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ABSTRACT 
 

In many events affecting our civil infrastructure, such as contamination or 
weathering, it is likely that only the surfaces of the affected building materials will be 
available for non-destructive measurements. In this work, we describe and analyze 
surface gas permeability measurements on a variety of natural and engineered building 
materials using two types of relatively new, non-destructive surface permeameters. It is 
shown that the surface gas permeability measurements correlate well with each other 
and could provide rapid estimates of macroscopic gas permeability and degradation of 
materials due to weathering. It is hypothesized that surface permeability can be used to 
predict macroscopic wicking of water. The results indicated that macroscopic wicking 
correlated reasonably well with surface permeability measurements of uniform 
materials with low permeabilities such as sandstones and clay brick. 

 
Key words: building materials, porous media, permeability, surface 

permeability, weathering, autocorrelation, geostatistics  
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CHAPTER 1: MOTIVATION, OBJECTIVES AND 

LITERATURE REVIEW 

 

1.1  Introduction 

The built environment has been constructed from a variety of materials ranging 

in origin, reliability and upkeep requirements. The continuous functionality of many 

pieces of this infrastructure, such as dams, bridges and houses, are critical to the 

economy and the safety of human society. Others, such as historical monuments and 

buildings, are valued because of their cultural significance. These structures can suffer 

a variety of problems, both natural, e.g. extreme temperatures, weathering, and 

manmade, e.g. toxic contamination. Understanding the composition and condition of 

the materials that make up our built environment is an area of importance and continual 

research, especially in cases where building materials must be characterized in situ and 

require rapid decisions regarding whether to remediate or raze a structure. 

This work examines two methods of nondestructive testing and characterization 

– surface gas permeability measurements using the AutoScan II and TinyPerm II 

permeameters. Specimens from a large variety of natural stone and engineered building 

materials are examined to understand each method’s ability to characterize the surface 

permeability of these building materials. Surface permeability testing can be performed 
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in both the laboratory and the field. It can be automated to collect a large amount of 

data and used as a surrogate for other physical characteristics of materials. This thesis 

adds to the growing literature on surface permeability by exploring a wide variety of 

materials, examining metrics for characterizing permeability fields, and connecting 

surface permeability to other areas of research. 

1.2   Research Objectives and Specific Work Tasks 

The overall thesis objectives are to:  

1. Analyze the surface gas permeability data collected using the AutoScan II 

permeameter and introduce geostatistical metrics of characterization into the 

materials literature,  

2. Compare the laboratory AutoScan II permeameter results to that of the TinyPerm II, 

a handheld permeameter appropriate for field use, and 

3. Examine the potential of the permeameters to rapidly and nondestructively 

determine macroscopic gas permeability, degree of weathering, and macroscopic 

wicking of building materials. 

The specific work tasks are as follows:  

1. I, along with another graduate student and two undergraduate research assistants, 

collected surface permeability readings at various sampling resolutions on a variety 

of natural and engineered porous building materials using the AutoScan II surface 

gas permeameter. 
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2. The materials studied were also subjected to TinyPerm II measurements, 

macroscopic gas permeability, simulated weathering experiments, and/or 

macroscopic wicking tests, with assistance of the two undergraduate researchers. 

3. I introduced and used the concepts of geostatistics and spatial autocorrelation to 

provide detailed characterization of high-resolution surface permeability scans.  

4. I examined relationships between the surface permeability testing results and the 

results of item 2 above, and reduced the large surface permeability datasets into a 

manageable set of characteristics. 

1.3  Literature Review 

Fluid transport through porous materials is an area of study relevant to many 

scientific and engineering disciplines such as hydrogeology, geoenvironmental 

engineering, petroleum engineering, chemical engineering, physics, biology and 

medicine (e.g. Dandekar, 2006; Dullien, 1992; Gladden et al., 2003; Jang et al., 2003; 

Steele and Heinzel, 2001).  

Methods of measuring surface permeability through nondestructive means have 

been an active area of research for many decades (Dykstra and Parsons, 1950; Goggin 

and Thrasher, 1988). Non-destructive and cost-efficient mini or probe permeametry has 

become an important tool, providing fast data for both laboratory and in situ 

permeability measurements (Chandler et al., 1989; Davis et al., 1994; Dreyer et al., 

1990; Dutton and Willis, 1998; Eijpe and Weber, 1971; Fossen et al., 2011; Goggin, 

1993; Hornung and Aigner, 2002; Huysmansa et al., 2008; Sharp Jr. et al., 1994). 
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Selvadurai and Selvadurai (2010) estimate macroscopic water permeability of a 

limestone block using surface water permeability. Rogiers et al., (2013) used the 

surface permeability of outcrop sediments to improve their characterization of saturated 

hydraulic conductivity of an aquifer. 

Surface gas permeameters have recently proven useful in characterizing and 

comparing porous building materials. Valek, et al. (2000) developed and applied a 

surface permeability probing method for historic conservation. The device was used to 

examine the difference in permeability of weathered versus cleaned historic sandstone 

masonry. Iversen et al. (2003) used a portable air permeameter to determine the 

variability of macroscopic air and water permeability of soils in the field. Filomena, et 

al. (2013) compared the results of two permeameter cells suitable for laboratory use 

with two minipermeameters suitable for the field. The former measured macroscopic 

gas permeability, while the latter measured surface gas permeability in sandstone. After 

applying corrections, macroscopic gas permeability and surface gas permeability were 

found to be strongly correlated. Zaharieva et al. (2003) used surface air permeability as 

a means of comparing recycled aggregate concrete to a control mix.  

This study will add to the body of literature by characterizing additional 

building materials, relating surface permeability to macroscopic permeability, and 

examining the effects of simulated weathering across a broad range of materials. 

 

Additionally, surface permeability may be related to macroscopic wicking in 

that both are related to pore size. Wicking is a relatively well-understood phenomenon, 
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caused by the capillary action between a fluid and the material walls within pore 

spaces. Washburn (1921) explains that, for a simplified system with small pore size and 

laminar flow conditions, the rate of wicking is a function of the capillary radius, among 

other attributes. This relationship was developed for straight tubes of constant diameter; 

although, it has also been used to inform research in irregular shaped tubes and beds of 

glass beads (Staples and Shaffer 2002). Küntz and Lavallée (2001) and Lockington and 

Parlange (2002) have refined the relationships related to porosity. 

Depth of contaminant penetration in building materials is an active area of 

research. Navaz et al. (2008) investigate droplet spread in porous materials using a 

finite element analysis. Although mitigation of chemical warfare contamination 

motivates that research, they point out that the effects of wicking cover many diverse 

fields. Brownell et al. (2006) investigated a variety of properties on six building 

materials, with particular focus on the amount of water wicked over time. Anand et al. 

(2003) compared water absorption in conventional and alternative masonry systems; 

and Bentz et al. (2001) used it to predict degradation in concrete pavements.  

1.4  Organization of Thesis 

Chapter 1 introduces the topics of surface gas permeability and the other 

relevant testing procedures covered in the thesis. It ties these topics together to explain 

the overall goals of the investigations and presents the study aims and tasks performed 

to accomplish these aims. It also presents a literature review organized by testing 

methods. 



6 

Chapter 2, formatted as a journal article, presents the results and uses of surface 

gas permeability sampling. After introducing the AutoScan II permeameter testing 

apparatus, it examines each of three datasets in-depth and studies how to best 

characterize the surface permeability. Geostatistical analysis is introduced to examine 

the spatial autocorrelation of the resulting permeability fields. AutoScan II data are then 

compared with TinyPerm II measurements, macroscopic gas permeability, and 

simulated weathering to examine the utility of surface gas permeametry with building 

materials. Finally, the conclusions are summarized to show that surface gas 

permeability testing produces a rich dataset, correlates well with macroscopic gas 

permeability, and may provide a proxy for quantifying the degree of in situ weathering. 

