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ABSTRACT
Integrated assessment models (IAMs) are commonly used to ex-
plore the interactions between different modeled components of
socio-environmental systems (SES). Most IAMs are built in a tightly-
coupled framework so that the complex interactions between the
models can be efficiently implemented within the framework in
a straightforward manner. However, tightly-coupled frameworks
make it more difficult to change individual models within the IAM
because of the high level of integration between the models. Priori-
tizing flexibility over computational efficiency, the IAM presented
here is built using a loosely-coupled framework and implemented
in the Pegasus WorkflowManagement System. The modular nature
of loosely-coupled systems allows each component model within
the IAM to be easily exchanged for another component model from
the same domain assuming each provides the same input / output
interface. This flexibility allows researchers to experiment with
different models for each SES component and facilitates smoother
upgrades between each version of the independently developed
component models.

CCS CONCEPTS
• Applied computing → Environmental sciences; • Software
and its engineering→ Software system models;Data flow archi-
tectures;Abstraction,modeling andmodularity; Software de-
sign tradeoffs.
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1 INTRODUCTION
Integrated assessment models (IAMs) are a modeling framework
widely used to explore the interactions between different compo-
nents of socio-environmental systems (SES) [10, 23, 29, 32]. They
are particularly popular in climate change impacts studies in which
climate models are linked to terrestrial process models such as
hydrological or lake models to determine impacts of changes in cli-
mate on water resources and water quality. Social systems models
such as land use land change and economic models are included in
more sophisticated IAMs [35]. IAMs are often used to inform policy
makers and create policy recommendations because of their ability
to show the interactions between components of an SES over a
suite of future scenarios with varying climate change mitigation or
land use policy.

Most IAMs are implemented in tightly-coupled frameworks be-
cause of the sophisticated nature of the feedbacks between the
various models within the IAM. A tightly-coupled framework is
characterized by each component model executing simultaneously,
often accessing the current SES state in system memory as shown
in Figure 1. While each component model may not operate on
the same time scale, they remain as an active process while the
simulation time step increments at the interval required by the
model with the smallest time step requirement. An in-memory
control process is usually used to coordinate the execution of and
communication between the component models. This approach
allows the component models to access the current state of the

Figure 1: Tightly-Coupled Design
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Figure 2: Loosely-Coupled Design

system at any arbitrary time step and allows software developers
to jointly optimize the efficiency of the component models. While
these tightly-coupled frameworks are efficient, their high level of
integration between the models means that a large amount of effort
is required to switch between different community models for the
same domain, that is, to switch between different lake or hydrology
models.

The use of a loosely-coupled architecture addresses this short-
coming. In a loosely-coupled architecture, each model runs inde-
pendently, without access to the current state of the SES in system
memory or each other as shown in Figure 2. Instead, the initial con-
ditions of the SES required by each component model are provided
by input files. The model then runs to completion for a given time
frame. After execution, the model updates the SES system state by
providing updated output files. Within each time frame, the models
execute in a cascade, with the models that are most sensitive to the
current SES state executing at the end of the cascade. The order of
the cascade is an important design consideration and is discussed
further in section 4.1. A workflow management system is often
used to manage the sequence of execution of the models and start
each subsequent cascade after the previous cascade finishes.

One important feature that emerges from a loosely-couple de-
sign is modularity. Modularity has been embraced in the software
design [3, 24] and computational intelligence [1, 25] fields because
it allows the system to break a complex problem into smaller, solv-
able subsystems and allows those subsystems to specialize in their
task. While it is certainly possible to maintain modularity within a
tightly-coupled design, it is not as critical to the design philosophy
and thus, in practice, it is often given less priority than other design
elements more intrinsic to the tightly-coupled approach such as
computational efficiency and optimized memory usage. A signifi-
cant practical benefit of modularity is that it allows researchers to
switch between and experiment with different community models
within the same domain assuming both models provide similar out-
put and rely on similar input parameters. In addition, because the
underlying code for each component model is completely indepen-
dent, models can be written in a variety of programming languages
and frameworks and be updated to new versions with relative ease.
The two main drawbacks to the loosely-coupled approach are the
lack of access to the current SES state by all component models at
any arbitrary time step and the inability to jointly optimize compu-
tational efficiency between the models, although, each model can
be optimized independently.

