 3 replications of the daily weather

countries and phenotyped in 4 different environments.
GWAS analysis of the data performed recently (Sokolkova
et al., in preparation) identified ten polymorphic sites
responsible for flowering time.
It was demonstrated in several works that the phenology

of adaptive traits, like flowering time, is strongly pre-
dicted not only by local environmental factors but also by
plant geographic origin [39, 40] (Sokolkova et al., submit-
ted). Besides, as the adaptation to specific environments
is blueprinted in genomes [41, 42], different genotypes
should respond to local environment in different ways.
Our work substantiates and further develops these ideas.
We built two types of models that consider the influence
of climatic factors on flowering time subject to country of
origin or genotype and found that 12% and 19% of vari-
ation in time to flowering is respectively accounted for
by interactions of climatic factors with these variables.
Contrary to previous approaches that measure the com-
bined sensitivity of the phenotype to all environmental
factors, our approach makes it possible to identify how
specific environmental condition affect this trait. Maxi-
mal temperature appeared to be the most critical factor
determining how faithfully the model describes the data.
The influence of the country of origin and genotype

on plant phenology was further confirmed by applying
a comparative approach. We demonstrated that climatic
factors differently affect time to flowering in accessions
with different allele combinations. For example, acces-
sions with allele combinations SNP1AA and SNP1AR
or SNP1AA and SNP1RR respond differently to day
length and minimal temperature, while accessions with
allele combinations SNP2AA and SNP2AR, SNP3AA and
SNP3AR, SNP4AA and SNP4AR, SNP7AA and SNP7AR,
SNP8AA and SNP8AR, SNP9AA and SNP9AR respond
differently to all factors. Similar conclusion was drawn
when considering the interaction of climatic factors with
country of origin: we identified 118 country pairs with

statistically significant differences between impacts of
climatic factors, of which maximal temperature again
accounts for differences in 109 pairs.
Forecasting of agronomically important traits is critical

to provide timely information for optimum management
of growing crops and for national food security. Here we
applied the model with genotype information to forecast
time to flowering of accessions grown in Taiwan in future
years 2020-2030. However to make forecasting reliable
one needs to prove that the model can generalize to inde-
pendent datasets in general and to prospective datasets
in particular. Cross-validation performed on the whole
dataset demonstrated that our model has good predictive
ability: the difference in prediction accuracy on train-
ing and test datasets was statistically insignificant. As the
number of datasets available to us was limited we con-
sidered as a “prospective” dataset the dataset from year
2018 while building and validating the model on the rest
datasets. Again, we were able to show that model pre-
diction error on this prospective dataset is small. We
conclude that our model has good predictive ability and
therefore can be used for forecasting time to flowering.
To forecast time to flowering four climate change sce-

narios rcp26, rcp45, rcp60 and rcp85 were considered
that differently predict Earth radiation balance in 2100
due to possible changes in future anthropogenic emissions
of greenhouse gases [38]. We found that while time to
flowering decreases for all accessions different groups of
accessions respond differently to the same climate change
scenarios and that these differences are determined by
different influence of climatic factors and maximal tem-
perature in particular on flowering time of accessions with
different allele combinations. For example, there is a group
of accessions for which time to flowering decreases start-
ing from 2020 to 2022 and then increases at different
years for different RCPs. The predicted trends for temper-
ature and precipitation suggests that the fluctuations of
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Fig. 7Minimal (a) and maximal (b) temperature and precipitation (c) as predicted by MarkSim and averaged over 3 trials and over the period from
sowing to the end of the year

flowering time are driven by the fluctuations of precipita-
tion, while the overall decrease in flowering time is due to
warming.

Conclusions
Two types of models that describe dynamic control of
time to flowering in mungbean by daily values of maximal
and minimal temperature, precipitation, day length and
solar radiation subject to country of origin or genotype
were considered. The models were used to demonstrate
that the phenology of adaptive traits, like flowering time, is

strongly predicted not only by local environmental factors
but also by plant geographic origin and genotype. Of local
environmental factors maximal temperature appeared to
be the most critical factor determining how faithfully the
model describes the data.
The model with genotype information was cross-

validated and applied to forecast time to flowering of
accessions grown in Taiwan in future years 2020-2030.
Due to the difference in influence of climatic factors on
flowering time between accessions with different allele
combinations their response to the same climate change
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scenarios differs. Our results suggest that the overall
decrease in flowering time is caused by temperature
increase while the fluctuations of flowering time are
driven by the fluctuations of precipitation.

