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Abstract 

According to evolutionary theory, cooperation should evolve most easily in closely related 

groups. In colonies of ants, bees, and wasps, within-colony relatedness is maximized when all 

offspring are descended from a single queen mated with a single male. However, in many species 

colonies are not composed of strictly nuclear families, suggesting there may also be benefits to 

greater genetic diversity. To increase genetic diversity, a queen can mate with multiple males, 

termed polyandry, or join with other queens to cohabitate and raise offspring together, termed 

polygyny. Both options have associated costs, leading to an expected tradeoff in whether queens 

invest in polygyny or polyandry.  

In this project, I tested the polygyny/polyandry tradeoff hypothesis in the desert seed 

harvester ant Veromessor pergandei. This species forms three different types of colonies across its 

geographic range: single queen, polygynous, and a temporary form of polygyny where colonies 

begin with multiple queens but they aggressively compete until only one queen is left alive. If the 

polygyny/polyandry tradeoff hypothesis explains their mating behaviors, I predict that solo-

founding queens should mate with more males than polygynous queens, and polyandry would be 

higher in temporary groups than in permanent groups.  Queens and their offspring from each 

geographic area were genotyped at six highly variable microsatellite loci to infer the number of 

males with which the queen had mated. Results showed tentative support for a tradeoff between 

polygyny and polyandry, but implicated a more complex array of factors then genetic variation 

only influencing mating frequency in V. pergandei. 

 

 

 

 

 

 

Introduction 
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Eusocial insects form colonies consisting of at least one reproductive queen and her sterile 

offspring, a system made possible through the sizable indirect benefits these sterile offspring 

receive from kin selection (Crozier 2008). Due to the haplodiploid genetic structure of insects in 

Hymenoptera, workers share 75% of their genetic material, making intra-colonial relatedness very 

high (Nonacs 1988). Such high relatedness is only possible through monogamy, suggesting 

eusociality could only evolve under monogamous conditions (Hughes et al. 2008a). However, both 

polygyny, multiple reproductive queens in one colony, and polyandry, one queen mating with 

multiple males, are common in Hymenoptera, suggesting an evolutionary advantage to deviating 

from the ancestral monogamy (Hughes et al. 2008b). Polyandry reduces relatedness within a 

colony, with half-sisters sharing only 25% of their genetic material (Sundström and Ratnieks 

1998). Polygyny reduces average intra-colonial relatedness even more sharply, particularly when 

groups are formed of unrelated queens, leading to workers within a colony that may be completely 

unrelated (Kellner et al. 2007). Though eusociality must evolve through monogamy, greater 

genetic variation than allowed by monogamy can be beneficial, and will not cause eusociality to 

break down once it has evolved (Keller and Reeve 1994, Hughes et al. 2008b). Genetic variation 

can reduce the spread of infection within a colony, and increase foraging success by widening the 

range of environmental conditions the colony can successfully function in, increasing the resilience 

of the colony and by extension the fitness of the queen (Schmid-Hempel 1994, Hughes and 

Boomsma 2004, Wiernasz et al. 2008).  Moreover, founding a colony in a group may give queens 

a better chance of surviving long enough to establish a lasting colony (Rissing and Pollock 1987). 

A group of queens has a greater chance of producing more workers and producing them sooner 

than a single queen, giving the new colony a better chance of surviving both conflicts with other 

colonies and greater ability to forage (Offenberg et al. 2012, Sasaki et al. 2005). Additionally, in 
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harsh conditions, cooperation can promote survival of all. Each queen consumes less of her own 

resources when the burdens of excavating a nest and producing workers are shared, increasing her 

chance of survival despite stresses such as starvation or desiccation risk (Cahan 2001). Because of 

the benefits to queen survival of forming colonies in a group, polygyny is likely to develop based 

on environmental conditions, suggesting it may be more likely to drive patterns of polyandry. 

Both polygyny and polyandry are effective at creating a genetically diverse colony, but 

each has a unique set of individual-level costs. This is expected to create a tradeoff between 

polygyny and polyandry (the Polgyny/Polyandry Tradeoff Hypothesis, Keller and Reeve 1994); 

once one had evolved, the second would not provide sufficient benefits relating to its costs, and 

should be selected against. Predation risk is high for queens during their mating flight, and 

prolonging that mating flight in order to mate multiply increases that risk (Yasui 1998). Mating 

with multiple males also increases the likelihood of disease transmission (Crozier and Fjerdingstad 

2001).  Flying, mating, excavating a nest, and producing offspring also all require energy, which 

is a limited resource for a queen who must rely on fat reserves until her first workers mature (Keller 

and Reeve 1994). Queens mate while in flight, and as such mating multiply requires a longer and 

more energetically expensive flight, potentially lowering an individual’s ability to produce enough 

initial offspring to create a viable colony (Crozier and Fjerdingstad 2001).  

