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Abstract 
 

Nitrous oxide (N2O) is a potent greenhouse gas (GHG) that has a radiative effect 298 times 

stronger than carbon dioxide (CO2) and is a source of ozone-depleting nitrogen oxides 

(Congreves et al., 2018). Agricultural soils are responsible for 75% of human-induced N2O 

emissions and for 23-31% of annual global emissions (Risk et al., 2013). Winter conditions may 

become more variable as climate change continues, potentially causing more freeze-thaw cycles 

(FTCs) and driving annual N2O emissions higher as a result. While both agricultural 

management practices and FTCs are known to cause large N2O fluxes, few studies have looked 

at the interactions between the two. This study built off of an incubation study by Adair et al. 

(2019) that found agricultural soils from a continuous corn system subject to manure injection 

had significantly higher N2O and CO2 emissions than soils with manure broadcasted and 

incorporated by plow (broadcast + plow) during thawing and FTC treatments. In this study, we 

examined mechanistic drivers behind these differences. We anticipated gas fluxes to follow the 

same trend as the previous study, anticipated higher rates of denitrification and higher microbial 

biomass to be found in the injection soils, and expected to see differences in extracellular 

enzyme activity, nitrate, nitrite, and ammonium availability between treatments. We conducted 

an 8 day incubation study with homogenized soil samples from three injection plot replicates and 

three broadcast + plow plot treatment replicates. Soil subsamples were placed in air-tight Ball 

mason jars and were subject to either frozen (-7oC) or thaw (10oC) temperature treatments. Half 

of the jars subject to each temperature treatment had an anaerobic headspace (N2) to promote 

denitrification and the other half had an ambient headspace. Half of each of the headspace 

treatments were inhibited with acetylene to determine total potential denitrification. Our results 

only partially supported our hypotheses, with inconsistencies between our findings and those of 

Adair et al. (2019): broadcast + plow soils had marginally higher rates of denitrification and N2O 

fluxes were highest from freeze treatment. As predicted, both denitrification and N2O flux were 

highest under anaerobic conditions, suggesting that denitrification was the primary source of 

N2O flux. Bacterial biomass (gram positive, gram negative, and total bacterial biomass) and total 

fungal biomass were higher from the injection plots which partially supported our initial 

hypotheses. Inconsistencies in our results suggest that soil homogenization may have influenced 

microbial activity and aggregate dynamics.  
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1. Introduction 
The human population is currently at 7.3 billion and is expected to reach 8.5 billion by 

2030 (United Nations, 2015). World population has increased by 111% from 1961 to 2005 with a 

parallel growth in agricultural production due to technological, biological, and chemical 

advances that began during the Green Revolution (Burney et al., 2010). Agricultural gains (162% 

increase in total) were primarily intensive: global cropland grew by 27%, but yield increased by 

135% (Burney et al., 2010). This is a success in terms of production, but has had unclear 

environmental implications. Conversion of natural spaces, pesticide pollution, and fertilizer 

runoff have all added to the anthropogenic footprint. Additionally, agriculture is responsible for 

23-31% of global greenhouse gas emissions (GHG), including carbon dioxide (CO2), nitrous 

oxide (N2O) and methane (CH4) (Burney et al., 2010; Charles et al., 2017), which contribute to 

anthropogenic global climate change. In turn, climate change is adding to the challenges of food 

security through increasingly severe and unpredictable weather patterns, droughts, and disease 

(Ren et al., 2018). Unsustainable agricultural practices such as conventional tillage, excessive 

and untimely fertilizer application, and fallow periods create a positive feedback loop: more 

intensive agricultural techniques are used to counteract losses due to climate change, but these 

practices may, in turn, enhance climate change by increasing GHG emissions. To ensure food 

security and mitigate environmental damages, it is critical to find sustainable agricultural 

techniques that reduce GHG outputs and pollution. 

Agricultural soils are estimated to account for over 75% of anthropogenic N2O emissions 

(Inselsbacher et al., 2010; Dong et al., 2015), a GHG 298 times more powerful than carbon 

dioxide (CO2) for trapping energy (Koponen et al., 2006; Inselsbacher et al., 2010; Butterbach-

Bahl et al., 2013; Risk et al., 2013), which is also a source of ozone-depleting nitrogen oxides 

(NO and NO2) (Charles et al., 2017). Large emissions of N2O have been recorded surrounding 

freeze-thaw cycles (FTCs) which can account for up to 73% of the annual soil N2O emissions 

(Wagner-Riddle et al., 1997; Röver et al., 1998; Wagner-Riddle et al., 2017; Congreves et al., 

2018). N2O emissions result from a combination of biotic and abiotic factors (Wallenstein et al. 

