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Featured Application: Denitrifying woodchip bioreactors are an effective treatment technology for
agricultural tile drainage. This work further expands the application to treat leachate and storm-driven
runoff from silage storage bunkers. Additional applications of this treatment technology may
effectively treat other agricultural wastewaters containing high nutrient concentrations.

Abstract: Leachate and storm-driven runoff from silage storage bunkers can degrade receiving water
bodies if left untreated. This study evaluated a novel treatment system consisting of three treatment
tanks with a moving-bed biofilm reactor and paired side-by-side denitrifying woodchip bioreactors
for the ability to reduce influent nutrient mass loads. Flow-based samples were taken at four locations
throughout the system, at the inflow to the first tank, outflow from the tanks prior to entering
the woodchip bioreactors, and from the outflows of both bioreactors. Samples were analyzed for
concentrations of nitrogen (N) and phosphorus (P) species. Inflow concentrations were reduced from
the bioreactor outflows by an average of 35% for total N (TN) and 16% for total P (TP) concentrations
on a storm event basis. The treatment system cumulatively removed 76% of the TN mass load, 71% of
the nitrite + nitrate-N (NO2

−+NO3
−-N) load, 26% of the TP mass load, and 19% of the soluble reactive

P load, but was a source of ammonium-N, based on the monitoring of 16 storm events throughout
2019. While the system was effective, very low NO2

−+NO3
−-N concentrations in the silage bunker

runoff entered the bioreactors, which may have inhibited denitrification performance.

Keywords: denitrifying woodchip bioreactor; silage leachate; silage bunker runoff; moving-bed
biofilm reactor (MBBR); nitrogen; phosphorus

1. Introduction

The discharge of nitrogen (N) and phosphorus (P) from agricultural production areas due to
storm-driven runoff can degrade water quality and lead to eutrophication, cause fish kills, and decrease
the esthetic value of water bodies [1]. One specific harmful production area wastewater originates
from silage storage bunkers on confinement dairy farms. To store feed for livestock throughout the
year, plant material, typically chopped corn or hay, is packed in horizontal concrete floored and walled
bunkers and covered with polyethylene tarps. This process, known as ensiling, promotes anaerobic
fermentation of soluble carbohydrates by producing organic acids, which preserve proteins in the feed
and inhibit bacterial growth that can cause spoilage [2]. Silage leachate is a byproduct from the ensiling
process, which is extremely high in nutrient content, consisting of average concentrations of over
3500 mg L−1 for total N (TN), 800 mg L−1 for total P (TP), 5-day biochemical oxygen demand (BOD) of
over 60,000 mg L−1, and a pH between 3.5 and 5 [3]. Controlling the moisture content of ensiled forage
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by optimizing timing for harvesting plant material is recommended to limit concentrated leachate
production [4], but appropriate harvest timing is often difficult to achieve in the Northeastern United
States, due to unfavorable drying conditions and a limited harvest period.

During storm events, exposed silage particles and leachate on impervious storage bunker surfaces
mix with precipitation and are transported as runoff [4]. While dilution with rainwater yields lower
nutrient concentrations in silage bunker runoff more than the concentrated leachate, nutrients are still a
major concern if released into surface waters [3–6]. Runoff concentrations from silage bunkers generally
depend on storm size and intensity, concentration of undiluted silage leachate, and seasonality [4].
Best management practices to reduce leachate losses and subsequent environmental degradation are
recommended or required on many dairy farms [3].

Management options include intercepting silage leachate so that it can be disposed of properly
(e.g., stored, aerated, and diluted to be applied as fertilizer to hay lands or other feed crops during the
growing season) [7]. There are minimal data available describing silage leachate composition changes
after storage, and more research is needed in this area [3]. For storm-driven silage runoff, vegetative
treatment areas (VTAs) are often recommended. VTAs are vegetated systems located downslope of a
pollution source designed to treat runoff and provide a buffer zone to the surrounding environment [8].
In a New York study of three VTAs receiving silage bunker runoff, Faulkner [6] found significant
ammonium-N (NH4

+-N) mass removal at all sites and one VTA had 40% soluble reactive P (SRP)
mass removal. Incoming nitrate-N (NO3

−-N) concentrations were low, and some sites experienced a
net export, presumably due to nitrification processes within the VTA. Whereas VTAs are generally
an economically viable and low maintenance option for farms, several concerns still exist. These
issues include surface runoff remaining untreated [9], vegetative burning due to high acidity in the
runoff [10], neglected operation and maintenance demands [6], and subsurface leaching that can lead
to groundwater contamination [9]. Accordingly, there is a need to explore alternative remediation
practices for silage bunker leachate and storm-driven runoff.

In this research study two technologies for managing silage bunker runoff were evaluated. First, a
moving-bed biofilm bioreactor (MBBR) is considered, which is a tank-based wastewater treatment
technology that incorporates engineered carriers to provide surface area for biofilm growth and
which are suspended through aeration [11]. The goal of this technology is to increase the removal
of organic matter and nutrients. MBBR systems have simple and compact designs, can operate
under varying temperatures, and sustain the growth of microorganisms [12]. Incorporating inoculant
at the startup of bioreactors is typically done to establish populations of nitrifying bacteria [13,14].
When designed to accommodate influent wastewater characteristics, sufficient hydraulic retention
time [15], and appropriate ratio between carrier volume and tank volume [12], MBBR systems have
been shown to effectively treat municipal wastewater [11,16], industrial wastewaters [17], and dairy
processing wash waters [18].

The main component of this system is a denitrifying woodchip bioreactor; a passive treatment
technology consisting of a bed of saturated woodchips that provide anerobic conditions and a carbon
(C) source for microbial denitrification, in which nitrate (NO3

−) is converted to inert dinitrogen gas
(N2) or, in some cases, nitrous oxide (N2O) [19]. Woodchip bioreactors have been shown to effectively
improve water quality from wastewater sources containing elevated N concentrations [20]. While most
bioreactor studies focus on NO3

− removal, reductions of other water quality parameters such as
P [21], BOD [22], and fecal indicator bacteria (Escherichia coli) have also been reported [23]. Designs
that consider variables such as optimal NO3

− loading rates [24] and hydraulic retention time [25]
have been successful in a number of settings treating agricultural tile drainage [19,26], dairy farm
wastewaters, [27], aquaculture effluent [28], and septic tank effluent [23]. This system is the first
application of a denitrifying bioreactor used to treat silage leachate or silage bunker runoff.

To address the lack of reliable treatment technologies for silage storage bunker runoff, this study
evaluated the nutrient removal performance of an innovative treatment system including treatment
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tanks with MBBR, followed by denitrifying woodchip bioreactors, on a research farm located in
Vermont, USA. The objectives of this study were to:

1. Characterize the N and P composition of storm-driven silage storage bunker runoff.
2. Evaluate concentration reductions and nutrient mass removal of the two components of the

treatment system (i.e., the treatment tanks with MBBR, and the denitrifying woodchip bioreactors)
during storm events.

3. Consider the design of the system and its effectiveness in treating silage storage bunker runoff in
order to offer recommendations for future designs.