Polygyny is also an inherently costly strategy.  In many species, queen groups break down 

once the first crop of workers has been raised, resulting in inter-queen aggression, and the death 

of all but a single foundress (Aron et al. 2009). Even when polygyny is long-lasting, cohabitation 

necessitates the sharing of resources and, as such, any one polygynous queen has a smaller share 

of resources to devote to producing offspring than a solitary queen (Brent et al. 2008, Hughes et 

al. 2008). Additionally, many polygynous groups form dominance hierarchies, where dominant 
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queens are able to reproduce more and control a larger proportion of available resources. Lower-

ranked queens may produce many fewer offspring, if they are able to reproduce at all (Kellner et 

al. 2007). These costs can be reduced through forming polygynous colonies with sisters, or through 

forming a polygynous colony through the adoption of daughter queens into their natal colony 

(Boulay et al. 2014). In these cases, queens gain fitness benefits from both their own offspring, 

and indirectly from offspring produced by their kin, a benefit that is the bases for theories of kin 

selection (Haapaniemi and Pamilo 2012). However, not all polygynous colonies are of closely 

related queens, indicating that in some cases the costs of sharing resources are not great enough to 

discourage grouping with other queens even when those queens are unrelated (Helms Cahan and 

Helms 2012). 

If the Polygny/Polyandry tradeoff drives the evolution of mating behavior, the evolution 

of polygyny should reduce the likelihood that polyandry will evolve. Surveys of mating frequency 

across species seem to support the presence of this tradeoff, as there is a negative correlation 

between polygyny and polyandry in Hymenoptera (Keller and Reeve 1994, Hughes et al. 2008). 

However, at the within-species level, tests of the tradeoff hypothesis have been equivocal. In 

support of the hypothesis, some species studied have shown the expected negative correlation 

between polyandry and polygyny in individual species (Qian et al. 2011, Haapaniemi and Pamilo 

2012) However, this has not been the case for every study, other species show polyandry and 

polygyny to coexist, or even to be positively associated, indicating the need for further study to 

understand what affects the relationship between the two strategies (Schmid-Hempel and Crozier 

1999, Pendersen and Boomsma 1999, Rubin et al. 2013). Moreover, there are other factors that 

could potentially affect mating behavior. Queen body mass may also affect selective pressures on 

mating behavior,  as higher body mass could lower a queen’s energetic cost to mate, potentially 
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leading to more matings (De Souza et al. 2013), Colony density may also influence mating 

behavior, as greater colony density could increase availability of mates, thus reducing the cost of 

finding additional mates. 

Veromessor pergandei is an ideal species for testing for a tradeoff between polygyny and 

polyandry.  Polyandry, as well as both solitary and polygynous colony founding behavior are 

present within the species (Ode and Rissing 2002, Cahan et al. 1998). Polygynous colonies are 

made up of unrelated queens and, once founded, either remain cooperative permanently, or break 

down into fighting between queens and the deaths of all but one (Helms Cahan and Helms 2012, 

Helms et al. 2013). Solitary, permanently polygynous, and temporarily polygynous colony types 

are geographically distinct, with polygyny having evolved in response to differing environmental 

factors across V. pergandei’s range (Helms and Helms Cahan 2012). Permanently polygynous 

colonies form in the harshest parts of the range, such as Death Valley, most likely due to the 

increased chance of survival from founding a colony with a group of other queens (Cahan 2001, 

Rissing and Pollock 1987).  Solitary colonies form in the most optimal areas of the range, and 

temporarily polygynous colonies form in intermediate areas (Cahan 2001). This allows 

comparison of how levels of polyandry are different between colony founding types within the 

same species. If the polygyny/polyandry tradeoff has been important in shaping mating behavior 

in V. pergandei, queens from solitary-founding regions should show the highest levels of 

polyandry, and those from regions where queens form temporary polygynous groups should show 

higher levels of polyandry than those from areas where groups are permanent, due to the temporary 

nature of genetic variation from polyandry in a group that will not last. Within permanently 

polygynous groups, polyandry should also be negatively correlated with the magnitude of 

polygyny. 
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To test for a tradeoff between polyandry and polygyny within this species, mating 