2 THE BREE IAM
The research team for the current Vermont National Science Founda-
tion (NSF) Established Program to Stimulate Competitive Research
(EPSCoR) Research Infrastructure Improvement (RII) Track-1 grant,
titled “Basin Resilience to Extreme Events” (BREE), has built an
IAM to evaluate the effects of future climate and policy on water
quality in the Lake Champlain Basin. This BREE IAM is currently
comprised of statistically downscaled climate projections [34], a
hydrology model [22], a land use land change model [30], and a
lake model [18, 19]. An economic model and governance model
are slated to be added soon. Figure 3 shows the proposed architec-
ture of the completed BREE IAM. Each box represents a different
domain-specific component model and the arrows show current or
planned feedback between the component models. Note that the
majority of the interactions between the models are bidirectional.

The BREE IAM is an expansion and refinement from the IAM
built for the previous NSF EPSCoR RII Track-1 grant [7]. The hy-
drology model has already been replaced with a newer version of
the same community model, the Regional Hydro-Ecologic Simula-
tion System (RHESSys), and expanded to include nutrient transport
for phosphorus and nitrogen [26, 28]. In addition, completely new
climate [16, 27], land use land change [2, 11, 12], and lake models
[17, 21] will be exchanged for the previous models, all while pre-
serving most of the core software infrastructure that was developed
for the previous grant. The economic [13, 33] and governance mod-
els [4] will be new domain models in the IAM. The ability of the
BREE IAM to quickly adapt to new and updated models is due to
its loosely-coupled, modular architecture.

3 DATA INTERFACE BETWEEN MODELS
The loosely-coupled architecture of the BREE IAM precludes in-
memory data exchange that is common in more tightly-coupled
IAM architectures. Because the component models of the BREE
IAM execute independently of each other, all data transfer between
the models is file-based. The state of the Lake Champlain Basin SES
at any given point in time is represented by the collection of output
files from each of the component models. When a component model
begins execution, it collects the state information it needs from the
appropriate files, converts the data into its required input format,
and then begins execution. Consequently, each model has “prep”
stage which performs the data collection and conversion tasks
required to prepare the input files for the model.

Figure 3: The BREE IAM
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Figure 4: The Data Interface

To manage data flows within the IAM, an input / output (I/O)
interface is defined for each type of model (i.e. climate, hydrology,
etc.). Figure 4 shows this I/O interface for the hydrology model.
By defining these interfaces for each modeling domain, much of
the IAM that controls data flow can be designed and implemented
without knowledge of the specific domain model that will be used.
Small adjustments to the I/O interface for each specific domain
model are often necessary, but the concept of inheritance to expand
or adjust the base I/O interface has proven to be an efficient strategy
for addressing these small adjustments. For instance, if the RHESSys
hydrology model was replaced with another hydrology model such
as SWAT which does not operate on a 2D grid, but instead on a per
basin basis, the methods that provide temperature, precipitation,
and land use for SWAT could inherit from the 2D grid versions
and then perform the aggregation necessary to provide those input
parameters on basin scale instead of through a 2D grid.

4 IMPLEMENTATION IN PEGASUS
The BREE IAM is implemented in the Pegasus Workflow Manage-
ment System, developed by the Information Sciences Institute (ISI)
at the University of Southern California [9]. A Pegasus workflow is
built by defining the input requirements and outputs of each task
in the workflow. Pegasus then plans the workflow by construct-
ing a directed acyclic graph of the workflows tasks and executes
each workflow task as its input requirements become available. The
execution environment for the workflow is flexible with support
for HTCondor [5], commercial cloud providers, and a selection of
national HPC resources.

4.1 Bidirectional Data Exchange in Directed
Acyclic Graphs

Pegasus, along with most other workflow management systems,
use directed acyclic graphs to plan and execute their workflows.
However, as Figure 3 shows, the BREE IAM is designed with bidi-
rectional data exchange between models. The linked, sequential
cascade is designed to overcome this disparity between the one-
directional nature of directed acyclic graphs and the two-directional
design of the BREE IAM. The native direction of the cascade im-
plements one direction of the BREE IAM data exchanges between
component models, and for the less time sensitive data, the results
of the previous cascade are used to implement the other direction
of the data exchange. A set of initial conditions are used for the

SES system state for the first cascade. Therefore, the choice to use
a workflow management system and their one-directional directed
acyclic graphs to implement the IAM was a significant impetus
to creating the cascading model for data exchange between IAM
component models.