2006; Butterbach-Ball et al. 2013; Risk et al., 2013), with microbial processes in soils, 

sediments, and water bodies being the main source of N2O emissions. Abiotic sources of nitrous 

oxide, or chemical reactions such as chemodenitrification (decomposition of nitrite), have been 

found to be generally small relative to biotic processes (Bremner, 1997; Chang and Hao, 2001; 

Risk et al., 2013). Microbial processes in soils, which contribute to about 70% of the total known 

sources of N2O (Conrad, 1995; Chang and Hao, 2001; Butterbach-Bahl et al., 2013) include: 

denitrification, nitrification, nitrifier-denitrification, and coupled nitrification-denitrification, 

where nitrogen-based compounds are oxidized and reduced by microbes during consumption 

(Phillips, 2008; Risk et al., 2013; Németh et al., 2014). N2O production in agricultural soils is 

considered to be largely the result of incomplete denitrification (Duncan et al., 2017), as N2O is 

an obligatory intermediate (rather than a byproduct) of denitrification and will be the end product 

if further reduction to N2 does not occur (Risk et al., 2013). In comparison, N2O produced by 

nitrification is a byproduct of hydroxylamine oxidation (Pathak, 1999; Wrage et al., 2001; Risk 

et al., 2013) and is not an obligatory intermediate, as in denitrification (See Table 1). 
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Table 1  Microbial processes 
Process Pathway steps Associated genes References 

Denitrification  
NO3-                NO2-               NO                 N2O              N2 

         
 

narG, napA, 

nirK, nirS, nopZ, 

norB, qnor, nosZ 

Saggar 2013; 

Ligi et al., 

2014;  Chen 

et al., 2015; 

Hu et al., 

2015 

Nitrification                              N2O                         N2O 
 
NH3                        NH2OH                        NO2

-                        NO3
-            

         

 

amoA, hao, 

nxrB, cnorB, 

qnorB, norYS 

Pathak, 1999; 

Wrage et al., 

2001; Risk et 

al., 2013; Hu 

et al., 2015; 

Heil et al., 

2016 

Nitrifier 

denitrification 

 

                                N2O                          N2O 

 

NH3                         NH2OH                       NO2
-              [NO]               N2O              N2 

 

 

amoA, hao, nirS, 

nirK, nxrB, 

cnorB, qnorB, 

norYS 

Wrage et al., 

2001; Zhu et 

al., 2013; Hu 

et al., 2015 

Coupled 

nitrification-

denitrification 

Nitrification is carried out by nitrifiers, producing nitrate (see “Nitrification” above), 

which is then reduced by denitrifying microorganisms (see “Denitrification” above). 

This process occurs in soils where microsites contain conditions that allow 

nitrification and denitrification to proceed in close proximity. Nitrification can 

decrease O2 concentrations in the soil, further promoting coupled nitrification-

denitrification. 

amoA, narG, 

napA, nirK, nirS, 

nopZ, norB, 

nxrB, qnor, nosZ 

Cantera and 

Stein 2007; 

Kool et al., 

2011; 

Butterbach-

Bahl et al., 

2013 

Table 1: The microbial processes of denitrification, nitrification, nitrifier denitrification, and coupled nitrification-

denitrification significantly contribute to the agricultural N2O budget. Fertilization can increase levels of ammonia 

(NH3), ammonium (NH4
+), nitrate (NO3

-), nitrite (NO2
-), and organic carbon (C) in the soil, which increases 

substrate availability for microbial growth and respiration.  

 

Abiotic variables create conditions favoring certain microbial processes over others, 

which indirectly affect N2O fluxes. Abiotic variables include soil type, moisture level, 

temperature, and pH, along with organic matter (OM) content, oxygen (O2) levels, nutrient type 

and availability (primarily that of nitrogen, N, and carbon, C), and overwinter conditions (i.e. 

thick snow layer versus bare ground) (Koponen et al., 2004; Wagner-Riddle et al., 2007; Risk et 

al., 2013; Makoto et al., 2014). Factors that favor denitrification are fine-grained soils with high 

availability of organic C and nitrate (NO3
-), and high soil moisture content (water-filled pore 

space (WFPS) ≤ 70-80%) under anaerobic conditions (Wrage et al., 2001; Wallenstein et al., 

2006; Cai et al., 2010; Butterbach-Bahl et al., 2013; Xue et al., 2013; Dong et al., 2015; Hu et al., 

2015; Zhang et al., 2015; Duncan et al., 2017), with organic C and NO3
- availability being the 

greatest limiting factors for denitrification in low-O2 environments (Bremner, 1997; Phillips 

2008; Saggar et al., 2013; Hu et al., 2015). The factors that favor nitrification include high 

ammonium (NH4
+), ammonia (NH3), and nitrite (NO2

-) availability (not organic C, as energy is 

gained from NH4
+ oxidation); temperatures between 5oC and 40oC; and aerobic conditions, 

which means lower soil water content than denitrification (30% < (WFPS) < 60-70%) (Bremner, 

1997; Cantera and Stein 2007; Kool et al., 2011; Dong et al., 2015; Hu et al., 2015). In suboxic 

zones, some nitrifying organisms can produce N2O through reduction of nitrite during nitrifier 

denitrification, where NH3 is reduced to nitrite via hydroxylamine oxidation (nitrification), then 

reduced to N2O or dinitrogen (N2) through denitrification (Wrage et al., 2001; Risk et al., 2013). 