Chapter 3 examines the relationship between surface gas permeability readings 

and macroscopic wicking of water. The results indicated that macroscopic wicking 

correlated reasonably well with surface permeability measurements of uniform 

materials with low permeabilities such as sandstone, but not for non-uniform materials 

such as concretes. An overall model that governed both uniform and non-uniform 

materials was not found. 
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CHAPTER 2:                                                                          

SURFACE PERMEABILITY OF NATURAL AND 

ENGINEERED POROUS BUILDING MATERIALS  

 

2.1  Abstract 

Porous building materials are omnipresent in civil infrastructure. Following 

contamination or weathering, it is likely that only the surfaces of the affected building 

materials will be available for non-destructive measurements. In this work, we describe 

and analyze surface gas permeability measurements on a variety of natural and 

engineered building materials using two types of relatively new, non-destructive 

surface permeameters. It is shown that the surface gas permeability measurements 

correlate well with each other and macroscopic gas permeability measurements. This 

work indicates that surface permeability measurements could provide reliable estimates 

of macroscopic gas permeability and help quantify degradation of materials from 

weathering.  

Key words: building materials, porous media, permeability, surface 

permeability, weathering, autocorrelation, geostatistics 
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2.2  Introduction 

Fluid transport through porous materials is an area of study relevant to many 

scientific and engineering disciplines such as hydrogeology, geoenvironmental 

engineering, petroleum engineering, chemical engineering, physics, biology and 

medicine (e.g. Dandekar, 2006; Dullien, 1992; Gladden et al., 2003; Jang et al., 2003; 

Steele and Heinzel, 2001). Knowledge of permeability and its spatial variability is 

critical to reliably predicting fluid transport. As a result, there is great interest in 

quantifying the aqueous and gaseous phases of permeability of natural and engineered 

porous materials for many practical applications such as water and oil extraction, 

subsurface contaminant transport, storing fluids in mined caverns for energy 

conservation, predicting leakage into tunnels, assessing durability, and decontamination 

of porous building materials from acid rain, toxic spills, and possible chemical and 

biological agent release, to name a few (Goodman, 1989; Paulini and Nasution, 2007; 

or Zaharieva, et al., 2002).  

Following contamination, demolition is not always an option, especially for 

structures of historic and cultural significance and emergency facilities; and it is likely 

that only the surface of the building materials will be available for rapid response 

measurements and characterization. Therefore, understanding how rapid measurements 

of surface permeability relate to the macroscopic permeability, fluid transport and the 

durability of building materials is of great interest. This paper focuses on typical porous 

building materials including natural rocks (e.g., sandstones and limestones) and 

engineered materials (e.g. bricks and concrete). 
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Non-destructive and cost-efficient mini or probe permeametry has become an 

important tool, providing fast data for both laboratory and in situ permeability 

measurements (Chandler et al., 1989; Davis et al., 1994; Dreyer et al., 1990; Dutton and 

Willis, 1998; Eijpe and Weber, 1971; Fossen et al., 2011; Goggin, 1988; Goggin, 1993; 

Hornung and Aigner, 2002; Huysmansa et al., 2008; Iversen et al., 2003; Rogiers et al., 

2011; Sharp Jr. et al., 1994). Valek, et al. (2000) developed and applied a surface 

permeability probing method for historic conservation. The device was used to examine 

the difference in permeability of weathered versus cleaned historic sandstone masonry. 

Filomena, et al. (2013) compared sandstone results using two permeameter cells 

suitable for laboratory measurement of macroscopic gas permeability with two 

minipermeameters suitable for measuring surface gas permeability in the field. After 

applying corrections, the two were found to be strongly correlated. However, studies 

comparing surface permeability with macroscopic permeability across a wide range of 

materials are not available in the literature. Similarly, studies comparing laboratory 

surface permeameters with those available for field measurements for a wide range of 

materials could not be found in the literature. 

Every building material is porous to some degree and has inherent 

heterogeneities and potential anisotropy. Similarly, different specimens of the same 

material may exhibit different properties. Concrete is used more than any other 

engineered building material on the planet (Lomborg, 2000) making up one-half to two-

thirds of our infrastructure. Although it is typically made of similar constituents, the 

constituent proportions, curing times, and pore structure may vary significantly 
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depending on the application. Many building materials such as concrete are regularly 

exposed to degradation processes that initiate along the surface; and the permeating 

properties have been recognized as useful for assessing the durability of concrete in 

construction engineering (e.g. Levitt, 1969; Figg, 1972; Zaharieva, et al., 2003).  

In this chapter, we investigate a surface gas permeameter, called the AutoScan 

II, which is suitable for making laboratory measurements of surface gas permeability at 

sub-millimeter grid spacing. The resulting measurements are characterized using 

geostatistics. Particular attention is paid to identifying the specimens’ range of spatial 

autocorrelation and anisotropy to identify transport pathway preferences and the best 

sample spacing for characterizing these specimens. Next, we characterize 17 specimens 

of natural and engineered porous building materials by measuring the surface gas 

permeability over a uniform square grid. Sixteen of these datasets are then compared to 

those collected with a different permeameter more suitable for field applications, the 

TinyPerm II. These two permeameters are unique in that they are non-destructive and 

capable of measuring a wide range of surface gas permeabilities. Next, we examine the 

relationship between surface permeability and macroscopic gas permeability over the 

17 materials. Finally we examine the permeability of six building materials before and 

after simulated weathering to demonstrate that surface permeability measurements may 

be used to determine the extent of weathering. 

2.3  Study Materials 

This study includes natural (i.e., granite, sandstones, and limestones) and 

engineered materials (i.e., concretes, cement mortar, asphalt, and bricks). The majority 
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of the concretes and mortar mixtures were hand mixed until the ingredients were 

uniform, subsequently poured into cylindrical molds (70-78 mm in diameter) or small 

slabs, and moist cured for a minimum of 28 days, and in many cases much longer. All 

concrete surfaces were ‘finished’ by hand screeding (removing defects and creating a 

smooth, finished surface), as is typically done in practice. Cylindrical specimens of 

natural stone were cored from larger pieces of the stone. Cylindrical brick and paver 

specimens, and in some cases cylindrical concrete specimens, were cored from 

commercially available bricks and pavers or cured concrete slabs. In general, the 

cylindrical specimens were either 70 mm or 78 mm in diameter with heights varying 

from 40 to 100 mm. 

Initial results revealed that natural weathering and the screeding process in 

concrete affect the surface permeability. Therefore, some specimens (i.e., the top and 

bottom screeded or weathered sections of the cores) were extracted from the cores. 

Specimens were cut with a water saw, (i.e., table saw fitted with a constant stream of 

water) to avoid overheating the specimen. Internal specimens extracted from cores are 

explicitly identified in the text. 

2.3.1   Natural Materials  

The natural materials examined in this study included: (1) Ohio Sandstone 

acquired from Granite Importers, Inc., (2) Arkose Sandstone acquired from Granite 

Importers, Inc., (3) Portland Brownstone acquired from Granite Importers, Inc., (4) 

Bluestone sandstone acquired from a local landscaping company, (5) Indiana 
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Limestone from the Indiana Limestone Company, (6) Indiana Limestone of differing 

colors from Granite Importers, Inc., and (7) Granite of unknown origin. 

In some cases, materials of the same type but from different sources were 

tested; they are denoted as Specimen 1, Specimen 2, and so on. 

2.3.2   Engineered Materials 

The engineered materials examined in this study included: (1) Ready Mix 

Concrete by Quickrete, (2) 3,000-psi Concrete prepared in the lab, (3) 5,000-psi 

Concrete prepared in the lab, (4) D04 Concrete from the Idaho National Laboratory, (5) 

High Strength Concrete mix by Sakrete, (6) Portland Cement prepared in the lab, (7) 

Red Clay Brick from a Vermont brick yard, (8) Red Colored Concrete Paver from a 

hardware store, (9) Tan Colored Concrete Paver from a hardware store, (10) Concrete 

Paver from a hardware store, (11) Asphalt from a road excavation, and (12) Concrete of 

unknown origin. 

The specific composition of some materials is unknown, although they were 

selected because they represent commonly used building materials. In some cases, the 

same type of materials from different batches or sources were tested; they are denoted 

as Specimen 1, Specimen 2, and so on. Concretes of a specified strength were prepared 

using a recipe for that particular strength, but the strengths were not confirmed through 

testing. 
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2.4  Testing Methods 

Surface gas permeability was measured on specimens from the building 

materials listed above using two devices, AutoScan II and Tinyperm II. These surface 

gas permeability techniques are relatively new, so ASTM standards do not yet exist. 

These testing procedures are described in detail immediately below. In addition, 

macroscopic gas permeability was measured on a subset of the above specimens in 

general accordance to the ASTM D 4525-90 described in section 2.4.3. A different 

subset of the specimens were subjected to 30 water-saturated freeze-thaw cycles in 

general accordance with ASTM standards described in section 2.4.4 to assess the 

effects of weathering on surface permeability. 