frequencies of queens from the three behavioral regions were compared by allowing individual 

queens to produce offspring in the lab, and then genotyping those offspring at six highly variable 

microsatellites to infer the number and relative contributions of their male mates. Pedigree-

effective mating frequency was calculated to determine the representation of the males each queen 

mated with in her offspring; this statistic is a function of the absolute mating frequency as well as 

paternity skew, which measures the extent to which paternity is shared equally or biased. The 

polygyny/polyandry tradeoff hypothesis predicts a negative relationship between the two 

strategies, so within permanently polygynous regions number of foundress queens was compared 

to absolute and effective mating frequency, to determine whether polyandry showed a negative 

relationship with magnitude of polygyny. Absolute mating frequency and pedigree-effective 

mating frequency were both compared to queen body size and colony density to control for the 

potential effects of these factors on mating frequency.  

 

Methods 

Newly mated queens were collected 1-5 days after their mating flights at 9 sites in V. 

pergandei’s range, and shipped overnight to the University of Vermont. Each queen was shipped 

in a ventilated tube with a moist cotton ball, and weighed on arrival. Of the 73 total queens used 

in this experiment, 39 were from permanently polygynous sites, 19 queens were from solitary sites, 

and 15 queens were collected from temporarily polygynous sites (Table 1). All collections 

occurred in 2009 and 2010.  

Table 1 

Collection sites and samples sizes. Means from personal communication with Helms and Helms -Cahan. 
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Site Colony Type Colonies 

sampled 

Mean Queen 

Number per nest 

Mean Queen 

Body Mass 

Mean Colony 

Density 

Anza Borrego, CA (ANZA) Solitary 16 1.005 35.945 8.828 

Whitewater Canyon, CA (WW) Solitary 3 1.034 32.759 16.404 

McCartney Rd, AZ (MC) Temporary Polygyny 9 3.625 35.436 10.378 

Robbins Butte, AZ (RB) Temporary Polygyny 4 1.333 31.537 3.409 

Gila Bend, AZ (GB) Temporary Polygyny 2 1.455 32.485 8.865 

Boulder City, CA (BC) Polygyny 9 16.57 25.773 13.995 

Bakersfield, CA (BK) Polygyny 10 1.776 29.963 no data 

Mitchell Caverns, CA (MI) Polygyny 10 3.129 27.545 0.985 

Palmdale, CA (PA) Polygyny 10 2.143 28.987 no data 

 

Once at the University of Vermont, queens were individually weighed to the nearest 

0.01mg on a Mettler Toledo microbalance and placed in glass 16x150mm tubes with water held 

in place at one end with a cotton ball to provide humidity and allowed to produce workers and 

brood. While producing brood, queens were kept in complete darkness at 28oC. After the first 

workers eclosed as adults, the lighting schedule was changed to 12 hours light, 12 hours darkness, 

and a diet of Kentucky bluegrass seeds was provided. Colonies were sacrificed after producing 20 

or more workers and brood, or at the end of three months if they did not produce additional 

offspring. Sacrificed colonies were preserved in 95% ethanol. A subset of the queens were used in 

a separate experiment and were not available for further analysis; a total of 39 queens (53%) 

remained and were genotyped along with their offspring. 

To determine the number of patrilines present in each colony, the offspring and queen, if 

available, were individually genotyped at 6 microsatellite loci: L18, L5, LxAGT1, Myrt3, Po3, 

and Ppal12, which have been identified as both highly variable and passed down through 

Mendelian inheritance in this species (Helms and Helms Cahan 2012). DNA was extracted by 

drying each sample for 20 minutes at 50oC in a drying oven, crushing the dried sample with a 

sterilized homogenizer, and adding 250µl of 5% Chelex-100 resin solution, followed by 20 
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minutes incubating at 90oC on a hotplate (Helms and Helms Cahan 2012). Microsatellite loci were 

amplified in multiple reactions, in a total of 3 PCR reactions per sample: set 1 containing 5µM L5, 

LxAGT1, and PPal12, set 2 containing 5µM L18, Myrt3, and Po3, and finally a single-locus 

amplification of 5µM L18 only. PCRs were conducted using a 10µl reaction of: 2µl DNA sample, 

2.8µl H2O, 2µl Qiagen Q solution, 1µl 10x Qiagen buffer, 0.75µl 2mM dNTPs, 0.4µl 25mM 

Qiagen MgCl2, and 1µl of primer mix containing forward and reverse primers for each set of 

microsatellite amplifications. To check for successful replication of DNA, 5µl was removed from 

the control well and two randomly selected wells in each plate, and run on a 1.5% agarose gel. 

