Public Perception of Pesticide Exposure in Vermont

Nicholas Bonenfant
Ayse Celebioglu
Bridget Colgan
Pierre Galea
Lucas Grover

See next page for additional authors

Follow this and additional works at: http://scholarworks.uvm.edu/comphp_gallery

Part of the Community Health and Preventive Medicine Commons, and the Health Services Research Commons

Recommended Citation
Bonenfant, Nicholas; Celebioglu, Ayse; Colgan, Bridget; Galea, Pierre; Grover, Lucas; Weaver, Joshua; Delaney, Tom; Hoffman-Contoi, Razelle; Boccuzzo, Linda; Hales, Heidi; and Carney, Jan, "Public Perception of Pesticide Exposure in Vermont" (2015). Public Health Projects, 2008-present. Book 218.
http://scholarworks.uvm.edu/comphp_gallery/218

This Book is brought to you for free and open access by the Public Health Projects, University of Vermont College of Medicine at ScholarWorks @ UVM. It has been accepted for inclusion in Public Health Projects, 2008-present by an authorized administrator of ScholarWorks @ UVM. For more information, please contact donna.omalley@uvm.edu.
Authors
Nicholas Bonenfant, Ayse Celebioglu, Bridget Colgan, Pierre Galea, Lucas Grover, Joshua Weaver, Tom Delaney, Razelle Hoffman-Contoi, Linda Boccuzzo, Heidi Hales, and Jan Carney
A pesticide is any substance intended for preventing, destroying, repelling, or mitigating any pest.1 The public generally believes that insects, diseases, and other pests need to be controlled but is also becoming concerned about the impact of pesticides on their health and the local ecosystem. Pesticide exposure occurs with public and private use. Studies indicate consumers have diverse levels of awareness, knowledge, and attitudes regarding pesticide use and health risks.2 The goal of this project is to identify levels of awareness, knowledge, and attitudes toward pesticide usage in Vermont to help State agencies focus public awareness and education.

Methods

• Conducted a literature review.

• Developed and administered a 22 question survey to 240 adults at 6 locations across Vermont: Burlington Health Connect Fair at the YMCA; UVM Wind Ensemble; Burlington Farmer’s Market; and Richmond, Charlotte, and Jericho Polling Stations.

• Quality control was randomly performed on 10%.

• Data was analyzed using Fisher’s exact test on GraphPad (p ≤ 0.05 was defined as significant for one-tailed test, and p ≤ 0.025 for two-tailed test), and Excel PivotCharts.

• A variable for grouping respondents by level of pesticide use was established: the mean and sample standard deviation for the number of pesticides used by each person was calculated. A normal distribution was assumed, and the top 25th percentile were regarded as high-risk users.

Survey Demographics

<table>
<thead>
<tr>
<th>Total</th>
<th>Gender</th>
<th>Age</th>
<th>Highest Education</th>
</tr>
</thead>
<tbody>
<tr>
<td>240</td>
<td>Male</td>
<td>48%</td>
<td>18-44</td>
</tr>
<tr>
<td></td>
<td>Female</td>
<td>52%</td>
<td>45-64</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>65+</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9%</td>
<td>High School</td>
</tr>
<tr>
<td></td>
<td></td>
<td>37%</td>
<td>Some College</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5%</td>
<td>Undergraduate Degree</td>
</tr>
<tr>
<td></td>
<td></td>
<td>13%</td>
<td>Graduate Degree</td>
</tr>
</tbody>
</table>

Women were more likely than men to answer being “concerned” or “very concerned” about the health effects from exposure to pesticides (p=0.0031).

There were no significant differences in responses between women of reproductive age and the rest of the population: responses analyzed included number of high and low pesticide users (p=0.151), reported exposure (p=0.0000), spoke to a health care provider (p=1.0000), confidence in health care provider’s knowledge (p=0.8540), confidence in own knowledge (p=0.1385), and concerned about health effects (p=0.6009).

High vs Low Users

• Users of household cleaner (p=0.0002), mosquito repellent (p=0.0001), and pet flea & tick treatment (p=0.0003) correctly identified their respective products as potential sources of pesticides more often than people that did not use the respective products.

• 37.5% of respondents reported changing their personal use of insect repellent as a result of human cases of West Nile Virus, EEE, and Lyme disease in Vermont. Respondents who reported a change in personal use were more likely to report mosquito repellent as their greatest source of pesticide exposure (p=0.0168).

• 52.5% of respondents replied that community or statewide aerial spraying for mosquito control is a greater source of pesticide exposure than indoor pesticide use. However, when asked which of the two poses the greatest risk to the health of the average Vermont, 62.5% replied indoor pesticides.

Public Perception of Pesticide Exposure in Vermont

Bonenfant N1, Celebioglu A1, Colgan B1, Galea P1, Grover L1, Weaver J1, Delaney T1, Hoffman-Contois R2, Boccuzzo L2, Hales H2, Carney J1

1 University of Vermont College of Medicine, 2 State of Vermont

Introduction

Discussion / Conclusions

Limitations

• The population surveyed had a high level of education, and results may not be generalizable to all Vermonters.

• Certain subpopulations had cell counts that were too small to be statistically significant. These subpopulations included families with children <2 years old and individuals with occupational risks for exposure to pesticides.

Discussion / Conclusions

• Approximately one third of respondents perceived food as their greatest source and their greatest risk of pesticide exposure; household cleaners and mosquito repellants ranked next. Trends were consistent across subpopulations.

• Although 95% of respondents reported using pesticides, only 29% reported pesticide exposure.

• More than one third of respondents have changed their behavior in response to vector-borne diseases in Vermont.

• While the majority of respondents perceived community or statewide aerial spraying for mosquito control as a high source of exposure, most respondents do not live in the locations that have been treated.

• Given disparity between public use and perception, next steps should include educating individuals about sources of pesticides, how to minimize exposure, providing quality information regarding appropriate use of insect repellants, and where community or statewide aerial spraying for mosquito control actually occurs.

• Communication strategies could include public education and outreach, including promoting high-quality internet sites (respondents’ preferred source of information).

• Given the high reported use of pesticide products, health professionals should be knowledgeable in discussing potential sources of exposure and health risks with patients.

References