2.4.1   Surface gas permeability using AutoScan II 

Fine-scale gas permeability was measured on specimen surfaces in a laboratory 

setting using a relatively new, automated surface gas permeameter apparatus AutoScan 

II (Figure 2.1a) developed by New England Research, Inc., located in White River 

Junction, VT. The user selects the sample measurement locations along an x-y grid as 

well as target pressure and flow rates. The rest of the process is automated; 

measurement data are stored in the computer system. The measurement spacing can be 

as small as 0.1 mm. The device is capable of measuring permeability that ranges from 

0.1 milliDarcy (9.87 x 10-17 m2) to 3 Darcy (2.96 x 10-12 m2) (New England Research, 

Inc., 2008) and can be programmed to test multiple specimens in a single run. The 

permeability probe (Figure 2.1b) has a tip seal made of soft rubber that is pressed 
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against the specimen at the desired sampling locations and prevents leakage between 

the probe and the sample surface. Pressurized gas flows down through the specimen 

surface. Nitrogen gas was used in this work per the manufacturer’s recommendation. 

The gas is assumed to flow through the specimen to the atmosphere in a roughly 

hemispherical geometry as depicted in Figure 2.1c. Once steady-state flow is achieved, 

Darcy’s law is assumed to be valid and the surface gas permeability is computed using 

the following equation (neglecting gas slippage and high velocity flow effects):                                         

                                                ,                             (2.1) 

where, 

Kapparent = apparent permeability (L2), 

Q = flow rate of gas at Patm (L3/T), 

µ = gas viscosity (M/LT), 

P = injection pressure of the gas (M/LT2), 

Patm = atmospheric pressure (M/LT2), 

a = internal tip-seal radius (L), and 

Go = geometrical factor (unitless). 

 

For this work, the manufacturer’s default settings were used. The gas viscosity 

was 1.78 x 10-5 Pa·s, internal tip-seal radius of 0.005 m, and a geometrical factor of 

0.0059. The AutoScan II will vary the gas injection pressure (P) and the flow rate (Q) 

during a sample reading until they reach steady state and then determine the Kapparent. 

The user can change the initial P and Q to bring the reading to steady state more 
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quickly. The user can also specify a maximum time for a sample reading, and the 

device will not return a reading for that sample point if steady state is not reached in the 

amount of time allotted. In some cases, where permeability varied greatly across one 

specimen, the initial P and Q values did not enable readings at many sample points 

before the reading timed out. In these cases, the specimen was rerun with different 

initial P and Q values. In cases where the same point was sampled in multiple runs, the 

earliest sample reading was selected for subsequent analysis. 

The apparent permeability is then corrected for gas slippage and high velocity 

flow effects at low gas injection pressures and high gas flow rates, respectively. The 

corrected permeability, Kk, for the gas slippage effect is:  

                                               ,                                          (2.2) 

where B is the Klinkenberg slip factor and Pmean is the mean measurement pressure 

Pmean = (P+Patm)/2 (Klinkenberg, 1941). 

The actual permeability, Ko, is further corrected for high velocity flow effects 

using:  

                                               ,                                       (2.3) 

where Kk is the permeability obtained from equation (2.2), and Ko is the actual 

permeability that has been corrected for turbulence and inertial effects (Goggin, et al., 

1988). Although the surface permeameter allows the user to adjust both the 
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Klinkenberg (B) and the Forchheimers (Fh) parameters, these parameters were not 

adjusted in this work, and the manufacture’s defaults were used.  

2.4.2   Surface gas permeability using TinyPerm II 

The surface gas permeability was also measured using the TinyPerm II 

developed by New England Research, Inc., located in White River Junction, VT. This 

handheld (~1.2 kg, 38cm x 12.5cm x 5cm), portable device (Figure 2.2a) measures 

surface permeability in a field (Figure 2.2b) or laboratory setting. This device has been 

used by other researchers, e.g. Rogiers, et al. (2013) on soils and Filomena, et al. (2013) 

on sandstone. The rubber nozzle at the end of the device is pressed against the 

specimen to form an airtight seal. The operator then pushes the end of the syringe 

toward the specimen, which creates a vacuum by removing air from the sample. By 

monitoring the syringe volume and the vacuum pulse at the specimen surface, the 

TinyPerm II calculates a characteristic value (T) that is related to the gas permeability 

(K in milliDarcy) per the following manufacturer’s equation:  

                                               ! = !10(
!".!"#"!!
!.!"#$ ).                                   (2.4) 

Typical T values range between 12.5 and 9.5 yielding permeability 

measurements between 2 milliDarcy (1.97 x 10-15 m2) and 10 Darcy (9.87 x 10-12 m2), 

respectively (New England Research, Inc., 2008). A permeability reading of 10 

milliDarcy (9.87 x 10-15 m2), the manufacturer’s recommended lower limit, takes about 

five minutes, and materials with smaller permeabilities typically will require longer 

measurement times. Some materials in this study had measured permeabilities of less 
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than 10 milliDarcy; testing times for these materials were found to be time consuming 

and, at times, upwards of 30 minutes. For these specimens, the TinyPerm II would be 

wedged in place to avoid arm fatigue. Because these measurements are below the 

manufacture’s recommended lower limit, the accuracy and usefulness of these lower 

readings and their increased measurement times are discussed later. 

Of the 17 specimens tested with AutoScan II at 1 mm grid spacing, 16 were re-

sampled using the TinyPerm II, which is well suited for field use. The 3,000 psi 

concrete was not tested with the Tinyperm II due to its low permeability. Typically 23 

readings were taken on the specimen surface with the exception of the two specimens 

with exceptionally low permeability (i.e. granite and bluestone have only 12 readings). 

This is compared with the 1,296 points measured with AutoScan II. Given the large 

range in measurement values collected with both the TinyPerm II and AutoScan II, data 

in graphical form are often transformed using a base-10 logarithm. However, all 

statistics were performed on the raw, i.e. not transformed, measurements. The 

geometric mean of the AutoScan II and the TinyPerm II measurements is used to 

characterize the specimens to avoid the effects of aberrant readings. 

 

2.4.3   Macroscopic gas permeability 

The macroscopic gas permeability was measured in accordance with ASTM 

D4525-90: Standard Test Method for Permeability of Rocks by Flowing Air (ASTM 

International, 2002). The Wykeham Farrance permeability cell was used with two 

identical pressure transducers measuring the pressure drop across the specimen. A high 
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confining pressure (~275 kPa) was applied to the cell to ensure the air would pass 

through and not between the specimen and the latex membrane encasing it. A regulated 

supply of compressed air was applied to the specimen, while the exiting airflow was 

measured with a calibrated bubble-flow meter. The gas permeability was calculated as 

follows:                                       

                    ,                                                   (2.5) 

where, 

K= coefficient of permeability (L2), 

Qe = exit flow rate of air (L3/T), 

Pe = exit pressure of air (M/LT2), 

µ = viscosity of air at temperature of test (M/LT), 

L = length of specimen (L),  

Pi = entrance pressure of air (M/LT2), and 

A = cross-sectional area of specimen (L2). 

Macroscopic permeability of each specimen was measured five times, with the 

average reported as the measured macroscopic gas permeability for that specimen. 

2.4.4   Weathering Effects 

Five specimens from each of nine materials (n = 45 specimens) were subjected 

to accelerated weathering of 30 freeze-thaw cycles (-24°C and 20°C) submerged in 

water within a mechanical refrigeration chamber in general accordance with ASTM 

C666-97. Specimens were placed at random locations within the chamber and relocated 

K =
2Qe Pe µ L
Pi
2 −Pe

2( )A
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between cycles to reduce the effects of placement within the freeze-thaw chamber. All 

specimens were approximately 75 mm in diameter and 65-100 mm in height. Surface 

gas permeability was measured using AutoScan II before and after weathering using 3 

mm grid spacing. 

2.5  Surface Permeability Results 

Surface gas permeability measurements were collected for a variety of 

specimens and at a variety of spatial resolutions to demonstrate the versatility and 

comparability of the AutoScan II and TinyPerm II in characterizing a broad range of 

natural and engineered building materials. 