4.2 Execution Environment
The BREE IAM makes use of an heterogeneous computing envi-
ronment consisting of local compute resources as well as NCAR’s
Cheyenne HPC cluster [8] to execute the Pegasus workflow. There
are two main local compute resources, a traditional compute work-
station with 32 CPU cores and 256GB of system memory and a
NVIDIA DXG-1 with 40 CPU cores, 8 V100 GPUs providing 40,960
CUDA cores, and 512GB of system memory. The local compute
resources are managed by HTCondor. A lightweight PBS submis-
sion server was created so that HTCondor could submit PBS batch
jobs to Cheyenne using SSH for communication and job manage-
ment and Globus [31] for file transfer. Generally, the hydrology and
lake models are run on Cheyenne while many of the other models,
due to dependencies and/or resource constraints, are run on local
resources.

The component models and data prep tasks are written in sev-
eral different programming languages at various versions including
Fortran, R, Python, C, C++, and Java. For compiled languages, the
workflow tasks are compiled for Linux, specifically for each plat-
form when possible. However, the current lake model consists of
two pre-compiled, proprietary Windows binaries and are run under
Wine, a Windows capability layer for POSIX operating systems
[20]. We are beginning a transition to the use of containers for the
modeling tasks to standardize the execution for each model on each
platform. The wide range of hardware and software platforms used
in the BREE IAM highlights the flexibility of the loosely-coupled
architecture.

5 DESIGN CONSIDERATIONS
5.1 Order of the Cascade
The order of execution of each component model within a time
frame, or the cascade, is an important design consideration in a
loosely-coupled IAM architecture. Unlike tightly-coupled IAMs
where each component model has instant access to the system
state, component models in a loosely-coupled IAM do not have this
instant access because they all execute independently and often
times, in sequence to each other instead of in parallel. The resulting
impact of placing a model near the start of the cascade (upstream)
is that the model only has access to outputs from the previous
cascadal time frame (see Figure 2) while models toward the end
of the cascade (downstream) have access to data from models that
were executed earlier in that cascade.

A good guideline for determining the order of the cascade is
to place models that simulate boundary conditions and external
drivers near the start of the cascade and to place models that largely
respond to those boundary conditions and external drivers near
the end of the cascade. Another consideration is the time scale of
the process that the component model is simulating. Models the
operate on longer time scales can often be placed near the start with
minimal impact on their results (i.e. climate, land use land change),
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Figure 5: The BREE Cascade

while models that operate on shorter time scales (i.e. hydrology,
lake) should be placed near the end of the cascade so that they have
access to more recent data from upstream models. Figure 5 shows
the current cascade used for the BREE IAM, designed following
these guidelines. Note that there are component models shown in
Figure 3, the BREE IAM, that are not yet implemented in the IAM.

5.2 Determining the Cascade Time Frame
The time frame of each cascade determines the maximum age of any
input data within the IAM. Equivocally, it determines the longest
delay in feedbacks between the component models. There are trade
offs in choosing a longer or shorter cascadal time frame. The longer
the time frame, the longer each component model can run within
the cascade, reducing the number of times each model must be
restarted and spun up or recover from a save point. Longer time
frames also mean fewer cascades are required to span the overall
simulation time period. The shorter the time frame, the shorter the
delay in feedback from the downstream to the upstream models in
the cascade.

The BREE IAM is currently configured to use a 10-year time
step for each cascade. This time step was chosen by analyzing
the feedbacks from downstream models to upstream models and
determining which feedback was the most time-critical. In the case
of the BREE IAM, this was the feedback from the downstream
hydrology model to the upstream land use land change model.
Considering the trade offs between computational simplicity and
the desired maximum delay in hydrology inputs to the land use land
cover change model, a 10-year time step was chosen. The ability to
quickly modify the cascadal time step to determine its effects on
the IAM output is a current work in progress.

6 DISCUSSION
The BREE IAM and its previous iterations has been used to generate
both a wide array of research results [14, 15, 35] and provide insight
to Vermont EPSCoR’s Policy and Technical Advisory Committee
(PTAC) consisting of policy makers and other stakeholders across
the state through a series of mediated modeling workshops [6]. In
addition to its broader impacts, the BREE IAM’s combination of
technologies, implementation techniques, and design choices are
quite novel in the SES and IAM communities and can be applied
singularly or in concert with each other to a broad range of systems
modeling projects. The loosely-coupled, modular design of the
BREE IAM is a primary reason the IAM can be quickly reconfigured
for a wide array of simulation experiments that explore diverse
research and policy questions.

This same design choice also allows researchers to iterate on the
component models quickly. Features and complexity can be added
to individual component models without concern that they will
interfere with other component models. Furthermore, the updated
models can be independently calibrated and tested outside of the
IAM using techniques standard in each domain. These improve-
ments to the component models can then be contributed back to
the community, resulting in the BREE IAM not only contributing
to research on extreme events in the Lake Champlain Basin, but
also to the research domains that make up the BREE IAM.