2. Materials and Methods

2.1. Study Site Description

A treatment system for silage bunker runoff (Figure 1) was installed in 2017 at the University of
Vermont Paul R. Miller Research Complex in South Burlington, VT, a small dairy farm with 45 milking
cows and an equine center used for research and teaching. The site is located within the Potash Brook
watershed, which drains to Lake Champlain. The drainage area of the system is 2767 m2 consisting of
silage storage bunkers, where varying amounts of corn and hay is ensiled and stored under plastic
tarps throughout the year, as well as a paved asphalt entry area for heavy equipment. Silage leachate
and silage bunker runoff flow downslope away from the stored silage and are directed to the treatment
system. A diversion berm in the asphalt prevents other production area runoff from entering the
treatment system. The system consists of a particle separating screen assembly, a sequence of three
treatment tanks for containment of low flows, settling and aeration, woodchip bioreactors, and an
earthen infiltration basin (Figure 2).
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Storm-driven runoff from the bunker area enters the treatment system (Figure 2) through a
stainless-steel screen assembly that has a series of three screens with mesh holes of decreasing size
(7.2 cm2, 3 cm2, 0.79 cm2) to block silage particles and other large solids transported in the runoff. After
the screen assembly, runoff and leachate flow through a series of three treatment tanks that overflow
into each subsequent tank during storms. Tank 1 has a storage capacity of 7.57 m3 and is intended for
BOD removal, settling of organic solids, and to prevent clogging of the downstream system components.
Tank 2 is a 3.76-m3 MBBR tank equipped with a regenerative blower, which operates every other
hour. This tank is oxygenated to allow for reduction of BOD and N transformations; specifically,
mineralization of organic N to NH4

+ and nitrification of NH4
+ to NO3

−. In May 2019, cylindrical
media carriers were added to fill 40% of the Tank 2 size by volume (1514.2 L) which each have a
diameter of 2.5 cm, height of 0.4 cm, and a projected surface area of 800 m2/m3 (AnoxKaldnessTM-Veolia
Water Technologies AB). Tank 2 was inoculated with 18.9 L of a liquid suspension containing ammonia
oxidizing microbial strains (MICROCAT-XNL, Bioscience, Inc., Allentown, PA, USA) for establishment
of nitrifying bacteria populations. A third 3.76-m3 tank, Tank 3, is for settling of any remaining solids.

Paired side-by-side denitrifying woodchip bioreactors referred to as East Bioreactor (EB) and
West Bioreactor (WB) are each 9.1 m by 12.2 m with a depth of 1.4 m. The woodchip bioreactors
are continuously saturated, the bottom, side walls, and center barrier splitting the two bioreactors
are lined with 1.1-mm ethylene propylene diene monomer (EPDM) and contain mixed hardwood
woodchips (approximate size of individual chips: 5 cm × 5 cm × 0.6 cm). The species composition of
the woodchips was 60% Ash (Fraxinus sp.), 20% Yellow Birch (Betula alleghaniensis), and 20% Silver
Maple (Acer saccharinum), determined by a local woodchip supplier, and was based on available
feedstock species at the time of construction. The bioreactors receive effluent that is split after leaving
Tank 3 through two sets of pipes distributed across the top perimeter of each bioreactor. The effluent
percolates vertically into the woodchips in each bioreactor. The bioreactors remain saturated and
internal water depth is governed by an adjustable water level control structure. When the woodchip
bioreactors discharge, their outlets flow through parallel 100-mm diameter underdrain pipes into
an earthen infiltration basin. Sampling occurred at four locations: before Tank 1 (System Inflow),
after Tank 3 (Tank Outflow, prior to entering the woodchip bioreactors), and at the outflows of both EB
and WB (Figure 2).

The system has three distinct runoff flow paths (Figure 2), depending on the flow rate,
which allowed for bypass of some treatment components during larger storm events to protect
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the system. The three paths are referred to as ‘low flow’, ‘high flow’, and ‘extreme events’ and are
designed to accommodate flow up to a certain intensity (Figure 2).

• Low flow (leachate flows and storm intensities of up to 45.7 mm hr−1): behind the screen assembly,
the lowest inlet pipe in the flow diversion structure directs leachate and runoff to enter the
treatment tanks.

• High flow (storm intensities up to 71.1 mm hr−1): runoff enters the high flow inlet in the flow
diversion structure. In this case, runoff bypasses the treatment tanks and is sent directly to the
surface of the woodchip bioreactors.

• Extreme events (storm intensities greater than 71.1 mm hr−1): runoff enters a third inlet, bypasses
the treatment tanks and the bioreactors, and sent directly into the infiltration basin.

For this study, the treatment system was monitored from June to October 2019. A tipping bucket
rain gauge (Onset RG3 Hobo Rain Gauge Data Logger, Bourne, MA, USA), installed at the site,
measured rainfall depths throughout the sampling period.

Routine maintenance was performed to prevent malfunctioning of the system. Weekly inspections
were conducted during the growing season and subsequent maintenance involved removal of solids
from the screen assembly and area around the flow diversion structure, removal of plant growth from
the bioreactors, and addressing any potential flow blockages in the pipe network.

2.2. Storm Event Sampling

Collection of flow-based water samples occurred at four locations throughout the system (Figure 2)
using automated water samplers (Teledyne ISCO 6712, Lincoln, NE, USA). Autosamplers were equipped
with water-level measurement modules, which were set to record water level on a one-minute interval.
Water-level measurements were used to calculate flow, as described below. To prevent drift, modules
were calibrated at the zero-level point at the start of and throughout the sampling season.

Inflow samples were taken from the inlet pipe to Tank 1 (System Inflow, Figure 2), where a
compound weir (Thel-Mar, Boone, NC, USA) and a water level sensor (Teledyne ISCO 730 Bubbler
Flow Module, Lincoln, NE, USA) measured stage. Flow rates were determined using stage-discharge
values provided by the weir manufacturer. A second autosampler took samples from the effluent of
Tank 3 (Tank Outflow, Figure 2). This autosampler was triggered via a communications cable to take
samples concurrently with the first autosampler.

Bioreactor outflow samples were collected individually from both water level control structures
(WB and EB, Figure 2). As the outflow from each bioreactor filled the sumps, effluent exited via a
15.2-cm diameter spillway equipped with an orifice plate containing a 7.6-cm diameter orifice, the top
of which was the reference zero point for the water level sensor. Flow rate (q) was calculated from
level readings from the attached water level sensor using a table of values developed from plotting H
(autosampler level readings) vs. q; under weir (Equation (1)) and orifice (Equation (2)) conditions.

q = 3.33LH1.5, (1)

where, q = flow rate (L s−1), L = length of weir (m), H = water height relative to weir (m).

q = 0.6A(2gH)0.5, (2)

where, q = flow rate (L s−1), A = area of orifice (m2), g = gravity constant, H = water height relative to
weir (m).

Each autosampler collected water samples on a predetermined flow-based interval. When
compositing multiple samples across a storm hydrograph, flow-based sampling is preferred to limit
sample processing [29]. Samples of 100 mL were taken after a specific volume of runoff passed through
the sampling location. Each autosampler had four 3.7 L sampling bottles and a sampling interval
was chosen to accommodate up to the anticipated runoff quantity for this drainage area for a 10-year
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24-h storm in South Burlington, VT calculated using the Soil Conservation Service Curve Number
equation [30]. Within 24 h of a storm event, samples were collected, transported to the laboratory,
and composited in the laboratory to prepare for analysis.