2.5.1   AutoScan II Results 

The results of sampling 17 specimens at 1 mm grid spacing are presented to 

demonstrate the capability of, and type of data obtained from, the AutoScan II. Three 

specimens are investigated at high spatial resolution to characterize the spatial structure 

(i.e., identify the spatial autocorrelation and anisotropy) as well as the optimal spacing 

of the materials. Finally, surface effects are investigated by comparing the permeability 

at the surface to the permeability just below the surface. 

3,000 psi Concrete 

Surface gas permeability was measured along one side of a 260 mm x 180 mm x 

75 mm slab of 3,000 psi concrete (Figure 2.3a). The measurement grid was 240 mm by 

152 mm with 4 mm spacing, resulting in a total of 2,331 gas permeability 
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measurements in mD (milliDarcy) in Figure 2.3b (white squares indicate no reading). 

The same data are plotted in Figure 2.3c, where the permeability measurements for a 

particular y-coordinate are distributed along the horizontal axis. Figure 2.3d shows the 

probability density function (pdf) of the specimen’s permeability with the peak (most 

observed value) at approximately 40 mD.  

For this research, the peak of the pdf, i.e. the value most likely to be observed, is 

often used to globally characterize the data. Unlike the arithmetic mean, it is not 

influenced by aberrant values. This statistic is best for distributions with a single, 

identifiable peak and may be less appropriate for a dataset whose pdf is relatively flat, 

contains multiple peaks, or is spread over many orders of magnitude.  

Surface permeability readings are generally between 10 and 80 mD, with a few 

points outside this range. The lowest values are located in the lower-middle portion of 

the specimen. The most observed value, 40 mD, is close to the arithmetic mean, 42.89 

mD, geometric mean, 40.21 mD, and the median, 42.90 mD. The maximum, minimum, 

and standard deviation are 166.95 mD, 7.6 mD, and 15.2 mD, respectively. 

These “global-scale” statistics do not characterize the local spatial distribution, 

autocorrelation, or anisotropy of the material. To summarize this type of variability, 

geostatistics were employed. The permeability field of Figure 2.3b suggests that 

measurements close to each other are more likely to have a similar value than 

measurements further apart, i.e. the points are autocorrelated in space. The 

semivariogram or correlogram captures the distance at which points are no longer 

autocorrelated; this distance is called the range.  
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Figure 2.4a plots the surface permeability values measured along the horizontal 

dashed transect y=84 of Figure 2.3b. As expected, points closer in space are more 

similar. To create the correlogram (Figure 2.4b), all data pairs are assigned to bins 

based on their spatial separation, also called a lag. For example, a spatial lag of 4 mm in 

the horizontal direction would pair a measurement value, termed the tail, with a 

measurement 4 mm to the right, called the head (e.g., a tail (24.5 mD) at 20 mm would 

have a corresponding head (22.0 mD) at 24 mm). Similarly, a tail located at 24 mm 

would have a head (20.4 mD) at 28 mm, and a tail (67.7 mD) at 88 mm has a head 

(72.6 mD) at 92 mm. All measurement pairs with similar lags are binned together and 

the correlation of the tails to the heads is calculated. If the above were the only point 

pairs that were 4 mm apart, then the permeability dataset for a horizontal lag = 4 mm 

would be as shown in Table 2.1, and the correlation for lag = 4 mm would be 0.9998 

indicating that measurements separated in the horizontal direction by 4 mm are highly 

correlated. The correlation may also be calculated for paired data (i.e., heads and tails) 

at other lag distances, and, finally, these correlations may be plotted against their 

corresponding lags (i.e., separation distances) creating what is known as a correlogram. 

The range is defined as the distance on the correlogram at which measurements are no 

longer autocorrelated. Some correlograms have multiple ranges. See Isaaks and 

Srivastava, 1989; Goovaerts, 1998 for a detailed discussion of geostatistics. 

Figure 2.4b shows the correlogram for the data in Figure 2.4a. Measurements at 

points close to each other are highly correlated and become less correlated (-0.499) as 

the distance increases up to a lag of 36 mm (i.e., the range). In this particular specimen, 
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the spatial autocorrelation begins to increase again after the first range of ~32 mm, and 

the correlogram is sinusoidal with a period of approximately 72 mm. 

Graphs in Figure 2.5 are produced in a similar manner to Figure 2.4 except the 

data are sampled along the vertical transect x=124 mm in Figure 2.3b. The vertical 

range is 88 mm, and it appears that the surface permeability autocorrelation varies in a 

regular, cyclical pattern in the direction of the x-axis but not in the direction of the y-

axis. The correlogram for all data points with lags in all directions (omni-directional 

correlogram of Figure 2.6) shows a global range of about 80 mm. 

The correlogram and the range are useful in characterizing specimens. 

Repeating this geostatistical analysis along multiple transects would further confirm the 

directional dependence of the autocorrelation, known as anisotropropy, across the entire 

specimen. This exercise has also shown that, when examining the specimen as a whole 

(Figure 2.6), measurements beyond a range of ~80 mm are generally not spatially 

autocorrelated; but this may not hold when only looking at points along a single 

transect. Yfantis et al. (1987) recommend a maximum sampling interval be 

approximately equal to the geostatistical range, so the distance between sample points 

should be on the order of 80 mm or less for this specimen. 

Ohio Sandstone 

The permeability of a 70 mm diameter Ohio sandstone core (Figure 2.7a) was 

measured over a 50 mm circular area with 2 mm grid spacing (Figure 2.7b). The 

distribution of permeability about the y-axis and the pdf are presented in panels c and d, 

respectively. The pdf peak is easily identified at 63 mD. Lower permeabilities in the 
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40s and 50s mD are located in the lower-right area of the surface, but most of the 

measurements are distributed between 60 and 90 mD.  

Figures 2.8 – 2.10 display the geostatistical analysis associated with the Ohio 

sandstone specimen in a manner similar to the 3,000 psi concrete specimen. Again, the 

permeability measurements exhibit directional spatial autocorrelation. The readings 

appear more variable in the y-direction. This is reflected in the longer range of spatial 

autocorrelation (range = 30 mm) on the x-axis compared with the 12 mm range which 

oscillates along the y-axis. The global correlogram shows a steep decline to a lag of 

about 10 mm and then a more gradual decline until reaching its range at 30 mm. 

Red Clay Brick 

The red clay brick specimen (Figure 2.11) is more heterogeneous than the 

previous two specimens. Measured permeability values span over 3 orders of 

magnitude, so permeability readings have been transformed by log base-10. 

Furthermore, there appears to be less spatial autocorrelation between the permeability 

readings compared with the two previous specimens. All three correlograms (Figures 

2.12-2.14) quantify this lack of spatial autocorrelation. Figure 2.12b shows less 

pronounced signs of an oscillating correlation with a range of 20 mm, but the largest 

correlation is lower (<0.5) than the other specimens. Similarly, the global correlogram 

shows a range of 20 mm, but the largest correlation is only about 0.12. Figure 2.13b 

shows no spatial autocorrelation. Measurements were spaced 5 mm apart on this 

specimen, so it is possible that stronger autocorrelation could be detected with smaller 
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spacing. Along the y-axis, the range of this specimen may be less than the grid spacing, 

and therefore, undetected by the correlogram. 

2.5.2   Surface Effects 

The relationship between the permeability of the screeded concrete surface 

(Figure 2.15a) and the interior surface ~2 mm below the screeded top (Figure 2.15b) 

was investigated on a 70 mm core of 3,000 psi concrete. The log10(mD) permeability 

fields of each surface (Figures 2.15c and 2.15d, respectively) were measured over a 

35mm x 35 mm grid with 0.5 mm spacing. 

Both the screeded surface and the interior surface show similar patterns (i.e., 

less permeable islands surrounded by thinner, more permeable threads). While the 

emerging shapes suggest similar patterns of permeability, the magnitudes of the values 

differ. Most notable is that the surface permeability measurements (Figure 2.15c) made 

on the screeded surface are approximately one order of magnitude greater than the 

surface permeability measurements of the interior surface (Figure 2.15d), despite the 

consistency in spatial patterns. The presence of aggregates near the measurement 

surface probably limited the ability of the gas to pass directly through the specimen 

from entry to exit point, which may cause deviations from the assumed hemispherical 

flow path (Figure 2.1c) resulting in smaller permeability.  