Finally, as design and implementation choices for the BREE IAM
are explored and evaluated, it serves as experimental platform for
complex software systems design, cyberinfrastructure implemen-
tation innovations, and advances in computational intelligence
through novel approaches to integrating artificial intelligence and
machine learning within the BREE IAM. Thus, the BREE IAM has
emerged as the focal point of the current Vermont EPSCoR RII
Track-1 research project because of its flexibility to explore a wide
range of research questions and the interactions between the sub-
systems under study within the Lake Champlain Basin SES.

ACKNOWLEDGMENTS
This material is based upon work supported by the National Sci-
ence Foundation under grants EPS-1101317 and OIA-1556770. Any
opinions, findings, and conclusions or recommendations expressed
in this material are those of the author(s) and do not necessarily
reflect the views of the National Science Foundation.

REFERENCES
[1] Mohammed Amer and Tomás Maul. 2019. A review of modularization techniques

in artificial neural networks. Artificial Intelligence Review 52, 1 (jun 2019), 527–561.
https://doi.org/10.1007/s10462-019-09706-7

[2] Kevin Andrew. 2019. Modeling the Cooperative and Adversarial Behaviors
of Farmer and Regulator Agents in Vermont’s Missisquoi Bay Area. In Second
Northeast Regional Conference on Complex Systems (NERCCS). Binghamton, NY.

[3] Carliss Y. Baldwin and Kim B. Clark. 2000. Design Rules, Volume 1: The Power of
Modularity. MIT Press, Cambridge, MA. 484 pages.

[4] Patrick Bitterman. 2018. Modeling water quality governance networks on the
Missisquoi River Watershed. In Lake Champlain Research Conference. Burlington,
VT.

[5] Center for High Throughput Computing. 1988. HTCondor: High Throughput
Computing. http://htcondor.org

[6] Christopher Koliba, Asim Zia, and Brian H Y Lee. 2011. Governance Informat-
ics: Utilizing Computer Simulation Models to Manage Complex Governance
Networks. The Innovation Journal: Innovations for the Public Sector 16, 1 (2011),
Article 3.

[7] Christopher Koliba, Asim Zia, Andrew W Schroth, Arne Bomblies, Judith Van
Houten, and Donna M Rizzo. 2016. The Lake Champlain Basin as a Complex
Adaptive System: Insights from the Research on Adaptation to Climate Change
(RACC) Project. Vermont Journal of Environmental Law 17, 4 (2016), 533–563.

[8] Computational and Information Systems Laboratory. 2020. Cheyenne: HPE/SGI
ICE XA System (University Community Computing). National Center for Atmo-
spheric Research, Boulder, CO. https://doi.org/10.5065/D6RX99HX

[9] Ewa Deelman, Karan Vahi, Gideon Juve, Mats Rynge, Scott Callaghan, Philip J
Maechling, Rajiv Mayani, Weiwei Chen, Rafael Ferreira da Silva, Miron Livny,
and Kent Wenger. 2015. Pegasus: a Workflow Management System for Science
Automation. Future Generation Computer Systems 46 (2015), 17–35.

[10] Thomas Dietz. 2017. Drivers of Human Stress on the Environment in the Twenty-
First Century. Annual Review of Environment and Resources 42, 1 (oct 2017),
189–213. https://doi.org/10.1146/annurev-environ-110615-085440

[11] Elizabeth MB Doran. 2018. Unpacking intention: Using agent based models to
predict adoption of best management practices in the Missisquoi RiverWatershed.
In Lake Champlain Research Conference. Burlington, VT.

[12] Elizabeth MB Doran, Asim Zia, Stephanie Hurley, Yu-Shiou Tsai, Christopher
Koliba, E Carol Adair, Rachel E Schattman, V Ernesto Mendez, and Donna M
Rizzo. 2019. Social-Psychological Determinants of Farmer Intention to Adopt
Nutrient Best Management Practices: Implications for Resilient Adaptation to

179

https://doi.org/10.1007/s10462-019-09706-7
http://htcondor.org
https://doi.org/10.5065/D6RX99HX
https://doi.org/10.1146/annurev-environ-110615-085440


Implementing a Loosely-Coupled IAM in Pegasus PEARC ’20, July 26–30, 2020, Portland, OR, USA

Climate Change in the Lake Champlain Basin. In International Symposium of the
North American Lake Management Society (NALMS). Burlington, VT.