Prior to genotyping, each of the three PCRs were combined in a ratio of 10µl set 1:10µl set 2:5µl 

L18. Genotyping was performed using the UVM Cancer Center’s Genescan service with LIZ600 

as an internal size standard. 

Microsatellite data was analyzed using Genemapper (Applied Biosystems, Foster City, 

CA, USA), allele calls were made by the program and confirmed by eye. Male genotypes, 

unknown queen genotypes, absolute mating frequency, and paternity skew were calculated using 

MATESOFT v. 1.0 (Moilanen et al. 2004). In cases of multiple possible genotypes calculated for 

males and queens, selections of genotypes were made based on probabilities assigned by 

MATESOFT and genotypes assigned by eye based on the fewest possible patrilines. Pedigree-

effective mating frequency was calculated based on the sum of squared paternal contributions 

given by MATESOFT, corrected for sample size by the program using Pamilo’s (1993) correction.  

JMP v. 12.1.0 (SAS Institute Inc., Cary, NC, USA) was used to calculate statistics. Both absolute 

mating frequency and pedigree-effective mating frequency were analyzed using a nested ANOVA, 

with site nested within colony type to account for sampling effects based on the sites used, and 

sample size as a covariate for absolute mating frequency. Both measures of mating frequency were 
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analyzed again with a second ANOVA, with mean queen body mass, mean colony density, and 

mean number of foundresses as covariates. Sample size was added as a covariate to absolute 

mating frequency, but was not used in analyses of effective mating frequency as the value already 

corrects for sample size. Site was not included in the second ANOVA, as there were not enough 

sites sampled to support such a complex analysis. The effect of colony type on average paternity 

skew was analyzed using an ANOVA. Individual queen body mass and mean foundress number 

were individually regressed against absolute mating frequency and pedigree-effective mating 

frequency within each colony type, with the exception of mean foundress number and solitary 

colonies, as they only have one queen. Colony density was not analyzed within colony types due 

to small sample size. 

Results 

Colony Type 

 The number of males queens mated with was significantly associated with colony 

type, when analyzed with sample size and site nested within type as covariates (ANOVA, 

F2,72=15.60, p=<0.001)(Fig. 1A). Site nested within type had a significant effect as well (ANOVA, 

F6,72= p=<0.02), but sample size was nonsignificant (ANOVA, F1,72=0.500 p=0.48). Solitary and 

temporarily polygynous colony types were not significantly different (p=>0.05), while 

permanently polygynous colonies showed significantly fewer patrilines than either (p=<0.05 in 

both pairwise comparisons)(Fig. 1A). However, when analyzed with average queen body mass, 

colony density, sample size, and foundress number per site, there was no independent effect of 

colony type on absolute mating frequency (ANOVA, F2,46=1.99 p=0.15).  
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Pedigree-effective mating frequency was, on average, lower than absolute mating 

frequency for all three colony founding types, with means dropping from 3.89 to 3.75 in solitary 

areas, 3.07 to 2.55 in temporarily polygynous areas, and 1.97 to 1.80 in permanently polygynous 

areas (Fig. 1A,1B). Effective mating frequency also was significantly associated with colony type 
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Figure 1 

Bar graphs of (A) mean absolute mating frequency ±SE and (B) mean pedigree-effective mating frequency (Mep) ±SE, 

by colony type. b represents a significantly different result from a, ab represents an intermediate result significantly 

different from neither. (C) Bar graph of mean paternity skew ±95% confidence interval, by colony type. “Fight” 

corresponds to temporary polygyny, “polygyny” to permanent polygyny. 
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(ANOVA, F2,72=14.92 p=<0.001). Site did not show a significant relationship with effective 

mating frequency (ANOVA, F6,72=1.81 p=0.11). Though effective mating frequency was similar 

to absolute mating frequency in that it was significantly lower in permanently polygynous colonies 

than in solitary (p=<0.05), unlike absolute mating frequency temporarily polygynous colonies 

showed an intermediate value of effective mating frequency that was not significantly different 

from solitary or permanently polygynous colonies (Fig. 1B).  