2.5.3   Comparisons Across Specimens 

The AutoScan II was used to characterize 17 different cored specimens using a 

consistent 35 mm x 35 mm grid with 1 mm spacing. All cores were extracted from the 
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middle of their specimens, which eliminated surface manifestations such as the process 

of screeding. These specimens are different than those listed previously, even in the 

cases where the specimens share the same parent material. Table 2.2 summarizes the 

measurement results along with global statistics used to characterize the materials; and 

Figure 2.16 shows a photograph of each specimen and a map of its surface 

permeability. The range and sill (another geostatistic) were found using semivariograms 

rather than correlograms (see Isaaks and Srivastava, 1989; Goovaerts, 1998). The data 

range over more than five orders of magnitude, which can make comparing the results 

difficult. All statistics in Table 2.2 were performed on the raw data; however, all 

permeability maps use the same log10(mD) color scale (bottom of Figure 2.16) for 

comparison, where dark blue is less than 1 mD and dark red is greater than 100,000 

mD. Sample points that did not return a reading are shown in white.  

The specimens show a variety of permeability readings ranging from less than 1 

mD to over 140,000 mD. Granite is the least permeable with a geometric mean of 0.76 

mD, and the red colored brick paver is the most permeable overall with a geometric 

mean of 23,689 mD. Asphalt has the largest number of missing measurements, likely 

due to the many holes and air pockets on the surface.  

It should be noted that categorization of the global surface permeability may be 

related, in part, to whether the material is natural or engineered. The four most 

permeable materials are all engineered and not designed for strength. Most of the 

natural materials have very low permeabilities, as do the two concretes specifically 

cured for specified strengths. The 5,000 psi concrete specimen does show a small circle 
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of highly permeability readings, and this may be indicative of an indentation along the 

surface. 

Global statistics reported are the arithmetic mean (mD), geometric mean (mD), 

most probable (pdf peak in mD), maximum (mD), minimum (mD), standard deviation 

(mD), range (mm), and sill (mD2). The first five statistics are commonly used 

throughout the literature. As explained in detail above, the range is the distance at 

which measurements are no longer spatially autocorrelated. Non-uniform specimens 

with less variability have a larger range (e.g., asphalt is more non-uniform and has the 

smallest range (4.44 mm), while red clay brick is uniform and has the largest range 

(45.10 mm) of these 17 specimens). The sill is the variance between paired 

measurements that are not spatially autocorrelated (i.e., separated by distances larger 

than the range). The materials have also been categorized as natural or engineered and 

uniform (i.e. without aggregate) or non-uniform (i.e. containing aggregates). 

2.6  Comparison of AutoScan II and TinyPerm II Results 

To investigate how well the TinyPerm II can characterize a specimen in the 

field compared to the AutoScan II laboratory measurements, the averaged (geometric 

mean) TinyPerm II measurements for each specimen are plotted against their 

specimens’ respective averaged (geometric mean) AutoScan II permeability values 

(Figure 2.17). The 1:1 line, y=x, is provided for comparison. The two values are highly 

correlated with the adjusted R2 of 0.94 suggesting, that overall, the global permeability 

measurements on specimens using each of the devices are very similar.  
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As noted above, the TinyPerm II manufacturer recommends the device for 

specimens with a surface permeability greater than 10 mD, yet many of the 

measurements were below that threshold and required measurement times longer than 

five minutes. Our results show overall characterization of the specimen to be accurate 

below the manufacturer’s recommended 10 mD, so the limiting factor when 

characterizing low permeability materials is the time required to perform sampling and 

not the accuracy of the measurements themselves. 

2.7  Surface versus Macroscopic Permeability  

Macroscopic gas permeability is plotted against surface gas permeability for 15 

materials (see the legend of Figure 2.18). Four specimens were cored from each 

material resulting in 60 specimens tested. The geometric mean was used to characterize 

the AutoScan II surface permeability of each specimen, and the average of the four 

specimens for each material is plotted against the average geometric mean of 

macroscopic permeability in Figure 2.18 with a one-to-one line and the least-squared 

regression model. Note that the log10 transform was applied to all data, and that the 

adjusted R2 of 0.61 was computed using the n= 60 values for each specimen. The solid, 

horizontal lines indicate the range of the four most probable surface gas permeability 

values for each material, while the vertical dashed lines indicate the range of the 

macroscopic gas permeability measurements associated with that material. The latter 

are within one order of magnitude of each other, with the exception of 3,000 psi 

concrete, which spans almost two orders of magnitude. Natural materials are plotted 

with dark lines while engineered materials are plotted with light gray shapes. 
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The natural materials (Ohio sandstone, Arkose sandstones, Indiana limestone), 

red clay brick and Portland cement, are made up of relatively homogeneous materials 

and plot close to the one-to-one line, indicating that differences between the surface and 

macroscopic gas permeability measurements are relatively small.  

The remaining materials all fairly non-uniform (at least compared to the size of 

the specimens) man-made materials (ready mix concrete, 3,000 psi concrete, 5,000 psi 

concrete, D04 concrete, and red colored brick paver), and contain aggregates. These 

plot further from the one-to-one line, suggesting that the entire specimen permeability 

is somewhat different than that on the specimen surface. Given that the concrete 

specimen surfaces were smoothed and finished with the screeding process while the 

interior is a heterogeneous mixture, the interior aggregates likely create a longer and 

more tortuous flow path in macroscopic permeability measurements resulting in the 

smaller observed values of macroscopic permeability.  

With the exception of the Arkose sandstone 2 and clay brick, all other materials 

had greater surface gas permeability measurements than macroscopic permeability 

measurements. This bias is likely due to the more tortuous flow path through the entire 

specimen.  

2.8  Simulated Weathering Results 

Surface permeability was tested before and after simulated weathering. Initially 

five specimens were cored from nine different materials for a total of 45 specimens to 

be tested. However, after weathering, specimens from three materials were degraded to 
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the point where they were unable to be tested. Thus, only specimens from the six 

materials still fairly intact after weathering are presented. 

Figure 2.19 shows a scatter plot of most probable values with unweathered 

specimens on the x-axis and weathered specimens on the y-axis; a 1:1 line is shown for 

comparison. The natural materials (Indiana Limestone and Arkose Sandstone) are 

depicted with the black symbols x and +, respectively, while the engineered materials 

(ready mix, 5,000 psi concrete, high strength concrete, and red colored brick paver) are 

depicted with gray shapes. The natural materials both fall on or close to the 1:1 line. 

The ready mix is also close to the 1:1 line, but not as close as the natural materials. The 

other specimens are all substantially above the 1:1 line indicating their surface 

permeability has increased with weathering. It is hypothesized that the weathering 

process increased the size of the pores in the specimens or generated cracks, increasing 

the amount of air that could flow through the specimen. Consequently, the materials 

were found to have higher surface permeability after weathering, i.e. plot above the 45-

degree line. 

The natural materials were much less affected by weathering than the 

engineered materials. This robustness to weathering may be due to the extended period 

of time involved in their formation compared to the relatively quick cure time of 

engineered materials. The heterogeneous materials were also more affected than the 

more homogeneous. It is important to note that the 5,000 psi concrete had similar 

surface permeability to the natural materials before weathering, so unweathered surface 

permeability is probably not an indicator of resistance to weathering effects. 
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2.9  Conclusions and Discussion 

Surface permeability has been shown to be a non-destructive method of 

characterizing porous building materials both in the laboratory and in the field. 

Automated collection and small measurement grid spacing make this technique useful 

for characterizing specimen surfaces in detail and comparing surface characteristics 

(e.g. geometric mean, most probable, maximum, and minimum values) across 

specimens. Geostatistics are particularly well suited for characterizing the spatial 

autocorrelation in a material as well as the anisotropy. Knowing the latter is indicative 

of preferential flow paths and knowing the range of spatial autocorrelation can be 

particularly useful in the field since the maximum distance between measurements 

should approximately equal the range for accurate material characterization. The 

TinyPerm II is well suited to field use, and it may provide a way to rapidly characterize 

materials in situ.  

In general, the measured permeabilities (surface and macroscopic) compared 

better to each other for the relatively uniform materials (natural stones, clay brick and 

cement) tested in this study than the more non-uniform engineered materials such as 

concretes. For such materials, the surface permeability differed significantly from the 

macroscopic permeability. Surface permeability may be easier to measure in situ, but it 

may not be an appropriate surrogate for macroscopic gas permeability in all situations. 