2.3. Water-Quality Analysis

Samples were analyzed for concentrations of TN, combined nitrite + nitrate-N (NO2
−+NO3

−-N),
NH4

+-N, TP, and SRP. Samples for N species analysis were preserved with sulfuric acid, SRP samples
were filtered through 0.45-µm nylon mesh filters and samples for TN and TP were prepared through
persulfate digestion. Nutrient concentrations were analyzed using flow injection analysis instruments
(Lachat QuickChem8000 AE, Hach Inc., Loveland, CO) using standard methods (listed in Supplementary
Materials Table S1) [31]. System Inflow samples during the 2018 season were analyzed by the
Vermont State Agriculture and Environmental testing laboratory. During the 2019 season, all samples
were analyzed by the University of Vermont Agriculture and Environmental testing laboratory.
Any concentration values below the instrument’s detection limit were substituted with one-half the
detection limit [32,33].

2.4. Nutrient Mass Load Calculations and Removal Efficiency

For each sampling location, total nutrient mass loads were determined based on runoff volumes
and measured event mean concentration (EMC) (Equation (3)). Volumes were calculated using flow
rates recorded each minute by autosampler flow modules and summing the total volume over the
sampling interval.

Total Mass = Q * EMC, (3)

where, Q = flow volume (L) and EMC = event mean concentration of analyte (mg L−1). Nutrient loads
were used to determine the mass load removals and mass removal efficiency using the equation [32]:

RE (%) = (Mi −Mf) × 100/Mi, (4)

where, Mi = initial mass entering the system (g), Mf = final mass leaving the system (g). For positive
values nutrients are retained, for negative values there is an export of nutrients. One storm event was
removed from the analysis due to flow measurement instrumentation error.

2.5. Bioreactor Flow Distribution Challenges

For most storm events, a portion of the storm flow volume bypassed the tanks (i.e., entered
the high flow path, Figure 2) and went directly to the woodchip bioreactors. This was likely due to
issues including clogging of the inflow pipe, backup of flow through the tanks, or rapid influent flow
rate during high-intensity storm events. It was determined that summed volumes from bioreactor
outflow autosamplers, with a correction for added effective precipitation on the open bioreactors,
more accurately accounted for storm event runoff volumes that passed through the entire system.
Additionally, the uneven split of flow between the bioreactors, which may have occurred at the flow
diversion structure or at the split in the distribution system just past the Tank Outflow, led to the WB
receiving greater runoff volume than EB.

2.6. Statistical Analysis

Event mean concentrations and nutrient mass loads were evaluated between the four sampling
locations, System Inflow, Tank Outflow, WB Outflow, and EB Outflow. Each monitored storm event
was considered a replicate for statistical purposes [34]. These data violated both normality and equal
variance assumptions, therefore a Wilcoxon signed rank test, a non-parametric analog to the paired
t-test, was used to make comparisons between median influent and effluent nutrient concentrations of
the treatment system components. For all storm events where nutrient mass loads were calculated,
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System Inflow and Combined Bioreactor Outflow nutrient mass loads were compared via Wilcoxon
signed rank tests. Results were evaluated at 95% confidence (α < 0.05), with p values between 0.05 and
0.10 considered marginally significant. All models were run using R statistical software version 4.0 [35].

3. Results

3.1. Silage Storage Bunker Runoff Nutrient Composition

To characterize the composition of silage bunker runoff, storm event samples were collected at the
System Inflow from June through November 2018 and June through October 2019. Mean concentrations
from flow-weighted samples for each nutrient are presented in Table 1.

Table 1. Mean nitrogen (N) and phosphorus (P) concentrations of silage bunker runoff for
System Inflow samples for 36 storm events from 2018–2019 (standard deviation and sample
size in parentheses). TN = total N, NH4

+-N = ammonium-N, NO2
−+NO3

−-N = nitrite + nitrate-N,
TP = total P, SRP = soluble reactive P.

TN NH4
+-N NO2−+NO3−-N TP SRP

mg L−1 mg L−1 mg L−1 mg L−1 mg L−1

75.9 (± 37.2, 36) 21.5 (± 17.0, 36) 0.14 (± 0.2, 36) 25.3 (± 11.3, 35) 19.2 (± 11.8, 30)

3.2. Storm Events and Flow Rates

During the months of June through October 2019, a total of 16 storm events were monitored at
all autosampler points in the system (Figure 3). The mean storm depth was 18.78 mm and the storm
depths ranged from 5.33 mm to 52.58 mm. The average flow rate during storm events leaving the WB
was 0.28 L s−1 and 0.17 L s−1 from the EB.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 7 of 17 

and 0.10 considered marginally significant. All models were run using R statistical software version 
4.0 [35]. 

3. Results 

3.1. Silage Storage Bunker Runoff Nutrient Composition 

To characterize the composition of silage bunker runoff, storm event samples were collected at 
the System Inflow from June through November 2018 and June through October 2019. Mean 
concentrations from flow-weighted samples for each nutrient are presented in Table 1. 

Table 1. Mean nitrogen (N) and phosphorus (P) concentrations of silage bunker runoff for System 
Inflow samples for 36 storm events from 2018–2019 (standard deviation and sample size in 
parentheses). TN = total N, NH4+-N = ammonium-N, NO2 -+NO3 --N = nitrite + nitrate-N, TP = total P, 
SRP = soluble reactive P. 

TN NH4+-N NO2 -+NO3 --N TP SRP 
mg L−1 mg L−1 mg L−1 mg L−1 mg L−1 

75.9 (± 37.2, 36) 21.5 (± 17.0, 36) 0.14 (± 0.2, 36) 25.3 (± 11.3, 35) 19.2 (± 11.8, 30) 

3.2. Storm Events and Flow Rates 

During the months of June through October 2019, a total of 16 storm events were monitored at 
all autosampler points in the system (Figure 3). The mean storm depth was 18.78 mm and the storm 
depths ranged from 5.33 mm to 52.58 mm. The average flow rate during storm events leaving the WB 
was 0.28 L s−1 and 0.17 L s−1 from the EB. 

 
Figure 3. Distribution of storm event depths during the 2019 sampling season. 

3.3. Nutrient Concentrations  

3.3.1. Nitrogen  

Total N concentrations were highest at the System Inflow, and generally decreased as the runoff 
was treated in the system (Figure 4). Ammonium-N concentrations increased within the treatment 
tanks (i.e., between System Inflow and Tank Outflow), decreased from the WB (i.e., between Tank 
Outflow and WB Outflow) and were generally similar or increased within the EB (i.e., between Tank 
Outflow and EB Outflow) (Figure 4). All means, sample sizes, and standard deviations are shown in 
Supplementary Materials Table S2. 

System Inflow median N concentrations were 49.84 (range: 18.8–158.36) mg L−1 for TN, 6.6 
(range: 3.7–25.0) mg L−1 for NH4+-N, and 0.065 (range: 0.025–1.11) mg L−1 for NO2 -+NO3 –N. Median N 
concentrations measured at Tank Outflow were 45.74 (range: 27.12–71.54) mg L−1 for TN, 17.2 (range: 
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3.3. Nutrient Concentrations

3.3.1. Nitrogen

Total N concentrations were highest at the System Inflow, and generally decreased as the runoff

was treated in the system (Figure 4). Ammonium-N concentrations increased within the treatment
tanks (i.e., between System Inflow and Tank Outflow), decreased from the WB (i.e., between Tank
Outflow and WB Outflow) and were generally similar or increased within the EB (i.e., between Tank
Outflow and EB Outflow) (Figure 4). All means, sample sizes, and standard deviations are shown in
Supplementary Materials Table S2.