Methods
Plant material
A mungbean mini core collection comprising 296 geno-
types was established from the WorldVeg mungbean col-
lection of 7,965 entries, as described in [4]. Briefly, the
whole collection was stratified based on geographical
origin of the accessions, then clustered based on eight
morphological descriptors. From each cluster 20% of the
accessions were randomly chosen, resulting in a core
collection of 1,481 entries. The core collection was geno-
typed with 25 microsatellite markers and the smallest set
representing all detected 122 alleles was chosen, resulting
in a mini core collection of 296 accessions.
Themini core collection includes accessions from: Thai-

land (TH), India (IN), Afghanistan (AF), Pakistan (PK),
Iran (IR), Philippines (PH), Brazil (BR), USA (US), Aus-
tralia (AU), France (FR), Korea (KR), Turkey (TR), Viet-
nam (VN), Nigeria (NG), Iraq (IQ), Netherlands (NL),
Taiwan (TW), Mexico (MX), Kenya (KE). Table S1 shows
the number of samples from each region.
The available dataset was composed during field exper-

iments:

- 1984: sown on 28/08/1984; harvest on 24/10/1984.
Geographical coordinates: N 23° 6’ 50" E 120° 17’ 55",

- 1985: sown on 17/09/1985; harvest on 03/10/1985.
Geographical coordinates: N 23° 6’ 50" E 120° 17’ 55",

- 2016: sown on 16/06/2016, harvest from 22/08 to
mid-September. Geographical coordinates: N 17° 30’
28" E 78° 16’ 10",

- 2018: sown 21/09/2018 and harvested from Dec.
24-28 2018. Geographical coordinates: N 23° 6’ 50" E
120° 17’ 55".

A histogram of times to flowering in the dataset is
presented in Fig. 5.

GWAS
We used 10 SNPs found in a recent GWAS analysis asso-
ciated with flowering time (Sokolkova et al., in review). In
brief, the SNPs were identified in 293 lines based on 5041
SNPs, using a single-locus linear mixed model, imple-
mented in FaST-LMM toolset (Factored Spectrally Trans-
formed Linear Mixed Models) [23]. The LMMmodel was
implemented with the first ten PCA axes scores used
as covariates. We used a false discovery rate (FDR) [24]
of 0.05 to determine significant trait associated loci. In
this GWAS analysis, ten SNPs were identified associated
with flowering time. Coordinates, allele combinations and

additional information for these SNPs are presented in
Tab. S2.

Climate data
The data on climatic conditions for each day in the period
of field experiments were taken from publicly available site
https://rp5.ru/Weather_in_the_world (Website provides
weather forecasts for 172’500 locations, as well as obser-
vational data, reported from weather stations) and NASA
[25] (These data were obtained from the NASA Langley
Research Center (LaRC) POWER Project funded through
the NASA Earth Science/Applied Science Program):

1. dl or D is day length,
2. tmin or Tn is a minimal temperature,
3. tmax or Tx is a maximal temperature,
4. rain or P is precipitation,
5. srad or S is a solar radiation.

Simulation model
In [18] the framework was developed for combining
weather and SNP data.We further enhance the method by
introducing non-linearity and automatic function selec-
tion. The simulation model describes how the readiness
to flower y(i, t) of a plant i increases at on each day t from
sowing (t = 0) to actual flowering (t = Ti). To increase
its readiness the plant accumulates resources and the daily
increment �y(i, t) depends both on the environment at
day t and plant-environment interaction.

y(i, t) = y(i, t − 1) + H(�y(i, t))�y(i, t)
y(i, 0) = 0 y(i,Ti) ≥ Y y(i,Ti − 1) < Y

(13)

where Y is a resource amount that a plant needs to
accumulate to be able to flower and H() is a Heaviside
function.
Several forms of dependence have been proposed in the

literature. Here we propose a more general approach in
which the readiness to flower is determined automati-
cally in analytic form using Grammatical Evolution (GE)
[26, 27]. In GE, the analytic function form is built by
decoding the sequence called “word” ofW integers called
codons. Decoding is performed according to simple rules
of substitution that establish a correspondence between
codons and either an elementary arithmetic operation:
‘+‘, ‘-‘, ‘*‘, ‘/‘, or expression: X, (X - Const),
1/(X - Const), where X is a name of a predictor and
Const is some constant number.
The daily increment of readiness to flower depends on

climatic factors (14).