The surface permeability measurements are useful in quantifying relative 

changes on the exposed surfaces of porous building materials from effects such as 

weathering. If the additional weathering is indicative of reduced strength of the 
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materials, characterizing a change in surface permeability might be used as an indicator 

of a material’s strength/durability over time, especially in harsh climates. These 

measurements illustrate the operational usefulness of the surface permeability 

measurement techniques, which is particularly relevant for investigations involving 

surface effects. 
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2.12  Figures and Tables 

 

 
 

(a) (b) (c) 

 

Figure 2.1 The laboratory (a) surface permeameter AutoScan II measuring 

surface gas permeability on multiple specimens, (b) permeability probe on a brick 

specimen, and (c) assumed flow path of injected gas (source: New England 

Research, 2008).  
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(a) (b) 

Figure 2.2 The (a) portable surface permeameter (TinyPerm II) and 

components used in this study (source: New England Research, 2008), and (b) 

example of the device being used in the field.  
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(a) (b) 

  

(c) (d) 

Figure 2.3 Measured surface gas permeability on a 152 mm x 240 mm 

3,000psi concrete specimen at 4 mm grid spacing, (a) a photograph of specimen 

surface, (b) map of gas permeability field, (c) distribution of gas permeability 

along each y-coordinate, (d) gas permeability probability density function.  
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Figure 2.4 Measured surface gas permeability (a) and correlogram (b) of 

3,000 psi concrete specimen along the transect y = 84 mm. The range = 36 mm. 
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Figure 2.5 Measured surface gas permeability (a) and correlogram (b) of 

3,000 psi concrete specimen along the transect x = 124 mm. The range = 88 mm. 
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Figure 2.6 Global correlogram of 3,000 psi concrete specimen showing a 

geostatistical range of ~80 mm. 
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(a) (b) 

  

(c) (d) 

Figure 2.7 Measured surface gas permeability on a 70 mm diameter Ohio 

sandstone specimen at 2 mm grid spacing within the circular area shown as a 

dashed circle, (a) a photograph of the tested surface of the specimen, (b) map of 

gas permeability, (c) distribution of gas permeability along each y-coordinate, (d) 

probability density function of gas permeability.  
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Figure 2.8 Measured surface gas permeability (a) and correlogram (b) of 

Ohio sandstone specimen along the line y = 24 mm. The range = 30 mm.  
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Figure 2.9 Measured surface gas permeability (a) and correlogram (b) of 

Ohio sandstone specimen along the line x = 24 mm. The range = 12 mm. 
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Figure 2.10 Global correlogram of Ohio sandstone specimen showing a 

range of ~ 30 mm. 
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(a) (b) 

  

(c) (d) 

Figure 2.11 Measured surface gas permeability on a 45 mm thick Red Clay 

Brick over the surface area of 170 mm x 65 mm at 5 mm grid spacing, (a) a 

photograph of the tested surface of the specimen, (b) map of surface gas 

permeability, (c) distribution of surface gas permeability along each y-coordinate, 

(d) probability density function of gas permeability.   
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Figure 2.12 Measured surface gas permeability (a) and correlogram (b) of 

red clay brick specimen along the line y = 45 mm. The range = 22 mm.  
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Figure 2.13 Measured surface gas permeability and correlogram of red clay 

brick specimen along the line x = 90 mm. The range is not detected, i.e. 0. 
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Figure 2.14 Global correlogram of red clay brick specimen.  The range = 

20mm. 
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(a) (b) 

  

(c) (d) 

Figure 2.15 Core (70 mm diameter) of 3,000 psi concrete specimen (a) 

Picture of screeded top, (b) picture of interior about 2 mm below screeded top, (c) 

surface gas permeability map of the screeded top, (d) surface gas permeability 

map of on the interior surface. White areas did not return a measurement  
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Figure 2.16 Photographs and surface permeability of various building 

materials. Ten uniform specimens are shown on the left, and seven non-uniform 

specimens are shown on the right.  
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Figure 2.17 TinyPerm II averages (geometric mean) versus AutoScan II 

averages (geometric mean). Natural materials are shown as dark gray while 

engineered materials are show as light gray. Both data sets were log10 

transformed, and R2 = 0.94. 

  



52 

 

 

 

Figure 2.18 Macroscopic gas permeability plotted against geometric mean 

of surface gas permeability. 
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Figure 2.19 Comparison of most probable permeabilities under 

unweathered and weathered conditions. 
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Table 2.1 Theoretical dataset and correlation of for lag = 4 mm. 

Pair Locations 
(mm) 

Permeability Measurements 

 Tail (mD) Head (mD) 

20, 24 24.5 22.0 

24, 28 22.0 20.4 

88, 92 67.7 72.6 

Correlation between heads and tails = 
0.9998 
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CHAPTER 3:  

WATER TRANSPORT IN BUILDING MATERIALS: 

EXAMINING THE RELATIONSHIP BETWEEN 

MACROSCOPIC WICKING OF WATER AND SURFACE 

PERMEABILITY 

3.1  Abstract 

Fluid transport in building materials has broad significance in areas of scientific 

research ranging from contaminant transport to the freezing of moisture in pore spaces. 

Reliable prediction of fluid transport through substrates in operational conditions 

requires knowledge of substrate properties that, primarily, can only be determined 

experimentally. In addition, obtaining representative specimens of the substrates of 

interest for laboratory testing is not always feasible. Therefore, an in situ method of 

characterizing transport properties (e.g. surface permeability) that correlate with the 

fluid transport into the substrate is desirable. This research attempts to correlate the 

amount of water penetration in typical porous building materials with the surface 

permeability of those materials. It is intuitively plausible that the fluid transport, 

especially near the surface of a porous substrate, may have a strong correlation to the 

substrate’s surface permeability. Macroscopic capillary forces (or wicking) are 

examined by recording the mass of water entering cylindrical specimens for a variety of 
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building materials as a function of time. The material surface permeabilities were 

determined using the automated gas permeability measurement device, Autoscan II. A 

variety of methods, including ordinary linear regression, geostatistical analysis, and 

multiple linear regressions, explored correlations between substrate surface 

permeability and water wicked into them. Structurally uniform (i.e. without aggregate) 

specimens of similar permeabilities demonstrated a strong relationship between 

wicking and surface permeability, while non-uniform (i.e. containing aggregates) 

specimens demonstrated a weak relationship between wicking and surface 

permeability. Consistent with the complicated relationship between pore size, wicking, 

and surface permeability, a unique relationship was not found across all specimens. 

3.2  Introduction 

In the event of a disaster involving contaminant transport into building 

materials, whether from an accidental spill, contaminated flood waters, or an agent 

release, it would be critical to reliably and rapidly characterize the amount and extent of 

contaminant that migrates into the affected building material, such that a 

decontamination strategy can be developed in a timely manner. This research will 

examine the suitability of using surface permeability readings as a surrogate for 

macroscopic wicking. 

Macroscopic wicking is caused by the capillary action, i.e. surface tension, 

between a fluid and material walls within pore spaces. This property is relatively well 

understood to be a function of two opposing forces: the attraction of the fluid to the 

material walls or pore spaces and the force of gravity pulling the fluid down. Washburn 
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(1921) explained that, for a simplified system with small pore size and laminar flow 

conditions, the rate of wicking is a function of the capillary radius, the contact angle 

between the fluid and the material, the surface tension, the fluid’s viscosity, and the 

height the fluid capillary rise. Pinder and Gray (2008) simplified this concept and 

showed that the final height of capillary rise, h (m), can be determined by: 

 
ℎ = !2!!"!"#$

!!!! !, (3.1) 

where, 

γwn = Water-air interface surface tension (N/m), 

θ = contact angle between fluid and material, 

r = the pore radius of the material (m), 

ρw = the density of water (kg/m3), and 

g = the acceleration of gravity (m/s2). 

Equation (3.1) applies to straight tubes of constant diameter, although it has also 

been used to inform research in irregular shaped tubes and beds of glass beads (Staples 

and Shaffer 2002). Pores within building materials are presumed to be less 

hydraulically connected than in glass tubes or packed beads and would therefore likely 

permit less fluid movement. Furthermore, the pores in building materials are neither 

straight nor of constant size. This research focuses on the rapid assessment of 

macroscopic wicking in situ; so it is unlikely that the variables needed for equation 

(3.1) would be available; and as a result, the equation could only be used as a guide, 

and not the sole method of predicting h. 
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Depth of contaminant penetration in building materials is an active area of 

research. Navaz et al. (2008) investigated droplet spread in porous materials using finite 

element analysis. Although mitigation of chemical warfare contamination motivates 

that research, they point out that the effects of wicking cover many diverse fields. 