System Inflow median N concentrations were 49.84 (range: 18.8–158.36) mg L−1 for TN, 6.6 (range:
3.7–25.0) mg L−1 for NH4

+-N, and 0.065 (range: 0.025–1.11) mg L−1 for NO2
−+NO3

−-N. Median N
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concentrations measured at Tank Outflow were 45.74 (range: 27.12–71.54) mg L−1 for TN, 17.2 (range:
4.74–40.7) mg L−1 for NH4

+-N, and 0.025 (0.025–7.7) mg L−1 for NO2
−+NO3

−-N. Compared to the
System Inflow, NH4

+-N median concentration in Tank Outflow increased, and that difference was
found to be statistically significant (p < 0.001).

The WB was most effective at reducing N concentrations. Median concentrations measured at
the WB Outflow were 16.61 (range: 12.15–52.34) mg L−1 for TN, 5.14 (2.75–39.55) mg L−1 for NH4

+-N,
and 0.025 (0.025–0.13) mg L−1 for NO2

−+NO3
−-N. The median effluent concentrations of TN and

NH4
+-N at the EB Outflow were both reduced relative to Tank Outflow (i.e., inflow to the WB) and

those differences were found to be statistically significant (p < 0.001, p = 0.002, respectively).
The EB Outflow median TN concentrations were higher than the WB Outflow. At the EB Outflow,

the median TN concentration was 39.74 (range: 17.7–92.34) mg L−1, the NH4
+-N median concentration

was 24.5 (range: 1.88–75.5) mg L−1, and the NO2
−+NO3

−-N median concentration was 0.025 (range:
0.025–0.089) mg L−1. Differences in concentrations compared to Tank Outflow were not found to
be significant.
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NO2

−+NO3
−-N = nitrite + nitrate-N.

3.3.2. Phosphorus

Overall, the treatment system was successful at reducing TP and SRP concentrations, but
P reduction was most effective within the bioreactors rather than the tanks (Figure 5 and
Supplementary Materials Table S2). In 2019, the System Inflow median TP concentration was 18.1
(range: 10.3–34.9) mg L−1 and 12.84 (range: 7.0–28.6) mg L−1 for SRP. The median concentration of TP
measured at the Tank Outflow was 16.30 (range: 12.4–24.7) mg L−1 and 14.72 (range: 10.7–21.4) mg L−1

for SRP. There was not a statistically significant difference comparing the difference in median P
concentrations measured from System Inflow and Tank Outflow.

The WB Outflow median TP concentration was 12.1 (range: 9.72–19.5) mg L−1 and 10.27 (range:
7.8–18.16) mg L−1 for SRP. There was a reduction for both median TP and SRP concentrations compared
to the Tank Outflow measurements, and those difference were found to be statistically significant
(p = 0.002, p < 0.001, respectively). Median concentrations from the EB Outflow were 13.1 (range:
11.0–27.3) mg L−1 for TP and 11.58 (range: 6.75–21.6) mg L−1 for SRP, and there was not a statistically
significant difference compared to Tank Outflow concentrations.
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3.4. Nutrient Mass Loads

3.4.1. Analysis of All Storms

Cumulative mass load removals and removal efficiencies (RE %) were calculated from summed
System Inflow and Combined WB and EB Outflow mass loads for 15 storm events during the 2019
sampling period to assess overall system performance (Table 2). The system removed 76% of the influent
TN mass load. On a storm-by-storm basis comparing TN inflow and outflow loads, the difference was
statistically significant (p = 0.002). The treatment system had a net export of NH4

+-N mass load over
the season, and the difference between inflow and outflow loads was significant (p = 0.004). There was
very little NO2

−+NO3
−-N measured throughout the system, but overall there was a reduction in mass

load and a statistically significant difference in inflow and outflow loads (p = 0.005). Moderate mass
load reductions for TP and SRP occurred within the system, however those differences were not found
to be statistically significant.

Table 2. Cumulative mass removal of nitrogen (N) and phosphorus (P) mass loads and overall removal
efficiency (RE %) in 2019 for 15 storm events where loads were calculated, between System Inflow and
Combined Bioreactor Outflow (i.e., from East and West Bioreactor Outflows). Negative values indicate
an export of nutrient. TN = total N, NH4

+-N = ammonium-N, NO2
−+NO3

−-N = nitrite + nitrate-N,
TP = total P, SRP = soluble reactive P.

Entire Treatment System

Cumulative Mass Removal (kg) RE (%)

TN 32.5 75.8%
NH4

+-N −1.97 −56.4%
NO2

−+NO3
−-N 0.04 70.4%

TP 2.37 25.8%
SRP 1.46 19.1%

3.4.2. Nutrient Mass Loads for Storms with No Tank Bypass

There were five storm events in 2019 for which tank bypass did not occur and the full runoff

volume from each storm event was treated in the treatment tanks with MBBR prior to entering the
woodchip bioreactors (Figure 6). For all storms, TN mass load decreased between System Inflow and
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Combined Bioreactor Outflow (i.e., sum of WB Outflow and EB Outflow), however there was generally
an increase in TN mass load within the treatment Tanks (Figure 6).
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Figure 6. Nitrogen (N) and phosphorus (P) mass loads for five storm events where no tank bypass
occurred, at the System Inflow, Tank Outflow, and Combined Bioreactor Outflows (i.e., from East
and West Bioreactor Outflows). TN = total N, NH4

+-N = ammonium-N, NO2
−+NO3

−-N = nitrite +

nitrate-N, TP = total P, SRP = soluble reactive P.

These storm events were analyzed separately (Table 3). Cumulative nutrient mass loads and average
removal efficiencies were calculated between the System Inflow and Tank Outflow, Tank Outflow and
WB, and Tank Outflow and EB. Nutrient mass loads from individual storm events are shown for these
locations. The treatment tanks with MBBR on average for each storm event increased nutrient mass
loads, and overall most mass removal occurred within the WB (Table 3).

Table 3. Cumulative nutrient mass load removal and mean removal efficiency for each part of the
system (i.e., treatment tanks with MBBR, West Bioreactor (WB), and East Bioreactor (EB)) for five storm
events where no bypass of treatment tanks occurred.

Treatment Tanks with MBBR WB EB

Cumulative
Mass Removal

(kg)

Average RE
(%)

Cumulative
Mass Removal

(kg)

Average RE
(%)

Cumulative
Mass Removal

(kg)

Average RE
(%)

TN −0.71 −7.3 1.81 57.1 0.34 −183.1
NH4

+-N −1.20 −224.0 0.84 70.8 −0.15 −26.2
NO2

−+
NO3

−-N −0.01 −2446.7 0.04 11.7 0.001 270.2

TP −0.71 −41.0 0.43 23.4 0.15 7.1
SRP 0.55 −33.3 0.32 20.7 0.07 −16.2

4. Discussion

4.1. Silage Storage Bunker Runoff Composition

This study contributes to the understanding of nutrient composition of silage bunker runoff, which
is rarely reported in the literature. Leachate composition is highly variable depending on time that
elapsed since ensiling and the initial crop moisture content, which in turn leads to variation in runoff

composition once it is diluted with precipitation [4]. Total N is comprised of dissolved species, NH4
+-N

and NO2
−+NO3

−-N and dissolved and particulate organic N. Studies reviewed by Gebrehanna [3]
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suggest that NO2
−+NO3

−-N may only make up 0.02% of the N content of silage leachate with most in
the organic form, which is consistent with silage bunker runoff concentrations in this study (Table 1).
Faulkner [6] reported silage bunker runoff EMC concentrations for NH4

+-N of 59 mg L−1 and NO3-N
of 4 mg L−1, both higher than averages reported in this study (Table 1). For P, SRP contributes over
75% of the TP concentration on average (Table 1). Mean P concentrations were less than concentrations
measured by Holly [5], for which TP ranged from 26 to 71 mg L−1 and SRP from 20 to 67 mg L−1 and
the EMC of SRP from Faulkner [6] was 37 mg L−1.