Nitrification and denitrification are also influenced by pH, with higher N2O emissions; nitrate, 
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nitrite, and nitric oxide reductase activity; and reduced nosZ activity (discussed later) typically 

observed in soils with pH < 7 (Hu et al., 2015). 

Microbial activity is generally highest in seasons with high soil temperature, however 

N2O emissions do not necessarily follow the same trends (Koponen et al., 2004); FTCs can 

account for some of the highest annual N2O flux events and for up to 70% of the annual N2O 

emission budget in agricultural systems (Wagner-Riddle et al., 1997; Röver et al., 1998; Hao et 

al., 2001; Koponen et al., 2006). In total, neglecting FTC emissions could underestimate global 

agricultural N2O emissions by 17-28% (Wagner-Riddle et al., 2017). There are two primary 

hypotheses to explain N2O release from soils upon thaw and/or during FTCs: (1) the physical 

release of N2O during thawing which was produced overwinter and trapped under the frozen soil 

surface and/or within thin films of liquid water surrounding soil colloids and (2) the in situ 

production of N2O at the onset of the thaw, stimulated by increased biological activity and 

changes in physical and chemical soil conditions (Risk et al., 2013). Although there is some 

evidence that physical release may account for a portion of N2O emissions when soils first thaw 

(Risk et al., 2014), recent studies (Röver et al., 1998; Chang and Hao, 2001; Wagner-Riddle et 

al., 2008; Németh et al., 2014; Congreves et al., 2018) point to in situ microbial action as the 

primary mechanism for N2O emissions during FTCs and thawing.  

Overwinter freeze- and FTC-induced changes to soil structure and microbial communities 

may enhance denitrification by: (1) disrupting soil aggregates, which makes previously 

unavailable nutrients (organic C and N) available, (2) lysing microbial cells, which mineralizes 

dissolved organic carbon (DOC) and nitrogen (N), and (3) increasing WFPS when water from 

melting ice and snow percolates into the soil, leading to reduced oxygen diffusivity (Christensen 

& Christensen, 1991; Jacinthe et al., 2002; Koponen et al., 2004; Henry 2007; Bruijn et al., 2009; 

Risk et al., 2013; Makoto et al., 2014; Wang et al., 2014; Congreves et al., 2018). These changes 

create ideal conditions for denitrification during thawing and FTCs, i.e. high nutrient availability 

in low O2 conditions that can quickly become anaerobic due to high microbial growth with 

limited O2 diffusion (Teepe et al., 2004; Dusenbury et al., 2008; Bruijn et al., 2009; Koponen and 

Baath, 2016). As a result of these conditions, denitrification is considered to be the dominant 

process responsible for large N2O fluxes during FTCs and thawing (Chen et al., 1995; Prieme´ 

and Christensen, 2001; Müller et al., 2003; Ludwig et al., 2004; Mørkved et al., 2006; Wagner-

Riddle et al., 2008).  

In addition, colder freeze temperatures, longer duration of the freeze, and more intense 

FTCs have been linked to heightened denitrification and increased N2O emissions, as (1) 

denitrifiers are very sensitive to changes in temperature, (2) nosZ, the gene responsible for the 

reduction of N2O to N2, is inhibited by cold temperatures more than other genes, and (3) 

increased freeze/FTC duration and/or severity has the potential to increase nutrient availability 

through increased microbial lysis and soil aggregate disruption (Chen et al., 1995; Christensen & 

Christensen, 1991; Jacinthe et al., 2002; Koponen et al., 2004; Teepe et al., 2004; Feng et al., 

2010; Butterbach-Bahl et al., 2013; Billings and Tienmann, 2014). In summary, increased FTC 

action within a soil system may increase N and labile C availability and cause large changes to 

microbial communities, which can lead to heightened N2O emissions (Song et al., 2017). 