Brownell et al. (2006) investigated various properties of six building materials, with 

particular focus on the amount of water wicked over time. Anand et al. (2003) 

compared water absorption in conventional and alternative masonry systems. 

Similar to wicking, permeability is a function of pore size and pore 

connectedness. While it is difficult to measure these properties in the field, methods of 

measuring surface permeability through nondestructive means have been an active area 

of research for many decades (Dykstra and Parsons 1950; Goggin and Thrasher 1988). 

Recently, surface permeability has been used to examine material degradation in 

historic conservation by Valek et al (2000) and compared to overall specimen 

permeability for both gas and water (Filomena et al. 2013; Selvadurai and Selvadurai 

2010).  

This research hypothesizes that surface permeability and macroscopic wicking 

are related by pore size such that surface permeability, as measured by the Autoscan II 

device, may be used to approximate the volume and depth of fluid wicked over time.  
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3.3  Materials 

In Chapter 2, a variety of building materials were characterized in greater detail. 

This chapter includes a subset of those materials; specifically, the following natural 

materials were used: 

1. Arkose Sandstone acquired from Granite Importers, Inc 

2. Ohio Sandstone acquired from Granite Importers, Inc., 

3. Portland Brownstone acquired from Granite Importers, Inc.  

4. Bluestone sandstone acquired from a local landscaping company 

5. Granite of unknown origin 

6. Indiana Limestone from the Indiana Limestone Company.  

7. Indiana Limestone of differing colors from Granite Importers, Inc. 

The following engineered materials were tested:  

1. Red Clay Brick from a Vermont brick yard, 

2. 3,000-psi concrete prepared in the lab,  

3. 5,000-psi concrete prepared in the lab, 

4. Concrete Pavers 1 from a hardware store, 

5. Red Colored Concrete Paver from a hardware store, 

6. Tan Colored Concrete Paver from a hardware store, 

7. Concrete Pavers 2 from a hardware store, 

8. Asphalt from a road excavation, 

Although the specific compositions of some of the above materials are unknown 

(i.e., brick, pavers, asphalt), they are included here because they represent commonly 
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used building materials. In some cases, materials of the same type but from different 

batches or different sources were tested; they are noted as Specimen 1, Specimen 2, and 

so on. 

All specimens in this study were cored (68 mm in diameter) from a parent 

material. The ends were then cut off with a water saw such that the final specimens 

were approximately 50 mm tall. Cutting the ends ensured that surface effects from 

weathering or screeding would not influence the results.  

3.4  Testing Methods 

3.4.1   AutoScan II Surface Gas Permeability 

To investigate surface permeability of each specimen, surface permeability was 

measured along a regularized grid along the specimen surface using the AutoScan II 

device. The AutoScan II device, the methodology and advantages are described in 

detail in Chapter 2. The17 specimens described in section 2.5.3 were examined using a 

consistent 35mm x 35mm grid with 1mm spacing resulting in n=1,296 sample points. 

Measurement spacing was designed to be conservative (i.e., overly small) to attempt to 

capture any spatial autocorrelation that might exist in the specimen surface 

permeability. Cressie (1993) states that a regular triangular, square, or hexagonal 

sampling design is usually the most efficient. Autoscan II uses a square sampling 

design as the default; as a result, the latter was chosen for this work. 
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3.4.2   Macroscopic Wicking 

Macroscopic wicking was also observed and measured in the same 17 

specimens of subsection 3.4.1. Figure 3.1 shows a schematic of the experimental setup. 

The following procedure was implemented: 

1. Horizontal lines, spaced 5 mm apart, were denoted in permanent marker 

along the side of each specimen. 

2. The specimen was suspended on a wire hanger attached to a stand and 

placed on a scale such that the specimen hovered above a shallow dish filled 

with water. 

3. The wire hanger was lowered until the bottom of the specimen rested in ~1 

mm of water; this water level was held constant via the addition of water 

throughout the experiment. 

4. Both the height and the mass of water wicked into the specimen were 

recorded at five minute intervals over a period of 100 minutes. 

The pilot studies showed that, in some cases, water wicked into the center of the 

specimen migrated more quickly than water along the edges and likely formed a small 

cone of saturation within the specimen. It was not possible to observe the depth of 

penetration within the core (i.e. it was only possible to record the time of break through 

along the top surface), thus the discrepancy in water rise between the sides and center is 

unknown. For most tests in this study, the water never reached the top of the specimen, 

and for this research, only the height along the edge of the specimen was recorded. 
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Since wicking is the result of attraction between the material and the fluid, and 

since there is less material surrounding the fluid along the core edges than in the center 

of the specimen, a faster rise within the center is to be expected. Despite the inability to 

measure the relationship between the two wicking rates, it is assumed that materials 

with faster wicking along the core edges will also wick faster within the core center. 

This assumption is sufficient to explore whether a correlation exists between surface 

permeability and macroscopic wicking, or whether one might be used as a surrogate for 

the other. 

3.5  Results 

3.5.1   AutoScan II 

The AutoScan II measurement data range over more than five orders of 

magnitude making visual comparison of the results difficult (Table 3.1). All data are 

represented using the same log10(mD) color scale (bottom of Table 3.1) where dark 

blue is less than 1 mD and dark red is greater than 100,000 mD. Sample points that did 

not return a permeability value are shown in white. To obtain a metric representative of 

the entire surface, the following statistics were computed for each specimen: the 

arithmetic mean (mD); geometric mean (mD), most probable (peak of pdf) (mD), 

maximum (mD); minimum (mD); standard deviation (mD), and geostatistical metrics 

known as the range and sill (see Chapter 2 or Isaaks and Srivastava 1990 for details).  

These are summarized in Table 3.2. Yfantis et al. (1987) recommend that the maximum 

sampling interval should be about equal to the geostatistical range of the data as 
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determined by a semivariogram. Since our measurement interval (1 mm) was smaller 

than the geostatistical ranges observed, we were able to confirm this recommendation 

in our results.  

Many of these statistics are correlated due to data being spread over five orders 

of magnitude. For example, if a specimen had a large mean, it was also likely to have a 

large maximum, large standard deviation, and large sill. A principal component 

analysis was performed on the permeability statistics to generate new variables (i.e., 

principal components or eigen vectors) that are not co-linear with each other (Table 

3.3).  

The statistics are used to characterize the surface permeability of each 

specimen. The principal component analysis enables these characteristics to be reduced 

into three new variables (or PCs) that are weighted combinations of the original 

correlated variables. The sill, arithmetic and geometric mean, minimum, standard 

deviation and, to a lesser extent, maximum value are represented in principal 

component 1 (PC1). These statistics all have units of mD or mD2; and given the wide 

range of observed permeability readings, many metrics are highly correlated. PC2 has 

high weightings for normalized standard deviation and, to a lesser extent, the range and 

maximum variables. PC3 also represents the range and normalized standard deviation, 

but the range is more prominent in PC3, while normalized standard deviation is more 

prominent in PC2. 
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3.5.2   Macroscopic Wicking 

Figure 3.2 shows the volume of water wicked over a 50 minute time period. 

Although measurements were recorded for 100 minutes, in some cases water reached 

the maximum height of the specimen after 50 minutes. Concrete of unknown origin was 

excluded because water had broken through the top of the specimen in less than 50 

minutes. As a result, the following analyses only consider the first 50 minutes of the 

test. These analyses were repeated using concrete of unknown origin and the full 100 

minutes for data, and similar results were found. 

Similar to the surface permeability tests, the macroscopic wicking tests 

generated multiple readings for each specimen – specifically, height and mass of water 

wicked at five-minute intervals for 50 minutes. To examine correlations, we collapsed 

these measurements into a single metric. This was again accomplished using principal 

component analysis. Measurements at all time steps were weighted approximately 

equally in the first principal component. Thus, the first mass principal component 

(MPC) corresponds to mass wicked at each time step. The MPC is largest (~5) for 

specimens with a high amount of wicking and grows smaller as the amount of wicking 

decreases to about -3. This confirms that the MPC is a good surrogate for wicking over 

time. Table 3.4 shows the principal components of each specimen beside the 

permeability heat map. 