�y(i, t) =
N−1∑

n=0
βn · Fn(Di(t),Tni(t),Txi(t),Pi(t), Si(t)) + εi

(14)
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where βn, n = 0, . . . ,N − 1 are coefficients, Fn, n =
0, . . . ,N − 1 are non-linear control functions and
D,Tn,Tx,P, S are climatic factors, combined in a vector
X(t) = (Di(t),Tni(t),Txi(t),Pi(t), Si(t)).
To study the adaptation to environment at the coun-

try of origin we represent these countries as L = 20
binary variables, where l = 1, . . . , L enumerates countries:
Thailand, India, Afghanistan, Pakistan, Iran, Philippines,
Brazil, USA, Australia, France, Korea, Turkey, Nigeria,
Vietnam, Iraq, Netherlands, Taiwan, Mexico, Kenya. 20
samples were labeled ’Unknown’ as the source country
information is unavailable, however we kept these acces-
sions as they possess unique alleles. For each plant enu-
merated with i = 0, . . . , I − 1 one of the L variables dli
takes the value ’1’ to indicate collection site and others are
’0’. The interaction between control function and country
of origin is modeled with additional term in (15) that has
the form of a weighted sum of N · L pairwise products of
control functions Fn and each binary site variable dli .
A model then takes the form:

�y(i, t) =
N−1∑

n=0
βn · Fn(X) +

N−1∑

n=0

L∑

l=1
H(

∣∣ζl·N+n
∣∣ − Bmin)

· ζl·N+n · Fn(X) · dli + εi

(15)

where in addition to notations used in (13) and (14)
new coefficients ζl·N+n define the influence of climatic
control function Fn on phenotype of plants originated
from location l so that condition ζl·N+n �= 0 points on
plant adaptation to environment at the country of ori-
gin. To make estimation of new coefficients more reliable
we introduced the threshold parameter Bmin and set all
coefficients ≤ Bmin to be zero.
Available genetic information (Tab. S2) defines groups

of samples with different allele combinations. We denote
K number of SNP and J = 3 combinations of alterna-
tive (ALT) and reference (REF) alleles ALT/ALT, ALT/REF
and REF/REF by 0, 1, and 2, respectively. Then to include
GWAS results into the model we define J · K groups of
plants so that members of the same group have the same
combination of alleles in one of the SNP positions. Thus
we define a matrix D with the number of rows equal to
the number of plants I and J · K columns. Then, the ele-
ments of matrix D are defined by (16). Thus, the form of
the regression function adapts to allele combination of a
plant by changing the weights of control functions.

d3k+j
i =

⎧
⎨

⎩

1 if in plant i the combination for SNPk is j
0 otherwise (16)

A model then takes the form:

�y(i, t) =
N−1∑

n=0
βn · Fn(X)

+
N−1∑

n=0

K−1∑

k=0

J−1∑

j=0
H(

∣∣ρ(3k+j)N+n
∣∣ − Bmin)

· ρ(3k+j)N+n · Fn(X) · d3k+j
i + εi

(17)

where in addition to notations used in (13) and (14), new
coefficients ρ(3k+j)N+n define the effect of genotype-by-
climatic factor interaction. Bmin is a threshold parameter
for coefficients ρ(3k+j)N+n.
The vector of unknown model parameters θ ∈ Rr con-

sist ofW codons, coefficients βn, n = 0, . . . ,N −1, ζl·N+n
(or ρ(3k+j)N+n) together with threshold parameter Bmin
and resource amount Y.
In this work we implemented approach, in which the

analytic form of climatic control functions together with
unknown model parameters were inferred automatically
by stochastic minimization of the deviation of the model
output from data, formulae (18) and (19) for models with
country of origin (15) and genotype (17), respectively.
The number of parameters r for W = 60 codons of

N = 5 climatic control functions and L = 20 countries
of origin was r = 172 for the model with country of ori-
gin information (15). The number of parameters formodel
(17) with K = 10 SNPs and the same number of codons
was 222.