4.2. Nitrogen Removal Performance

4.2.1. Treatment Tanks with Moving-Bed Biofilm Bioreactor (MBBR)

This treatment system was designed to facilitate conditions for N removal via microbial
transformations. The MBBR system in Tank 2 is the first step in this process, as it is designed
for conditions for nitrification, where biofilm reactors and aeration provide oxygen and nitrifying
microbial populations, for the conversion of NH4

+ to NO3
−. The treatment tanks were evaluated as

an entire system since sampling occurred at the inflow to Tank 1 and outflow from Tank 3. A slight
decrease in the average TN concentration and a significant increase in average NH4

+-N concentrations
from the System Inflow to Tank Outflow, suggest that ammonification, conversion of organic N to
NH4

+, likely occurred in the tanks (Figure 4). The average NO2
−+NO3

−-N concentration entering the
bioreactors from the tanks was 1.66 mg L−1, however it is notable that for 11 of 15 monitored storm
events, the NO2

−+NO3
−-N concentration at the Tank Outflow was below 0.05 mg L−1 (the analyzing

instrument’s detection limit). In 2019, there were four consecutively monitored storms in mid-summer
where Tank Outflow sample concentrations were between 3 and 7.7 mg L−1; an increase from System
Inflow, suggesting there might have been a time where nitrification successfully occurred in the
treatment tanks. It is likely that nitrification performance was inhibited by an inadequate hydraulic
retention time during storm events, which is further discussed below.

It is important to note that monitoring of this system occurred in conjunction with storm events,
when each component of the system overflows to the next component and autosampling is triggered
by flow. In other words, the system is not monitored at times between storms. Generally, nutrient
concentrations and mass loads were higher in Tank Outflow samples leaving the treatment tanks,
compared to the System Inflow (Figures 4 and 6, Table 3), which may be attributed to conditions that
occur in between storm events when the system was not monitored. This could potentially come
from unmonitored silage leachate (i.e., not mixed with storm-driven runoff), which flows into Tank 1.
Leachate concentration would be diluted within the treatment tanks with MBBR and also contribute to
an increase in concentration measured in Tank Outflow during the following storm event.

4.2.2. Bioreactors

Cumulatively over the sampling season, TN mass load was reduced by 76% (Table 2). Average TN
concentrations decreased within the bioreactors despite low concentrations of NO2

−+NO3
−-N entering

the bioreactors from the Tank Outflow (Figure 4, Supplementary Materials Table S2). This overall
decrease indicates that N removal via denitrification occurred within the beds, preceded by nitrification
in the aerobic zones of the bioreactor, which has been described as a possible removal mechanism of
NH4

+-N in in other woodchip bioreactor studies [21,25]. However, there was likely mineralization of
organic N to NH4

+-N, due to the increase in median NH4
+-N concentration between the Tank

Outflow and WB and EB Outflows, which was not consistently followed by nitrification and
denitrification processes.

Most woodchip bioreactor studies sample influent and effluents on regular intervals when flow
rates are relatively constant, however treatment of storm flows within bioreactors is thought to be
less effective due to disturbance of steady-state conditions [36]. A meta-analysis of bioreactor studies
found that performance was significantly lower with a hydraulic retention time (HRT) of less than
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6 h compared to longer times between 6 and 20 h and >20 h [20]. For this system, the steady-state
HRT within each bioreactor during storm events ranged from 29 to 309 hr and HRT between storm
events varied from 1 day to 12 days. This variation in HRT and flow rates through the system may
have inhibited performance by disrupting stable microbial populations, especially at rapid flow rates.
Future work could modify outflow structures to control flow rates and HRT.

Bioreactor performance was limited by low NO2
−+NO3

−-N concentrations entering the woodchip
bioreactors from the tanks (Figure 4), which has also been reported in other studies [27,37].
A consequence of low NO2

−+NO3
−-N concentrations in the bioreactors can be undesirable redox

reactions such as sulfate (SO4
2−) reduction, which produces hydrogen sulfide (H2S). There is the

potential for these reactions to occur in woodchip bioreactors if complete NO2
−−+NO3

−-N removal
is achieved and the NO2

−+NO3
−-N concentration falls below 0.5-1 mg L−1 [22]. However, SO4

2−

concentrations were not measured in this study, so future work could investigate if sulfate reduction
occurs in this system due to low NO2

−−+NO3
−-N concentrations that were measured (below 0.05 mg L−1

to 0.13 mg L−). The release of nitrous oxide (N2O) due to incomplete denitrification is a further
‘pollution swapping’ concern, which should be investigated for this system. Generally, bioreactor
studies have found low levels of N2O production [21,38], but more work on greenhouse gas emissions
from bioreactors is needed [20].

4.3. Phosphorus Removal Performance

4.3.1. Treatment Tanks with MBBR

Throughout the sampling season, moderate removal occurred in the entire system for both
TP and SRP, as measured in both mass loads and concentration reductions (Table 2 and Figure 5).
Analysis of the subset of storms without tank bypass storms suggest that most of the load removal
occurred in the bioreactors, as opposed to the treatment tanks with MBBR (Table 3 and Figure 6).
Phosphorus concentrations and loads generally increased from System Inflow to Tank Outflow locations.
This supports the hypothesis that undiluted silage leachate enters the tanks between monitored storm
events, increasing nutrient concentrations in Tank 1, and subsequently the concentrations entering the
bioreactors from Tank Outflow.

4.3.2. Woodchip Bioreactors

Woodchip bioreactors are typically designed to target N, so P removal reported in woodchip
bioreactor studies is highly variable. Some studies found moderate removal [21], while others observed a
net P export [39,40]. The exact removal mechanism for TP and SRP in the woodchip bioreactors (Figure 5,
Tables 2 and 3) in this study is uncertain, but possibilities include sorption to woodchips and microbial
immobilization of P. High removal of TP concentrations was observed in a woodchip bioreactor
treatment system, which reduced influent concentrations by 71%, but most reduction was observed
from a settling tank [41]. Robertson [42] found a high TP removal rate in pilot-scale woodchip biofilters
with high influent TP concentrations from stream flow. Removal rates increased at higher loading
rates, a promising finding for storm event flow. Soupir [40] reported that non-sterile woodchips, i.e.,
with microbial growth, removed more dissolved P than sterile woodchips. Incorporating a P-binding
additive into the bioreactor, such as drinking water treatment plant residuals (DWTR) has been
successful in removing both TP and SRP via sorption onto these materials, however removal efficiencies
were greater for SRP [43]. The aforementioned study also compared pilot scale woodchip bioreactors
amended with DWTR and without, and for the non-amended woodchip bioreactors authors saw an
average of 19% (TP) and 12% (SRP) removal efficiency, which is comparable to the average RE observed
in the WB from this study (Table 3). Removal of P in these non-DWTR bioreactors was thought to have
been due to physical filtration [43]. A possibility to further enhance removal of P in this system would
be to incorporate a P-binding additive into one woodchip bioreactor, which could be compared with
this paired system.
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Notably, System Inflow P concentrations (Table 1) were much higher than other woodchip
bioreactor studies mentioned above. The treatment system from Choudhury [41] received vegetable
wash water with observed TP concentrations from 5 to 10 mg L−1. Dissolved P concentrations were
1.12 mg L−1 for the woodchip sorption experiment from Soupir [40]. In the lab study from Gottschall [43]
influent concentrations were 0.6 mg L−1 and 0.2 mg L−1 for TP and dissolved P, respectively. Higher
influent concentrations in this system may have an impact on P sorption dynamics, however further
consideration of these processes is needed.