When analyzed with average queen body mass, colony density, and number of foundress 

queens as covariates, the effect of colony type on effective mating frequency remained significant 

(ANOVA, F2,72=4.16 p=<0.03)(Fig 1B). Independent of these other factors, pedigree-effective 

mating frequency was significantly higher in solitary than in temporarily polygynous colonies 

(p=<0.05), with permanently polygynous colonies not significantly different from either, though 

this group had the smallest least square mean. Mean paternity skew ranged from 0.55 to 0.64 and 

was not significantly different among colony types (ANOVA, F2,8=0.263 p=0.78) (Fig 1C).  

Mating Frequency and Size of Foundress Groups 

 Independently of queen body mass, colony density, and colony type, queens in areas with 

larger foundress groups mated with an average of more males (ANOVA, F2,52=7.35 p=<0.01), and 

had more genetically variable offspring (ANOVA, F1,52=5.88 p=<0.02). Within permanently 

polygynous colonies, the number of queens in foundress groups was not significantly associated 

with absolute mating frequency (linear regression, t38=-0.79 p=0.45) or pedigree effective mating 

frequency (linear regression, t38=-0.89 p=0.38). Within temporarily polygynous colonies, there 

was a nonsignificant positive trend in absolute mating frequency (ANOVA, F14=1.34 p=0.20) and 
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Figure 2. 

Scatterplots of (A) mean absolute mating frequency ±SE, and (B) mean pedigree-effective mating frequency plotted against 

mean number of foundress queens. Scatterplots of (B) absolute mating frequency residuals and (D) pedigree-effective mating 

frequency residuals plotted against mean number of foundress queens. Residuals were calculated from ANOVA’s of mean 

body mass, mean colony density, colony type, and in the case of absolute mating frequency, sample size, to visualize the 

effect of foundress number independent of these other factors. (E) Bar graphs of the average number of foundresses ±95% 

confidence interval, by colony type. “Fight” corresponds to temporary polygyny, “polygyny” to permanent polygyny. 

B 

C 
D 

A 
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pedigree-effective mating frequency (ANOVA, F14=1.12 p=0.28). Solitary colonies were not 

analyzed separately, as these queens do not form foundress groups. 

 

Queen Body Mass 

Larger queens mated with significantly more males than smaller queens (F1,52=6.96 

p=0.01) and had more genetically variable offspring (F1,52=5.25 p=<0.03). When both measures 

of mating frequency were regressed against individual queen body mass for each colony type, 

however, not all types showed this relationship.  In primary polygynous colonies, individual queen 

body mass did not show a significant association with mating frequency (linear regression, t37=0.44 

p=0.66) or effective paternity (linear regression, t37=0.34 p=0.74). In contrast, individual body 

mass was significantly positively related to absolute mating frequency in solitary colonies (linear 

regression, t9=3.09 p=<0.02), as well as to pedigree-effective mating frequency (linear regression, 

t9=2.68 p=<0.03). Temporarily polygynous colonies showed a nonsignificant relationship between 

individual body mass and both mating frequency (linear regression, t4=-2.34 p=0.10) and effective 

mating frequency. (linear regression, t4=-2.49 p=0.09). Temporarily polygynous colonies had a 

very low sample size for this analysis (N=5) due to lack of data on queen live mass for some 

colonies from these sites. Average body mass showed a correlation to colony type, with smaller 

queens in permanently polygynous colonies, and larger queens in those that are solitary and 

temporarily polygynous (Fig. 3C). 
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Colony Density 

  Queens from areas with a higher colony density mated with fewer males (ANOVA, 

F1,52=5.85 p=<0.03), and had less genetically variable offspring (ANOVA, F1,52=5.85 

p=<0.03)(Fig. 4A, 4B). The solitary region had the highest mean density, followed by the fighting 

and permanently polygynous regions (Fig. 4C); effects of colony density could not be examined 

statistically with sufficient power within colony types, due to the low number of sites examined 

Figure 3. 

Scatterplots of (A) absolute mating frequency plotted against individual queen body mass, with colony type overlaid, 

and (B) pedigree-effective mating frequency plotted against individual queen body mass, with colony type overlaid. 

(C) Average body mass ±95% confidence interval, by colony type. “Fight” corresponds to temporary polygyny, 

“polygyny” to permanent polygyny. 

A B 

C 



Mellen 16 
 

with colony density data available (2 solitary sites, 3 temporarily polygynous sites, and 

permanently polygynous sites the second). 

 

 

 

Figure 4. 

Scatterplots of (A) residuals of absolute mating frequency by colony density, and (B) residuals of pedigree-effective 

mating frequency by colony density. Residuals were calculated from ANOVA’s of mean body mass, mean colony 

density, mean number of foundresses, and in the case of absolute mating frequency, sample size, to visualize the effect 

of colony density independent of these other factors. (C) Mean colony density ±95% confidence interval, by colony 

type. “Fight” corresponds to temporary polygyny, “polygyny” to permanent polygyny.  