Q(θ) =
I−1∑

i=0
(Ti − τi(θ))2

+ λ

{N−1∑

n=0
|βn| +

N−1∑

n=0

L∑

l=1

∣∣ζl·N+n
∣∣
}

(18)

+ α

{N−1∑

n=0
β2
n +

N−1∑

n=0

L∑

l=1
ζ 2
l·N+n

}

Q(θ) =
I−1∑

i=0
(Ti − τi(θ))2

+ λ

⎧
⎨

⎩

N−1∑

n=0
|βn| +

N−1∑

n=0

K−1∑

k=0

J−1∑

j=0

∣∣ρ(3k+j)N+n
∣∣

⎫
⎬

⎭ (19)

+ α

⎧
⎨

⎩

N−1∑

n=0
β2
n +

N−1∑

n=0

K−1∑

k=0

J−1∑

j=0
ρ2

(3k+j)N+n

⎫
⎬

⎭

In both formulae (18) and (19) α = 1 and λ are regulariza-
tion parameters, τi(θ) is a number of days from planting
to flowering predicted by a model with parameters θ .
We used a combination of GE and Differential Evolu-

tion Entirely Parallel (DEEP) Method [28–30] to fit model
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to available data. Differential Evolution was proposed by
Storn and Price in 1995 [31] as a heuristic stochastic opti-
mization method. DEEP was developed by us for applica-
tion in the field of bioinformatics [28]. It includes several
recently proposed enhancements [29, 32].

Estimation of impacts of interactions and climatic factors
to the model
The impact of either genotype-by-environment or coun-
try of origin-by-environment interactions in the models
defined by parameter vector θ was calculated as the per-
centage of error increase in the model with information of
interest removed (20).

S = 100% ·
(
Q(θ0) − ∑I−1

i=0 (Ti − τi(θ))2
)

Q(θ0)
(20)

where θ0 = θ except all ρ∗ = 0 or ζ∗ = 0.
Impacts of climatic factors on time to flowering were

estimated by comparison of prediction errors between
original model and the one with the factor of inter-
est excluded. The difference in mean values of impacts
of climatic factors between different countries of origin
or genotypes was compared with the Mann-Whitney-
Wilcoxon test.

Cross-validation of the model with genotype information
and forecasts
We used the model with genotype information to forecast
time to flowering in accessions grown in Taiwan in 2020-
2030. However, for forecasting time to flowering in future
years one needs to estimate how the models will general-
ize to independent datasets in general and to prospective
datasets in particular. Available data allows us to simulate
such a setup.
Firstly, the 4-fold cross-validation of the model was per-

formed on the whole dataset using 75% of samples for
training and 25% of samples for testing. Secondly, to test
the model ability to predict time to flowering in prospec-
tive datasets we saved 20% of all records (105) from years
1984, 1985 and 2016 as the validation set and referred to
the rest of 80% accessions as the core set.
We used four-fold cross-validation to build amodel with

genotype information on the core set. The core set was
split 25 times randomly into training and test sets con-
taining 75% and 25% of accessions correspondingly. The
model was fitted to the training set and the accuracy of
prediction was estimated on a test set as a root mean
square error in time to flowering between predictions and
data. Next the best model with the smallest prediction
error was selected and tested on the validation set and
after that was used to predict time to flowering for 2018
data (292 records). The insignificant difference in mean
square errors in time to flowering for training and test sets

in cross-validation runs and high prediction accuracy of
flowering time in both validation and 2018 dataset ensures
that the model was not overfitted and can be generalized
to an independent prospective datasets.

Synthetic weather generation
We forecasted time to flowering for accessions grown
in Taiwan. The daily weather forecasts for Taiwan from
2020 to 2030 were produced using the weather genera-
tor programMarkSim. MarkSim was designed to simulate
weather from known sources of monthly climate data
[33–37] and takes into account the socio-economic devel-
opment scenarios described by the four representative
carbon dioxide concentration profiles (RCPs) adopted by
the Intergovernmental Panel on Climate Change (IPCC)
in the fifth assessment report (AR5) in 2014. The pro-
files correspond to a wide range of possible changes in
future anthropogenic emissions of greenhouse gases and
are called rcp26, rcp45, rcp60 and rcp85 in accordance
with the possible violation values for radiation earth bal-
ance in 2100 in respect to the preindustrial epoch (+2.6,
+4.5, +6.0 and +8.5W/m2, respectively) [38].
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