4.4. Bioreactor Performance: East Bioreactor (EB) Versus West Bioreactor (WB)

Superior nutrient removal performance was observed from the WB compared to EB for both
concentration reductions and mass load removals (Figures 4–6 and Table 3). As designed, the bioreactors
were intended to be replicates of one another; however, observations during the study period made it
clear that as-built features resulted in unequal hydraulic loading. Notably, greater runoff volumes
flowed through WB compared to EB for 14 out of the 15 storms analyzed for nutrient mass loads, and on
average WB received 28% more runoff during each event than EB. Since the WB outflow sampling
structure had larger volumes of water passing through it compared to the EB outflow, a potential
explanation is that increased water mounding occurred in the WB than EB, before drainage could
occur. This additional mounding would have resulted in a greater volume of the top woodchip layers
fluctuating between saturated and unsaturated conditions.

The fluctuating water level in the WB is comparable to woodchip bioreactor studies on
drying–rewetting cycles (DRW), where a bioreactor is drained and air is allowed to fill the once
saturated spaces between the woodchips, overall increasing nitrate removal [44,45]. These conditions
in soil systems are known to enhance decomposition of organic matter, making C and N available,
which can accelerate rates of soil metabolic processes [46–48]. Results from a DRW event was first
reported in a woodchip bioreactor column study from Christianson [49]. Researchers saw increased
nitrate removal following a 96-hr drying time and the capacity for dissolved P removal in the woodchips
also increased. It is thought that DRW cycles cause decomposition of the woodchips to occur in the
presence of oxygen, which increases dissolved organic C (DOC) and can then be used by microbes
in denitrification. In this study where more woodchips in WB are saturated during storm flow and
then subsequently dry out, the DRW may explain a difference in performance, leading to more DOC
available for rapid denitrification. For future studies, modification of the outlet structures from each
bed could be used to control outflow and retention time to investigate whether more water mounding
in the WB does indeed occur. While woodchips have been shown to be an effective C source for NO3

−

removal for at least 15 years of continuous bioreactor operation [50], decomposition of woodchips is a
concern especially if DRW cycles may enhance this process.

5. Conclusions

The design of this treatment system is novel, as it is the first reported combined MBBR system and
woodchip bioreactor study treating silage bunker runoff. As a whole, the treatment system successfully
reduced TN mass load by 76% throughout the study duration. Most reduction of TN took place in
the bioreactors, compared to the tanks, despite low nitrate concentrations entering the bioreactors.
DRW may have been the primary driver for N transformations and removal. While the system’s design
specifically targeted treatment of N species, moderate P removal was also observed; 26% of the TP
mass load and 19% of SRP mass load over the sampling season.

Overall, the system was an effective treatment option for high concentrations of N and P in the
influent silage bunker runoff evaluated during the third year of operation. Other treatment options or
treatment tank designs should be considered prior to runoff entering the bioreactor to maximize the
transformation of N into NO3

−. To increase hydraulic retention time and nitrification performance
of the treatment tanks, future designs could consider a decreased flow rate through the system
that incorporates substantial storage up-stream of the treatment tanks. Simple hydraulic control
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(e.g., an orifice) could then be used to slowly release this stored runoff through the treatment system in
between storm events at a rate that would allow for full nitrification to occur. Such modifications would
likely improve performance but could also increase installation costs. Longevity of the woodchips
should be monitored on an annual basis to ensure a readily available source of C for denitrification.
Issues of unequal flow splitting and extra unintended bypass to the high flow path around treatment
tanks highlight the importance of proper operation and maintenance of silage bunker runoff treatment
systems. Areas for solids settling that can easily and frequently be cleaned out are critical to effective
performance [6]. In other water-quality contexts, where N is already in the form of NO3

−, this combined
MBBR and woodchip bioreactor system may also offer a promising solution.
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Nomenclature

TN = total nitrogen, NH4
+-N = ammonium-nitrogen, NO2

−−+NO3
−-N = nitrite + nitrate-nitrogen, TP = total

phosphorus, SRP = soluble reactive phosphorus, MBBR = moving bed biofilm reactor, C = carbon, WB = West
Bioreactor, EB = East Bioreactor, RE = removal efficiency, DWR = drying rewetting cycles, DOC = dissolved
organic carbon.

References

1. Carpenter, S.R.; Caraco, N.F.; Correll, D.L.; Howarth, R.W.; Sharpley, A.N.; Smith, V.H. Nonpoint Pollution of
Surface Waters with Phosphorus and Nitrogen. Ecol. Appl. 1998, 8, 559–568. [CrossRef]

2. McDonald, P.; Henderson, A.R.; Heron, S.J.E. The Biochemistry of Silage; Chalcombe Publications: Marlow,
UK, 1991; ISBN 0948617225.

3. Gebrehanna, M.M.; Gordon, R.J.; Madani, A.; Vanderzaag, A.C.; Wood, J.D. Silage effluent management:
A review. J. Environ. Manag. 2014. [CrossRef] [PubMed]

4. Wright, P.; Inglis, S.; Geohring, L. Effectiveness of Silage Leachate Treatment with Vegetative Filter Areas.
In Proceedings of the ASAE/CSAE Annual International Meeting, Ottowa, ON, Canada, 1– 4 August 2004.

5. Holly, M.A.; Larson, R.A.; Cooley, E.T.; Wunderlin, A.M. Silage storage runoff characterization: Annual
nutrient loading rate and first flush analysis of bunker silos. Agric. Ecosyst. Environ. 2018, 264, 85–93.
[CrossRef]

6. Faulkner, J.W.; Zhang, W.; Geohring, L.D.; Steenhuis, T.S. Nutrient transport within three vegetative treatment
areas receiving silage bunker runoff. J. Environ. Manag. 2011, 92, 587–595. [CrossRef] [PubMed]

7. Cropper, J.B.; DuPoldt, C.A., Jr. Silage Leachate and Water Quality. In USDA Environ. Qual. Tech. Note N5;
USDA-NCRS: Washington, DC, USA, 1995.

http://www.mdpi.com/2076-3417/10/14/4789/s1
http://dx.doi.org/10.1890/1051-0761(1998)008[0559:NPOSWW]2.0.CO;2
http://dx.doi.org/10.1016/j.jenvman.2014.04.012
http://www.ncbi.nlm.nih.gov/pubmed/24905641
http://dx.doi.org/10.1016/j.agee.2018.05.015
http://dx.doi.org/10.1016/j.jenvman.2010.09.020
http://www.ncbi.nlm.nih.gov/pubmed/20934800


Appl. Sci. 2020, 10, 4789 15 of 16

8. Koelsch, R.K.; Lorimor, J.C.; Mankin, K.R. Vegetative Treatment Systems for Management of Open Lot
Runoff: Review of Literature. Appl. Eng. Agric. 2006, 22, 141–153. [CrossRef]

9. Holly, M.A.; Larson, R.A. Treatment of Silage Runoff Using Vegetated Filter Strips. Trans. ASABE 2016, 59,
1645–1650.

10. Larson, R.A.; Safferman, S.I. Field Application of Farmstead Runoff to Vegetated Filter Strips: Surface and
Subsurface Water Quality Assessment. J. Environ. Qual. 2012, 41, 592. [CrossRef]