[13] William Gibson. 2018. Modeling the impact of extreme events on the water
quality in Lake Champlain. In Lake Champlain Research Conference. Burlington,
VT.

[14] Jory S. Hecht, Asim Zia, Donna M. Rizzo, Andrew W. Schroth, Patrick J. Clemins,
Matthew C. H. Vaughan, and Kristen E. Underwood. 2018. The systematic
underestimation of nutrient load variability in coupled streamflow-water quality
models: Effects on lake cyanobacteria blooms. In American Geophysical Union
Fall Meeting (AGU). Washington, DC.

[15] Jory S. Hecht, Asim Zia, Donna M. Rizzo, Andrew W. Schroth, Patrick J. Clemins,
Matthew C. H. Vaughan, and Kristen E. Underwood. 2018. The systematic
underestimation of nutrient load variability in coupled streamflow-water quality
models: Effects on lake cyanobacteria blooms. In 2018 American Geophysical
Union (AGU) Fall Meeting2. Washington, DC.

[16] Huanping Huang, Jonathan M. Winter, Erich C. Osterberg, Janel L. Hanrahan,
Cindy L. Bruyère, Patrick J. Clemins, and Brian Beckage. 2018. Simulating
Extreme Precipitation in the Lake Champlain Basin using a Regional Climate
Model: Limitations and Uncertainties. In 2018 American Geophysical Union (AGU)
Fall Meeting. Washington, DC.

[17] HydroNumerics. [n.d.]. Hydrodynamic-Aquatic Ecosystem Model (AEM3D).
http://www.hydronumerics.com.au/software/aquatic-ecosystem-model-3d

[18] Peter D F Isles, Courtney D Giles, Trevor A Gearhart, Yaoyang Xu, Greg K
Druschel, and AndrewW Schroth. 2015. Dynamic internal drivers of a historically
severe cyanobacteria bloom in Lake Champlain revealed through comprehensive
monitoring. Journal of Great Lakes Research 41, 3 (2015), 818–829. https://doi.
org/10.1016/j.jglr.2015.06.006

[19] Peter D. F. Isles, Yaoyang Xu, Jason D. Stockwell, and Andrew W. Schroth. 2017.
Climate-driven changes in energy and mass inputs systematically alter nutrient
concentration and stoichiometry in deep and shallow regions of Lake Champlain.
Biogeochemistry 133, 2 (apr 2017), 201–217. https://doi.org/10.1007/s10533-017-
0327-8

[20] Alexandre Julliard. 1993. Wine. http://winehq.org
[21] Clelia L Marti, Andrew W Schroth, and Asim Zia. 2019. Physical and Biogeo-

chemical Processes across Seasons in Missisquoi Bay, Lake Champlain: Insights
from a Three-dimensional Model. In American Geophysical Union Fall Meeting
(AGU)2. San Francisco, CA.

[22] Ibrahim Nourein Mohammed, Arne Bomblies, and Beverley C. Wemple. 2015.
The use of CMIP5 data to simulate climate change impacts on flow regime within
the Lake Champlain Basin. Journal of Hydrology: Regional Studies 3 (mar 2015),
160–186. https://doi.org/10.1016/j.ejrh.2015.01.002

[23] Finn Müller-Hansen, Maja Schlüter, Michael Mäs, Jonathan F. Donges, Jakob J.
Kolb, Kirsten Thonicke, and Jobst Heitzig. 2017. Towards representing hu-
man behavior and decision making in Earth system models – an overview of
techniques and approaches. Earth System Dynamics 8, 4 (nov 2017), 977–1007.
https://doi.org/10.5194/esd-8-977-2017

[24] D. L. Parnas. 1972. On the criteria to be used in decomposing systems into
modules. Commun. ACM 15, 12 (dec 1972), 1053–1058. https://doi.org/10.1145/
361598.361623

[25] David Poole and Alan Mackworth. 2017. Artificial Intelligence: Foundations of
Computational Agents (2nd ed.). Cambridge University Press.

[26] Linyuan Shang. 2018. Climate Change and Land Use/Cover Change Impacts on
Watershed Hydrology, Carbon, Nutrient Dynamics - A Case Study in Missisquoi
River Watershed. Doctoral Dissertation. University of Vermont.