In some cases (e.g., Red Colored Brick Paver versus Silver Indiana Limestone) 

a larger MPC corresponds to a lower total mass of wicked water after the 50-minute test 

period. However, over most of the times shown, the Red Colored Brick Paver had a 
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greater mass wicked, so it is reasonable that the Red Colored Brick Paver has a higher 

MPC. Regardless, these MPC are much larger than the MPC with less wicking when 

compared to the entire MPC data set. Although only results for mass wicked over the 

50-minute time period are presented here, similar figures and principal components 

were observed for mass measured over the full 100-minute test period. The height of 

water rise exhibited similar behavior over both the 50- and 100-minute test periods. 

3.5.3   Correlations 

The first three principal components from the permeability statistics (PC1, PC2, 

PC3) and the first principal component of the mass wicked (MPC1) are compared in 

Table 3.3. Note that permeability maps of similar coloring have similar PCs. This 

observation serves as visual confirmation that PC1, PC2, and PC3 can be used to 

characterize each permeability map. If permeability and wicking are correlated, then 

specimens with similar MPCs should have similarly colored permeability maps; yet that 

is not the case. See, for example, the third column of Table 3.4. The light blue surface 

permeability maps have similar PCs, but very different MPCs. Indeed, Gray Indiana 

Limestone 1 had one of the largest amount of wicking, while Gray Indiana Limestone 2 

had one of the smallest.  

Figure 3.3 shows the multivariate linear correlation between all three PCs and 

MPC. As expected given the results of Table 3.3, there is little predictive capability; the 

adjusted R2 is only 0.036. The plot of Actual by Predicted shows that actual (i.e., 

observed) MPC values have a large range (between -4 and 10), while predicted values 
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are mainly between 0 and 2. Similar results were obtained for height of water wicked 

and when using single-variable linear regression. 

Since wicking behavior can be highly variable and dependent on multiple 

variables such as pore size and tortuosity, it was hypothesized that materials with 

similar permeabilities would have similar pore sizes and therefore similar wicking 

behavior. Similarly, materials with similar structural uniformity, i.e. with and without 

aggregate, would have similar flow paths and therefore similar wicking behavior. A 

second set of analyses was performed to model wicking using two separate groups of 

materials. Group one was structurally uniform materials, i.e. without aggregates, of low 

(approximately < 10 mD) surface permeability, (i.e., bluestone, ohio sandstone, gray 

Indiana limestone 1 and 2, silver Indiana limestone, Portland brownstone, and red clay 

brick). This confined the analysis to specimens with visually similar particle sizes and 

structure and therefore likely similar pore sizes and tortuosity. Group 2 was structurally 

non-uniform materials (i.e. the concretes and pavers). Buff Indiana limestone and 

asphalt were excluded because the former was uniform but had relatively high 

permeability and the latter is a material that is known to be hydrophobic.  

To further simplify the analysis, only the volume of water wicked at 50 minutes 

was considered in this second set of analyses. This simplification ignores the 

relationship between time and pore size on wicking and creates a simpler analysis. 

A clear relationship between wicking and surface permeability in group 1 is 

shown in Figure 3.4 with R2 = 0.95 where the mass of water wicked at 50 minutes is 

plotted against the geometric mean of surface permeability.  Figure 3.5 shows a similar 
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plot with a log-scale x-axis for group 2 specimens with R2 = 0.55. Figure 3.6 shows all 

specimens considered and their respective relationships. 

3.6  Conclusions and Discussion 

This research did not find a global relationship between surface permeability, as 

measured by the AutoScan II, and wicking potential over all the specimens measured 

which is consistent with the complicated relationship between pore size and wicking. 

For example, smaller pores can be so small as to restrict flow while larger pores have 

less surface area and therefore reduced capillarity. Consequently, both too large and too 

small pores can hinder wicking. Given the non-linear relationship between pore size 

and wicking potential, it is reasonable that we were unable to find a unique relationship 

between surface permeability and wicking potential that governed over the wide range 

of materials and permeabilities measured in this study.  

However, for uniform specimens of similarly low permeability, a clear 

relationship was observed. Indeed, a wide range of wicking potential was observed over 

a small range of permeabilities. This relationship provides a promising indication that 

surface permeability can be used to predict mass wicked under certain circumstances. It 

should be cautioned that this relationship is based on only nine observations, so 

additional research is needed to determine how robust the relationship is and under 

what conditions it is relevant.  

The relationship between wicking potential and surface permeability in non-

uniform materials was less pronounced and occurred over a large range of 
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permeabilities with sparse data. Additional research is required to determine if this 

relationship remains with permeabilities in between those observed here. 
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3.8  Figures and Tables 

 

 

 

Figure 3.1 Schematic of macroscopic wicking experiment setup. 
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 Table 3.1 Photographs and surface permeability of various building 

materials. Ten uniform specimens are shown on the left, and seven non-uniform 

specimens are shown on the right. 
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Table 3.3 Principal Components performed on permeability statistics 

 Principal 
Component 1 

Principal 
Component 2 

Principal 
Component 3 

Range -0.09 0.45 0.89 
Sill 0.46 0.24 -0.09 
Arithmetic Mean 0.46 0.24 0.05 
Maximum 0.38 -0.43 0.24 
Minimum 0.42 0.26 -0.08 
Standard Deviation (SD) 0.47 -0.07 0.08 
Normalized SD 0.14 -0.65 0.36 
Cumulative Percent 59.1 86.5 97.0 
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Figure 3.2 Mass of water wicked in grams over 50 minutes for all specimens. 
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Table 3.4 Permeability heat map and principal components 
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Figure 3.3 Multivariate linear prediction of mass Principal Component by 

permeability Principal Components, R2 adjusted = 0.036, RMSE = 3.7 
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Figure 3.4 Prediction of mass wicked at 50 minutes by geometric mean of surface  

permeability for uniform, low permeability materials, R2 =0.95 
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Figure 3.5 Prediction of mass wicked at 50 minutes by geometric mean of surface  

permeability for non-uniform materials, R2 =0.55 
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Figure 3.6 Mass wicked at 50 minutes by geometric mean of surface permeability 

for all materials and their respective relationships 
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CHAPTER 4: SUMMARY AND FUTURE WORK 

In this thesis we analyzed the results of a versatile surface permeameter, the 

AutoScan II, and assessed its usefulness in determining surface permeabilities of a 

variety of porous building materials and estimating fluid transport within these 

materials. In Chapter 2, it was shown that the AutoScan II could measure surface 

permeability across many different materials at varying resolutions with minimal 

experimenter involvement. The results can be highly detailed and benefit from the use 

of geostatistics to characterize the spatial homogeneity of the data, anisotropy, and 

spatial autocorrelation. It was found that a second surface permeameter suitable for 

field use, the TinyPerm II, is capable of characterizing specimens, using the geometric 

mean, in a manner similar to the AutoScan II. Characterizations of 16 different 

specimens by the two devices were highly correlated. 

Chapters 2 and 3 examine practical applications for surface permeametery. It 

was found that the structurally uniform materials tested here have similar surface and 

macroscopic gas permeabilities, but surface permeability is non-desructive and 

significantly easier to measure than the macroscopic gas permeability. Thus, surface 

permeability measurements may be used as a surrogate for macroscopic gas 

permeability. More research is needed to determine if the surface permeability of non-

uniform (with aggregates) materials can be used in the same manner. It is possible that 

a geometric correction factor or a regression model may produce a useable relationship. 
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It was found that engineered materials that have undergone weathering tended 

to have higher surface permeabilities than prior to weathering while natural materials 

tended to maintain their surface permeability over the same number of freeze-thaw 

cycles. This effect was found regardless of the material’s surface permeability before 

weathering. We hypothesize that the increased surface permeability in engineered 

materials is indicative of larger void spaces or cracks caused by the weathering, which 

would mean that aggregate particles might have separated from the cement in some 

places. 

Finally, we studied the relationship between surface permeability and wicking. 

Capillary forces are affected by a number of factors, and it is likely that the surface 

permeability values used in this study were too broad to find a unique relationship 

between all of the permeabilities and wicking. Focusing on specimens with a smaller 

range of surface permeability values and similar structure reduced some of the non-

linear dynamics associated with pore size in the wicking equation and allowed us to 

find a relationship between wicking and surface permeability. This relationship was 

observed over a small range of permeabilities (<10 mD) and was confined to relatively 

uniform materials. Future work should look at many specimens within similar 

permeability ranges. A study examining the pore structures of the various porous 

building materials at the microscopic level would benefit this investigation. The 

technique of X-ray computed tomography could be employed for this purpose. 
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