11. Hem, L.J.; Rusten, B.; Ødegaard, H. Nitrification in a moving bed biofilm reactor. Water Res. 1994, 28,
1425–1433. [CrossRef]

12. Wang, R.C.; Wen, X.H.; Qian, Y. Influence of carrier concentration on the performance and microbial
characteristics of a suspended carrier biofilm reactor. Process Biochem. 2005, 40, 2992–3001. [CrossRef]

13. Zhu, S.; Chen, S. The impact of temperature on nitrification rate in fixed film biofilters. Aquac. Eng. 2002, 26,
221–237. [CrossRef]

14. Safwat, S.M. Performance of moving bed biofilm reactor using effective microorganisms. J. Clean. Prod. 2018,
185, 723–731. [CrossRef]

15. Mannina, G.; Capodici, M.; Cosenza, A.; Di Trapani, D.; Ekama, G.A. The effect of the solids and hydraulic
retention time on moving bed membrane bioreactor performance. J. Clean. Prod. 2018, 170, 1305–1315.
[CrossRef]

16. Reboleiro-Rivas, P.; Martín-Pascual, J.; Juárez-Jiménez, B.; Poyatos, J.M.; Hontoria, E.; Rodelas, B.;
González-López, J. Enzymatic activities in a moving bed membrane bioreactor for real urban wastewater
treatment: Effect of operational conditions. Ecol. Eng. 2013, 61, 23–33. [CrossRef]

17. Di Biase, A.; Devlin, T.R.; Kowalski, M.; Oleszkiewicz, J.A. Optimization of surface area loading rate for
an anaerobic moving bed biofilm reactor treating brewery wastewater. J. Clean. Prod. 2018, 172, 1121–1127.
[CrossRef]

18. Tsitouras, A.; Basu, O.; Al-Ghussain, N.; Delatolla, R. Kinetic effects of anaerobic staging and aeration rates
on sequencing batch moving bed biofilm reactors: Carbon, nitrogen, and phosphorus treatment of cheese
production wastewater. Chemosphere 2020, 252, 126407. [CrossRef] [PubMed]

19. Schipper, L.A.; Robertson, W.D.; Gold, A.J.; Jaynes, D.B.; Cameron, S.C. Denitrifying bioreactors-An approach
for reducing nitrate loads to receiving waters. Ecol. Eng. 2010, 36, 1532–1543. [CrossRef]

20. Addy, K.; Gold, A.J.; Christianson, L.E.; David, M.B.; Schipper, L.A.; Ratigan, N.A. Denitrifying Bioreactors
for Nitrate Removal: A Meta-Analysis. J. Environ. Qual. 2016, 45, 873. [CrossRef]

21. Warneke, S.; Schipper, L.A.; Bruesewitz, D.A.; McDonald, I.; Cameron, S. Rates, controls and potential
adverse effects of nitrate removal in a denitrification bed. Ecol. Eng. 2011, 37, 511–522. [CrossRef]

22. Robertson, W.D.; Merkley, L.C. In-Stream Bioreactor for Agricultural Nitrate Treatment. J. Environ. Qual.
2009, 38, 230–237. [CrossRef]

23. Rambags, F.; Tanner, C.C.; Stott, R.; Schipper, L.A. Fecal Bacteria, Bacteriophage, and Nutrient Reductions in
a Full-Scale Denitrifying Woodchip Bioreactor. J. Environ. Qual. 2016, 45, 847. [CrossRef]

24. Hoover, N.L.; Bhandari, A.; Soupir, M.L.; Moorman, T.B. Woodchip Denitrification Bioreactors: Impact of
Temperature and Hydraulic Retention Time on Nitrate Removal. J. Environ. Qual. 2015, 45, 803. [CrossRef]
[PubMed]

25. Hassanpour, B.; Giri, S.; Pluer, W.T.; Steenhuis, T.S.; Geohring, L.D. Seasonal performance of denitrifying
bioreactors in the Northeastern United States: Field trials. J. Environ. Manag. 2017, 202, 242–253. [CrossRef]
[PubMed]

26. David, M.B.; Gentry, L.E.; Cooke, R.A.; Herbstritt, S.M. Temperature and Substrate Control Woodchip
Bioreactor Performance in Reducing Tile Nitrate Loads in East-Central Illinois. J. Environ. Qual. 2015, 45, 822.
[CrossRef] [PubMed]

27. Schipper, L.A.; Cameron, S.C.; Warneke, S. Nitrate removal from three different effluents using large-scale
denitrification beds. Ecol. Eng. 2010, 36, 1552–1557. [CrossRef]

28. Von Ahnen, M.; Pedersen, P.B.; Dalsgaard, J. Start-up performance of a woodchip bioreactor operated
end-of-pipe at a commercial fish farm—A case study. Aquac. Eng. 2016, 74, 96–104. [CrossRef]

29. King, K.W.; Harmel, R.D. Considerations in selecting a water quality sampling strategy. Am. Soc. Agric. Eng.
2003, 46, 63–73. [CrossRef]

30. USDA-NRCS. Estimation of Direct Runoff from Storm Rainfall. Natl. Eng. Handb. 2004, 10-1, 630.

http://dx.doi.org/10.13031/2013.20190
http://dx.doi.org/10.2134/jeq2011.0125
http://dx.doi.org/10.1016/0043-1354(94)90310-7
http://dx.doi.org/10.1016/j.procbio.2005.02.024
http://dx.doi.org/10.1016/S0144-8609(02)00022-5
http://dx.doi.org/10.1016/j.jclepro.2018.03.041
http://dx.doi.org/10.1016/j.jclepro.2017.09.200
http://dx.doi.org/10.1016/j.ecoleng.2013.09.031
http://dx.doi.org/10.1016/j.jclepro.2017.10.256
http://dx.doi.org/10.1016/j.chemosphere.2020.126407
http://www.ncbi.nlm.nih.gov/pubmed/32182506
http://dx.doi.org/10.1016/j.ecoleng.2010.04.008
http://dx.doi.org/10.2134/jeq2015.07.0399
http://dx.doi.org/10.1016/j.ecoleng.2010.12.006
http://dx.doi.org/10.2134/jeq2008.0100
http://dx.doi.org/10.2134/jeq2015.06.0326
http://dx.doi.org/10.2134/jeq2015.03.0161
http://www.ncbi.nlm.nih.gov/pubmed/27136145
http://dx.doi.org/10.1016/j.jenvman.2017.06.054
http://www.ncbi.nlm.nih.gov/pubmed/28735209
http://dx.doi.org/10.2134/jeq2015.06.0296
http://www.ncbi.nlm.nih.gov/pubmed/27136147
http://dx.doi.org/10.1016/j.ecoleng.2010.02.007
http://dx.doi.org/10.1016/j.aquaeng.2016.07.002
http://dx.doi.org/10.13031/2013.7391


Appl. Sci. 2020, 10, 4789 16 of 16

31. APHA; AWA; WPCF. Standard Methods for the Examination of Water and Wastewater, 21st ed.; American Public
Health Association; American Water Works Assocation; Water Environment Federation: Washington, DC,
USA, 2005.