[27] W. C. Skamarock, J. B. Klemp, J. Dudhia, D. O. Gill, Z. Liu, J. Berner, W. Wang,
J. G. Powers, M. G. Duda, D. M. Barker, and X.-Y. Huang. 2019. A Description
of the Advanced Research WRF Version 4. Technical Report. National Center for
Atmospheric Research (NCAR). 145 pages. https://doi.org/10.5065/1dfh-6p97

[28] C. L. Tague and L. E. Band. 2004. RHESSys: Regional Hydro-Ecologic Simulation
System—An Object-Oriented Approach to Spatially Distributed Modeling of
Carbon, Water, and Nutrient Cycling. Earth Interact. 8, 19 (2004), 1–42.

[29] The Intergovernmental Panel on Climate Change. 2014. Climate Change 2014:
Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment
Report of the Intergovernmental Panel on Climate Change. Technical Report. The
Intergovernmental Panel on Climate Change, Geneva, Switzerland. 151 pages.

[30] Yushiou Tsai, Asim Zia, Christopher Koliba, Gabriela Bucini, Justin Guilbert,
and Brian Beckage. 2015. An interactive land use transition agent-based model
(ILUTABM): Endogenizing human-environment interactions in the Western
Missisquoi Watershed. Land Use Policy 49 (dec 2015), 161–176. https://doi.org/
10.1016/j.landusepol.2015.07.008

[31] University of Chicago. 1997. Globus. https://globus.org
[32] Detlef P. van Vuuren, Jason Lowe, Elke Stehfest, Laila Gohar, Andries F. Hof,

Chris Hope, Rachel Warren, Malte Meinshausen, and Gian-Kasper Plattner. 2011.
How well do integrated assessment models simulate climate change? Climatic
Change 104, 2 (jan 2011), 255–285. https://doi.org/10.1007/s10584-009-9764-2

[33] Léon Walras. 1877. Elements of Pure Economics.
[34] Jonathan M. Winter, Brian Beckage, Gabriela Bucini, Radley M. Horton, Patrick J.

Clemins, Jonathan M. Winter, Brian Beckage, Gabriela Bucini, Radley M. Horton,

and Patrick J. Clemins. 2016. Development and Evaluation of High-Resolution
Climate Simulations over the Mountainous Northeastern United States. Journal
of Hydrometeorology 17, 3 (mar 2016), 881–896. https://doi.org/10.1175/JHM-D-
15-0052.1

[35] Asim Zia, Arne Bomblies, Andrew W Schroth, Christopher Koliba, Peter D F
Isles, Yushiou Tsai, Ibrahim N Mohammed, Gabriela Bucini, Patrick J Clemins,
Scott Turnbull, Morgan Rodgers, Ahmed Hamed, Brian Beckage, Jonathan Win-
ter, Carol Adair, Gillian L Galford, Donna Rizzo, and Judith Van Houten. 2016.
Coupled impacts of climate and land use change across a river–lake continuum:
insights from an integrated assessment model of Lake Champlain’s Missisquoi
Basin, 2000–2040. Environmental Research Letters 11, 11 (nov 2016), 114026.
https://doi.org/10.1088/1748-9326/11/11/114026

180

http://www.hydronumerics.com.au/software/aquatic-ecosystem-model-3d
https://doi.org/10.1016/j.jglr.2015.06.006
https://doi.org/10.1016/j.jglr.2015.06.006
https://doi.org/10.1007/s10533-017-0327-8
https://doi.org/10.1007/s10533-017-0327-8
http://winehq.org
https://doi.org/10.1016/j.ejrh.2015.01.002
https://doi.org/10.5194/esd-8-977-2017
https://doi.org/10.1145/361598.361623
https://doi.org/10.1145/361598.361623
https://doi.org/10.5065/1dfh-6p97
https://doi.org/10.1016/j.landusepol.2015.07.008
https://doi.org/10.1016/j.landusepol.2015.07.008
https://globus.org
https://doi.org/10.1007/s10584-009-9764-2
https://doi.org/10.1175/JHM-D-15-0052.1
https://doi.org/10.1175/JHM-D-15-0052.1
https://doi.org/10.1088/1748-9326/11/11/114026

	Implementing a Loosely-Coupled Integrated Assessment Model in the Pegasus Workflow Management System
	Recommended Citation

	Abstract
	1 Introduction
	2 The BREE IAM
	3 Data Interface Between Models
	4 Implementation in Pegasus
	4.1 Bidirectional Data Exchange in Directed Acyclic Graphs
	4.2 Execution Environment

	5 Design Considerations
	5.1 Order of the Cascade
	5.2 Determining the Cascade Time Frame

	6 Discussion
	Acknowledgments
	References