A B 

C 
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Discussion 

 The polygyny/polyandry tradeoff hypothesis predicts that polygyny and polyandry should 

be negatively associated because both incur costs but achieve the same result: genetic diversity 

(Hughes et al. 2008b). My results tentatively show support for this hypothesis. Genetic variation 

in each queen’s offspring derived from polyandry, measured as pedigree-effective mating 

frequency, was lowest in permanently polygynous colonies, where the presence of multiple queens 

throughout the colony cycle provides an alternative route to genetic diversity, while it was highest 

in queens from the solitary region where that option is not available. It is important to note, 

however, that social strategy may impact mating behavior both directly and indirectly, and may 

not be due solely to differences in genetic variation within colonies as proposed in the polygyny 

vs. polyandry tradeoff hypothesis (Hughes et al. 2008b, Keller and Reeve 1994). Polygyny varies 

across the range of this species due to environmental factors, and selective pressures acting on 

queens across social contexts leads to a syndrome of differences in queen morphology and 

behavior, all of which appear to contribute to the observed patterns.   Thus, there is support in the 

results for a tradeoff between polygyny and polyandry, but there is also evidence that this tradeoff 

is linked to a more complex set of factors than genetic variation alone. 

Because the number of unrelated queens contributing to the brood is different between 

different social strategies, the tradeoff hypothesis predicts that pedigree-effective mating 

frequency should be higher in solitary areas, where intra-colonial genetic variation stems from 

polyandry alone, and lower in polygynous areas. Moreover, due to the transient nature of the 

genetic variation benefit of polygyny in temporarily polygynous colonies then in permanently 

polygynous ones, the effect of polygyny on polyandry should be weaker when queens fight for 

colony ownership. The results closely match these predictions.  Effective mating frequency was 
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higher in solitary colonies than permanently polygynous; temporarily polygynous colonies were 

at an intermediate level not significantly different than either. These results are in line with 

previous studies of polygyny and polyandry within species that have found the two to be negatively 

associated (Qian et al. 2011, Haapaniemi and Pamilo 2012).  

There are two primary ways in which genetic variation in the offspring can be increased 

under polyandry:  queens can mate with more males, introducing more novel alleles into the 

offspring, or use male sperm more uniformly, so no individual male dominates paternity.  Skew 

was not significantly different between colony types, but absolute mating frequency, the number 

of males a queen mated with, was significantly lower in permanently polygynous colonies, 

indicating the observed difference in genetic diversity comes from mating frequency. Interestingly, 

when mating strategy was assessed through absolute mating frequency alone, without considering 

paternity skew, there was no significant difference between solitary and temporarily polygynous 

colonies.  This suggests that genetic variation may be especially important for mature colonies, as 

temporarily polygynous colonies become effectively solitary after the first crop of workers is 

raised and only one queen remains alive. The difference among types in absolute mating frequency 

disappears with average queen body mass, mean colony density, and mean number of foundresses 

in the model, which suggests the variation may be better explained by those factors than by colony 

type. It should be noted, however, that it is possible an effect on mating frequency is present in V. 

pergandei populations, but could not be detected by the analysis. Within colony types, sites varied 

significantly from each other in absolute mating frequency, but site effects could not be included 

in the larger model due to sampling limitations. Sampling more sites for each colony type to 

support a more complex model may show an effect on absolute mating frequency that was masked 

by site variation.  
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 The polygyny/polyandry tradeoff is based on a consideration of the benefits versus the 

costs of mating behaviors, and both of these may be directly affected by other aspects of the 

queen’s environment and morphology.  Three possibly influential factors are queen body size, 

which may positively affect mating frequency due to greater fitness and energy available to mate 

(Fjerdingstad and Keller 2004), colony density, which may positively affect availability of mates 

and by extension may reduce the cost of a higher mating frequency, and number of foundress 

queens, which is associated with but not identical to social form and by extension should be 

negatively associated with mating frequency.  All three of these factors are correlated with colony 

type, both in past research and in my sample of colonies (Fig. 1C, 2E, 3C, 4E)(Cahan and Helms 

2014, Cahan 2001), and all three were associated with both measures of mating frequency. This 

suggests that the relationship between social strategy and polyandry is likely to be more complex 

than the polygyny/polyandry tradeoff would suggest, with both direct, indirect, and correlated 

selective pressures shaping queen mating behavior.  Colony density and queen body mass are 

expected to reinforce the increased polyandry expected in solitary areas, where both are highest. 