32. Dietz, M.E.; Clausen, J.C. Saturation to improve pollutant retention in a rain garden. Environ. Sci. Technol.
2006, 40, 1335–1340. [CrossRef]

33. Li, L.; Davis, A.P. Urban stormwater runoff nitrogen composition and fate in bioretention systems.
Environ. Sci. Technol. 2014, 48, 3403–3410. [CrossRef]

34. Winston, R.J.; Hunt, W.F.; Kennedy, S.G.; Merriman, L.S.; Chandler, J.; Brown, D. Evaluation of floating
treatment wetlands as retrofits to existing stormwater retention ponds. Ecol. Eng. 2013, 54, 254–265.
[CrossRef]

35. R Core Team R: A Language and Environment for Statistical Computing. R Found. Stat. Comput. Vienna,
Austria. 2020. Available online: https://www.R-project.org/ (accessed on 6 July 2020).

36. Pluer, W.T.; Morris, C.K.; Walter, M.T.; Geohring, L.D. Denitrifying bioreactor response during storm events.
Agric. Water Manag. 2019, 213, 1109–1115. [CrossRef]

37. Bock, E.M.; Coleman, B.S.L.; Easton, Z.M. Performance of an under-loaded denitrifying bioreactor with
biochar amendment. J. Environ. Manag. 2018, 217, 447–455. [CrossRef] [PubMed]

38. Moorman, T.B.; Parkin, T.B.; Kaspar, T.C.; Jaynes, D.B. Denitrification activity, wood loss, and N2O emissions
over 9 years from a wood chip bioreactor. Ecol. Eng. 2010, 36, 1567–1574. [CrossRef]

39. Healy, M.G.; Ibrahim, T.G.; Lanigan, G.J.; Serrenho, A.J.; Fenton, O. Nitrate removal rate, efficiency and
pollution swapping potential of different organic carbon media in laboratory denitrification bioreactors.
Ecol. Eng. 2012, 40, 198–209. [CrossRef]

40. Soupir, M.L.; Hoover, N.L.; Moorman, T.B.; Law, J.Y.; Bearson, B.L. Impact of temperature and hydraulic
retention time on pathogen and nutrient removal in woodchip bioreactors. Ecol. Eng. 2018, 112, 153–157.
[CrossRef]

41. Choudhury, T.; Robertson, W.D.; Finnigan, D.S. Suspended Sediment and Phosphorus Removal in a Woodchip
Filter System Treating Agricultural Wash Water. J. Environ. Qual. 2016, 45, 796–802. [CrossRef]

42. Robertson, W.D.; Feng, D.; Kobylinski, S.; Finnigan, D.S.; Merkley, C.; Schiff, S.L. Low cost media can filter
particulate phosphorus from turbid stream water under short retention times. Ecol. Eng. 2018, 123, 95–102.
[CrossRef]

43. Gottschall, N.; Edwards, M.; Craiovan, E.; Frey, S.K.; Sunohara, M.; Ball, B.; Zoski, E.; Topp, E.; Khan, I.;
Clark, I.D.; et al. Amending woodchip bioreactors with water treatment plant residuals to treat nitrogen,
phosphorus, and veterinary antibiotic compounds in tile drainage. Ecol. Eng. 2016, 95, 852–864. [CrossRef]

44. Maxwell, B.M.; Birgand, F.; Schipper, L.A.; Christianson, L.E.; Tian, S.; Helmers, M.J.; Williams, D.J.;
Chescheir, G.M.; Youssef, M.A. Drying-Rewetting Cycles Affect Nitrate Removal Rates in Woodchip
Bioreactors. J. Environ. Qual. 2019, 48, 93–101. [CrossRef]

45. Maxwell, B.M.; Birgand, F.; Schipper, L.A.; Christianson, L.E.; Tian, S.; Helmers, M.J.; Williams, D.J.;
Chescheir, G.M.; Youssef, M.A. Increased Duration of Drying–Rewetting Cycles Increases Nitrate Removal
in Woodchip Bioreactors. Agric. Environ. Lett. 2018, 1–4. [CrossRef]

46. Miller, A.E.; Schimel, J.P.; Meixner, T.; Sickman, J.O.; Melack, J.M. Episodic rewetting enhances carbon and
nitrogen release from chaparral soils. Soil Biol. Biochem. 2005, 37, 2195–2204. [CrossRef]

47. Birch, H.F. The effect of soil drying on humus decomposition and nitrogen availability. Plant Soil 1958, 10,
9–31. [CrossRef]

48. Sorensen, L.H. Organic Matter By Repeated Air Drying-Rewetting and Repeated Additions of Organic
Material. Soil Biol. Biochem. 1974, 6, 287–292. [CrossRef]

49. Christianson, L.E.; Lepine, C.; Sibrell, P.L.; Penn, C.; Summerfelt, S.T. Denitrifying woodchip bioreactor and
phosphorus filter pairing to minimize pollution swapping. Water Res. 2017, 121, 129–139. [CrossRef]

50. Robertson, W.D.; Vogan, J.L.; Lombardo, P.S. Nitrate Removal Rates in a 15-Year-Old Permeable Reactive
Barrier Treating Septic System Nitrate. Ground Water Monit. Remediat. 2008, 28, 65–72. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1021/es051644f
http://dx.doi.org/10.1021/es4055302
http://dx.doi.org/10.1016/j.ecoleng.2013.01.023
https://www.R-project.org/
http://dx.doi.org/10.1016/j.agwat.2018.12.004
http://dx.doi.org/10.1016/j.jenvman.2018.03.111
http://www.ncbi.nlm.nih.gov/pubmed/29627650
http://dx.doi.org/10.1016/j.ecoleng.2010.03.012
http://dx.doi.org/10.1016/j.ecoleng.2011.12.010
http://dx.doi.org/10.1016/j.ecoleng.2017.12.005
http://dx.doi.org/10.2134/jeq2015.07.0380
http://dx.doi.org/10.1016/j.ecoleng.2018.08.015
http://dx.doi.org/10.1016/j.ecoleng.2016.06.011
http://dx.doi.org/10.2134/jeq2018.05.0199
http://dx.doi.org/10.2134/ael2019.07.0028
http://dx.doi.org/10.1016/j.soilbio.2005.03.021
http://dx.doi.org/10.1007/BF01343734
http://dx.doi.org/10.1016/0038-0717(74)90032-7
http://dx.doi.org/10.1016/j.watres.2017.05.026
http://dx.doi.org/10.1111/j.1745-6592.2008.00205.x
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Evaluation of nitrogen and phosphorus removal from a denitrifyingwoodchip bioreactor treatment system receiving silage bunker runoff
	Recommended Citation

	Introduction 
	Materials and Methods 
	Study Site Description 
	Storm Event Sampling 
	Water-Quality Analysis 
	Nutrient Mass Load Calculations and Removal Efficiency 
	Bioreactor Flow Distribution Challenges 
	Statistical Analysis 

	Results 
	Silage Storage Bunker Runoff Nutrient Composition 
	Storm Events and Flow Rates 
	Nutrient Concentrations 
	Nitrogen 
	Phosphorus 

	Nutrient Mass Loads 
	Analysis of All Storms 
	Nutrient Mass Loads for Storms with No Tank Bypass 


	Discussion 
	Silage Storage Bunker Runoff Composition 
	Nitrogen Removal Performance 
	Treatment Tanks with Moving-Bed Biofilm Bioreactor (MBBR) 
	Bioreactors 

	Phosphorus Removal Performance 
	Treatment Tanks with MBBR 
	Woodchip Bioreactors 

	Bioreactor Performance: East Bioreactor (EB) Versus West Bioreactor (WB) 

	Conclusions 
	References

