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Figures

Figure 1: Cerebral arteries express exon 9*.
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Figure 2: Selective expression of exon 9* in cerebral arteries.
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Figure 3: Cerebral artery myocytes express mixed population of Cay1.2 splice variants.
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Table 1: Diameter values for K* concentration-response experiments.

RP ACyg10:  A1Cy0v10-AS
Sense
Day 1
Diameter (um)
6 mM [K'], 170+ 27.8 186 + 18.7 182 +21.8
80 mM [K'], 62 +16.1 66 +9.2 63+7.6
lonomycin 37+131 37+£75 29+26
lonomycin-induced 81+4. 800+ 3.1 85+27
Constriction (% of
maximum diameter)
[K'], ECso 35+35 04+1.2 34+23
Day 2
Diameter
6 mM [K'], 194 + 28.2 217 £34.7 165+ 25.5
80 mM [K'], 85+11.7 87 +23.0 87+125
lonomycin 53+9.7 49+164 31+5.6
lonomycin-induced 72+5.2 8037 8327
Constriction (% of
maximum diameter)
[K'], ECso 32+7.4 31+1.3 33+2.0
Day 3
Diameter
6 mM [K'], 201 +20.4 216 +50.7 194 +13.0
80 mM [K'], 81+10.3 89+14.3 149 + 13.0*
lonomycin 42 +11.4 51+155 45+8.9
lonomycin-induced 80+4.1 86+3.4 81+34
Constriction (% of
maximum diameter)
[K']o ECso 31+3.0 30+2.1 32+3.0
Day 4
Diameter
6 mM [K'], 230 +25.5 205 +42.0 188 + 4.6
80 mM [K'], 78+12.1 89+14.3 155 + 20.3**
lonomycin 37127 51+155 50+ 15.3
lonomycin-induced 85+49 75+6.9 73+3.0
Constriction (% of
maximum diameter)
[K'l, ECso 33+2.3 31+2.3 30+2.8
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In Chapter one of this dissertation, it is demonstrated that constriction of parenchymal
arterioles are markedly enhanced following SAH at physiological intravascular pressures.
Evidence is provided suggesting that enhanced constriction results from greater pressure-
dependent depolarization of parenchymal arteriolar myocytes, increased activity of L-
type VDCCs and elevated [Ca?*]. One major aim of future work will address the
mechanisms by which SAH causes membrane potential depolarization of parenchymal
arteriolar myocytes. As discussed in Chapter 2, this may result from increased activity of
ion channels involved in pressure-dependent depolarization (i.e. transient receptor
potential channels) or decreased activity of negative feedback pathways controlling
vascular tone (i.e. K* efflux). Importantly, whether altered parenchymal arteriolar
function results from exposure to spasmogens within blood, or vasoactive substances
released from the brain parenchyma following SAH should also be addressed. For
example, studies have demonstrated that intracisternally injected biotinylated
oxyhemoglobin is capable of penetrating to deeper layers of the cortex of the rat (Turner
et al., 1998) suggesting that parenchymal arterioles may be exposed to this spasmogen
following erythrocyte lysis in SAH patients. Oxyhemoglobin has been shown to cause
membrane potential depolarization of cerebral artery myocytes via reduction of Ca*
spark frequency (Jewell et al., 2004; Koide, 2009) and suppression of Ky channel
currents (Ishiguro et al., 2006; Koide et al., 2007). In addition, purified oxyhemoglobin
was shown to induce expression of R-type VDCCs (Cay2.3) in rabbit pial cerebral artery
myocytes (Link et al., 2008). Although we did not test whether Cay2.3 is expressed in

parenchymal arteriolar myocytes following SAH, our data demonstrating similar [Ca?'];
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and tone in the presence of the L-type VDCC inhibitor nimodipine argue against a
significant contribution of R-type channels in parenchymal vessels from SAH animals.
These differing results may reflect variation between species or vascular beds with
respect to environment and functional regulation.

Previous studies suggest that parenchymal arterioles contribute significantly to
cerebrovascular resistance and autoregulation of cerebral blood flow (Faraci and Heistad,
1990; Harper et al., 1984). The relative contributions of large diameter vasospasm and
enhanced constriction of parenchymal vessels to ischemia-related deficits in SAH
patients remains unclear. It is plausible that in the absence of microcirculatory
dysfunction, constriction of large diameter surface vessels following SAH may cause
little reduction in regional perfusion due to compensatory redistribution of blood flow in
downstream vessels (Schaffer et al., 2006). Conversely, a significant reduction in cortical
blood flow and focal neuronal infarction may follow SAH-induced constriction of
parenchymal arterioles, which display little communication with parallel arterioles and
represent a bottleneck in blood supply to the cortex (Nishimura et al., 2007). Hence,
enhanced pressure-dependent constriction of parenchymal arterioles may severely limit
downstream blood flow and lead to significant neuronal damage after SAH.