In contrast, the number of foundress queens (or magnitude of polygyny) is expected to be 

negatively related to polyandry predicted in permanently polygynous areas, in keeping with the 

negative relationship between polygyny and polyandry predicted by the polygyny/polyandry 

tradeoff hypothesis.. Although including these additional factors did not change the ordering of 

mating frequencies across types, it did shift the statistical groupings in a way that suggests that 

each region is impacted by these factors in a different way. Permanently polygynous colonies 

continued to have the lowest mean, but the residual mating frequency estimates were more variable 

and this region no longer differed significantly from the other two social forms, while temporarily 

polygynous colonies shifted to being significantly lower than solitary colonies. Thus, the effect of 
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colony type on effective mating frequency may not have lost its significance, but it was altered by 

other factors, indicating a possible mediation of effective mating frequency by body size, colony 

density, and foundress number, either directly through effects on the evolutionary benefits of 

genetic variation, or indirectly through effects on absolute mating frequency. 

Queen body mass is expected to be positively associated with polyandry; in addition to the 

correlation with colony type, larger queens tend to have greater energy reserves, and as such are 

likely to suffer fewer costs from multiple matings than smaller queens (Fjerdingstad and Keller 

2004). As expected, on average larger queens mated with more males than smaller queens. The 

positive effect on absolute mating frequency may be due to an energetic constraint of multiple 

matings (Keller and Reeve 1994), with larger, fitter queens more able to bear the costs of more 

matings, or due to factors other than queen mate choice. Body size can be an effective indicator of 

queen quality and fecundity (De Souza et al. 2013), potentially making larger queens more 

attractive as mates to males, leading to an effect of male mate choice (Bonduriansky 2001). 

Interestingly, however, individual queen body mass showed a significant positive effect in solitary 

colonies only, while polygyny did not even have a nonsignificant trend between either measure of 

mating frequency and body mass, and temporary polygyny showed a negative trend with both, but 

had a sample size too small to statistically confirm this trend.  For body mass to only have an effect 

in solitary areas is in line with the predictions of the polygyny/polyandry tradeoff hypothesis. 

Because solitary queens are not founding colonies in groups, they lack the advantage in colony 

productivity and survival from additional foundresses (Offenberg et al. 2012). But polyandry can 

be associated with greater colony productivity due to the increased genetic variation, leading to 

increased colony survival (Cole and Wiernasz 1999). This may present another tradeoff, present 

only when a queen is founding a colony alone. Multiple matings are energetically expensive 
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(Keller and Reeve 1994), but beneficial to colony survival for those queens that can bear the cost. 

As larger queens are more likely to be able to bear this cost and still have the energy required to 

found a colony, this may lead to the observed positive relationship between queen body mass and 

polyandry. It would not be a factor in other regions, because group founding queens eliminate this 

tradeoff by founding colonies cooperatively. Repetition of this positive association between queen 

body mass and polyandry in solitary colonies and a test of possible causes for it could provide an 

interesting project for future research. 

 Polygyny is not uniform, even across polygynous areas.  The average size of starting nests 

varies across the region, and with this variation comes differences in intra-colonial genetic 

variation. The number of foundress queens in a nest is significantly correlated with colony type: 

solitary sites rarely show more than a single queen in a starting nest, while temporarily polygynous 

sites show significantly smaller foundress associations on average than permanently polygynous 

ones (Helms and Helms Cahan 2012; Fig. 2E). Contrary to expectations, queen number showed a 

small but positive relationship with absolute mating frequency and with pedigree-effective mating 

frequency across colony types, suggesting that more queens leads to an increase in both the number 

of mates and the genetic variation those mates provide. This effect, however, may be due to the 

unbalanced nature of the analysis. In eight of nine sites, foundress number averaged between 1 and 

4, but in one site it averaged over 16 queens per starting nest. Data from a greater range of sites is 

needed to eliminate the bias this site creates in the analysis.  