In addition to their function in regulating global cerebral blood flow, parenchymal
arterioles are also an essential component of the neurovascular unit which functions to
couple blood flow with local neuronal activity and metabolic demands. Under normal
physiological conditions, an increase in local neuronal activity signals release of

vasodilatory substances from the astrocytic endfeet to cause vasodilation and increased
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local blood flow (ladecola and Nedergaard, 2007). This process is critical for sufficient
delivery of oxygen and nutrients to active regions of the brain. Given the impact of blood
on the function of arterioles deep within the cortex of SAH model animals shown in this
study, future work should address the impact of SAH on neurovascular coupling
mechanisms. Brain slice experiments have suggested that the magnitude and polarity of
diameter change to increases in neuronal activity are dependent on the level of vascular
tone (Blanco et al., 2008). For example, arterioles displaying greater myogenic tone
exhibit more pronounced dilations in response to electrical field stimulation (neuronal
activation). Thus, enhanced arteriolar tone following SAH may be localized to less
active brain regions in vivo if functional hyperemic phenomena remain unaltered.
However, studies in our laboratory have found a fundamental change in the
neurovascular response in brain slices from SAH model rats. Whereas electrical field
stimulation activates neurons and evokes parenchymal arteriolar dilation in brain slices
from control animals, similar stimulation causes constriction in brain slices from SAH
animals (Koide and Wellman, unpublished observations). These findings indicate that
SAH causes a remarkable shift in the polarity of vascular response from dilation to
constriction following increased neuronal activity. Therefore, impairment of mechanisms
coupling neuronal activity with localized increases in blood flow may act in concert with
enhanced pressure-dependent constriction to severely limit local cerebral blood flow
following SAH. These findings suggest that neuronal infarction may be more severe in

active brain regions in SAH patients.
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Enhanced parenchymal arteriolar constriction following SAH requires
extracellular Ca®* entry via smooth muscle L-type VDCCs. Antagonists of L-type
VDCCs are standard therapy for prevention of cerebral vasospasm and neurological
deficits in SAH patients. Although nimodipine treatment has been indicated to reduce the
severity of ischemic deficits (Tomassoni et al., 2008; Treggiari-Venzi et al., 2001), these
positive effects do not depend on reversal or prevention of angiographic vasospasm
(Petruk et al., 1988). Alternatively, consistent with our data is the hypothesis that
nimodipine may increase blood flow to ischemic brain regions by preferential dilation of
small diameter resistance arteries and arterioles. However, systemic nimodipine
administration also inhibits smooth muscle VDCCs in the peripheral vasculature and use
of this agent in SAH patients has been limited by hypotension (Treggiari-Venzi et al.,
2001). Therefore, it is clear that future efforts should focus on improving strategies to
suppress L-type VDCC activity in both pial and parenchymal myocytes, while avoiding
effects on systemic targets.

L-type channels in the vasculature represent a mixed population of splice
variations of the gene Cay1.2 (Cheng et al., 2009). In Chapter three of this dissertation,
data is shown supporting an essential role for Cay1.2 containing the alternatively-spliced,
smooth muscle-selective exon 9* (al1Cgg+/10) in cerebral artery constriction. In this study,
antisense oligonucleotides and organ culture were used to specifically reduce the
expression of exon 9* channels in myocytes of small diameter pial arteries. Following
suppression of this splice variant, we observed dramatically reduced cerebral artery

constriction to K*-induced depolarization in vitro. We conclude that alCgg«1o is the
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major route of Ca®* entry required for cerebral artery constriction resulting from
membrane depolarization. Future experiments will aim to transfer this strategy of
suppressing cerebrovascular VDCCs into the live animal. Information gained from this
work will not only test the feasibility of reducing VDCC expression in vivo, but may also
lead to new information regarding the function of VDCC splice variants in the control of
cerebral blood flow. Preliminary RT-PCR experiments have revealed similar expression
profile of al1Cgg+10 and alCgqpo Splice variants in rat pial and parenchymal arterioles
(Figure 1). Therefore, we hypothesize that suppression of alCgg+10 Channels in the
cerebral vasculature will lead to significantly increased cerebral blood flow.

In summary, it is clear that long-term exposure of tissues within the central
nervous system to whole blood causes a myriad of changes in multiple cell types. While
some of these effects may be beneficial, most are detrimental to neuronal viability. As
whole blood is a complex mixture of vasoactive substances, delayed neurological deficits
in patients surviving aneurysm rupture caused by enhanced cerebral artery constriction
are likely to result from a complex combination of factors. In this dissertation, data is
presented in support of increased Ca®* influx via L-type VDCCs as a major cause of
enhanced constriction of parenchymal arterioles following SAH. In addition, smooth
muscle-selective L-type VDCC splice variants may represent a novel target for the

prevention of delayed neurological deficits in SAH patients.
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Figure 1: Similar expression of Cay1.2 splice variants in
pial and parenchymal vasculature.

RT-PCR gel demonstrating expression of Cay1.2 splice
variants containing and lacking exon 9* ((+)9*Cay1.2 and
(-)9*Cay1.2, respectively). Similar expression of both
splice variants was observed in both pial and parenchymal
arterioles from rat. Conversely, rat brain expressed only (-)
9*Cay1.2 splice variants.
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