Within the polygynous region, the polygyny/polyandry tradeoff hypothesis predicts a 

negative relationship between foundress number and mating frequency; in colonies containing as 

many as 16 or more queens, genetic variation is already very high, and polyandry will do little to 

affect it.  Contrary to expectation, no effect of queen number on either absolute or pedigree-
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effective mating frequency was found for these colonies. Instead, I found absolute mating 

frequency stayed at a relatively stable mean of about two males throughout polygynous sites, an 

effect that was not related to number of foundresses, average or individual body mass, or colony 

density.  This suggests something else may be maintaining a minimum of polyandry across 

polygynous areas. This minimum may be beneficial. Even in a highly genetically diverse 

polygynous colony, each individual queen only gains fitness benefits from her own offspring, so 

if a queen gains fitness benefits from more patrilines in her own offspring, there would be selection 

to maintain some level of polyandry. In cases of parasite infection, even if polygyny is protective 

to the colony as a whole, individual queens may still suffer fitness benefits if their offspring are 

susceptible to the parasite, and indeed previous studies have suggested polyandry and polygyny 

may be selected to coexist in response to pressure from parasites (Schmid-Hempel and Crozier 

1999). Alternatively, even if monandry would be optimal for polygynous queens, there may be 

constraints preventing that behavior. The cost of resisting additional mating attempts by males 

after a queen has mated once may outweigh the cost of tolerating them, leading to a higher mating 

frequency (Pedersen and Boomsma 1999). This retention of a stable, low level of polyandry offers 

an interesting avenue for further study of possible benefits and costs to queens.  

 Colony density at sites is expected to increase mating frequency, due to the availability of 

mates. Mating flights of V. pergandei are diffuse, rather than forming dense swarms (S. Helms 

Cahan, personal communication). This suggests a possible cost of finding males to mate with, as 

well as other costs of mating, which could be mitigated by higher colony density. Colony density 

is highest in solitary areas, and lowest in polygynous, so both would be expected to lead to the 

same overall pattern (Helms Cahan 2001; Fig. 4E).  However, when both colony type and density 

were considered in the same analysis, the effects of density showed the opposite pattern, as queens 
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in less dense areas mated with significantly more males. This could occur because the benefits of 

genetic diversity may be density-dependent.  Colony density in V. pergandei tends to be higher in 

more hospitable parts of the range (Helms Cahan 2001), which have more available resources, but 

also likely have more competition for these resources and for colony foundation, as a higher 

density of colonies means more neighbors to compete with. Brood raiding has been documented 

in V. pergandei, and brood raiding behavior can rise when colonies are more densely packed 

(Rissing and Pollock 1987, Adams and Tschinkel 1995). Brood raiding itself can also increase 

intra-colonial genetic variation (Gadau et al. 2003), and could potentially pose an alternate strategy 

to polyandry for increasing genetic variation within a colony. There is also the possibility that the 

energy investment required for more matings is more of a disadvantage in high-competition 

environments, where that energy could be put to use producing more or better quality offspring. A 

larger sample size of sites is required to better understand the effects of colony density on V, 

pergandei mating frequency. 

 My study was limited in its power to determine causality, as the data was only correlational. 

The negative correlation found between polygyny and polyandry is what would be expected if 

there is an existing tradeoff between the two, but determining the cause of this relationship requires 

further experimental study. To confirm the presence of a tradeoff, the actual benefits of genetic 

variation in Veromessor pergandei should be assessed, to determine if this species does show 

increased foraging success and resistance to parasites when a colony is more genetically variable, 

and whether these benefits increase with greater levels of genetic variation. Costs should be 

assessed as well, through tests of how both polygyny and polyandry alter an individual queen’s 

ability to found a colony successfully and produce offspring. To further test the positive association 

found between queen body mass and mating frequency, small and large queens from solitary areas 
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could be allowed to mate [artificial exposure to mates], and allowed to produce offspring. If queens 

mating with fewer males produce fewer offspring, this would show mating presents an energetic 

cost, and if larger queens are less impacted by it than smaller queens, this would suggest energetic 

investment drives the relationship between body mass and polyandry. To study the impact of 

colony density on mating frequency, queen mating flights in the field could be observed and timed, 

to confirm whether there are differences between low and high density areas. Lab experiments 

artificially forcing queens to make longer or shorter mating flights could show if any change found 

in flight time is costly enough to be a selective pressure on queens. Results of all these experiments 

could shed more light on the relationship between mating frequency in V. pergandei and genetic 

variation, as well as other life history and environmental factors that may influence it. 

In conclusion, my study shows a negative relationship between polygyny and polyandry is 

present in Veromessor pergandei, and tentatively supports that it is due to a tradeoff based in 

genetic variation. However, it also shows that polyandry is influenced by a more complex array of 

factors than just genetic variation, and these factors require further study to fully understand their 

influence on queen behavior. 
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