However, high numbers of FTCs occurring in rapid succession (simulated in lab settings) have 

been found to limit the available nutrient pool, leaving questions about timing of successive 

FTCs in relation to nutrient availability (Chen et al., 1995; Grogan et al., 2004; Matzner and 

Borken, 2008). As climate change continues, some areas will experience reduced snowpack, 

increased frost intensity, and increased FTC duration and intensity, while other regions may 



8 
 

experience reduced frost intensity (Matzner and Borken, 2008). Both scenarios indirectly impact 

N2O emissions by directly impacting microbial lysis and NH4
+, NO3

-, and labile C cycling, as 

microbial lysis and nutrient cycling are, in part, a function of snowpack, frost, and FTC intensity 

and duration (Jacinthe et al., 2002; Bruijn et al., 2009; Yanai et al., 2004; Buckeridge and 

Grogan, 2007; Matzner and Borken, 2008; Zhang et al., 2011; Congreves et al., 2018).  

FTCs and other abiotic variables interact with agricultural management practices such as 

tillage, crop type, fertilizer type, and fertilization application method to influence N2O emissions 

by affecting the drivers of the microbial processes that produce N2O (Wagner-Riddle et al., 

2007). Agricultural management practices influence the physical and hydrological state of the 

soil, timing and distribution of nutrient inputs (Wagner-Riddle et al., 2007), increase nutrient 

availability (Saggar et al., 2013), and can have long-term impacts on microbial community 

abundance and N2O emission potential of the soil (Morales et al., 2010). Untilled soils subject to 

N-fertilization have been found to have greater N2O emissions than conventionally tilled fields 

due to increased bulk density, soil organic matter (SOM) content, and soil compaction; reduced 

gas diffusivity and porosity; and poor drainage, leading to increased denitrification rates (Ball et 

al., 2008; Dunsenbury et al., 2008; Rochette et al., 2008; Kong et al., 2009; Wu et al., 2015). 

However, tillage alone cannot predict N2O emission levels (Bavin et al., 2009; Kong et al., 

2009). Long-term fertilization of fields, especially those fertilized with organic fertilizers or a 

mixture of organic and synthetic fertilizers, increases N and C availability and can increase the 

N2O emission potential of a field (Kaiser and Ruser, 2000; Feng et al., 2010; Inselsbacher et al., 

2011; Cui et al., 2016; Dong et al., 2015). Organic fertilizers such as animal slurries, waste 

waters, and biosolids or mixtures of organic and synthetic fertilizers with a high water content, 

low C:N ratio, and high mineral N content have the highest potential to increase N2O emissions, 

as they create conditions favoring denitrification (Hao et al., 2001; Charles et al., 2017). 

Fertilizer slurries are increasingly injected directly into the ground (in contrast to being 

broadcasted on the surface) to reduce fertilizer loss through NH3 volatilization or runoff (Dell et 

al., 2011). Direct injection of a fertilizer slurry into the field can create anaerobic, high nutrient 

microsites that allow for N loss through denitrification, which can result in significantly higher 

N2O emissions from fields subject to slurry injection than those subject to surface application of 

the same amendment (Flessa and Beese, 2000; Wulf et al., 2002; Dell et al., 2011; Maguire et al., 

2011; Duncan et al., 2017). However, studies have conflicting findings on the effect of 

application techniques on N2O emissions, with some studies findings showing no correlation 

between application method and emission rates (Vallejo et al., 2005), while others show 

increased N2O emissions from slurry injection (Velthof et al., 2003; Webb et al., 2010), 

indicating a need for further study to address confounding variables. Additionally, it is possible 

for nitrification and denitrification to occur simultaneously in microsites of close proximity in 

complex soil systems through coupled nitrification-denitrification (Iselsbacher et al., 2011), 

allowing for the NO3
- created by nitrification to be used by denitrifying microbes (Dell et al., 

2011). 

While it is known that FTCs and fertilization practices largely contribute to annual 

agricultural N2O budgets, much less is known about the interactions between FTCs and 

agricultural management practices. As the primary microbial process responsible for N2O 

emissions in agricultural fields during FTCs is denitrification (Chen et al., 1995; Prieme´ and 

Christensen, 2001; Müller et al., 2003; Ludwig et al., 2004; Mørkved et al., 2006; Wagner-

Riddle et al., 2008), agricultural management practices that promote denitrification, such as 

slurry injection or fertilization of the field before FTCs, have the potential to significantly 
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increase N2O emissions over other management practices, such as broadcast and incorporation 

by plow. An incubation study conducted by Adair et al. (2019) found that the size of the N2O 

emission pulse during a simulated FTC varied with agricultural management treatment, with the 

largest fluxes from soils subjected to manure injection versus broadcast of manure (no 

incorporation) or broadcast of manure plus plow incorporation (moldboard plow).  

This study builds off of the research done by Adair et al. (2019), seeking to identify the 

drivers of the difference in emissions previously noted between manure injection versus manure 

broadcast and incorporation by plow in a continuous corn cropping system. We used a laboratory 

thaw experiment to test the hypotheses that: (1) soils from the field subject to manure injection 

would have higher thaw N2O emissions than the field subject to broadcast + plow, (2) the 

majority of the N2O emissions would be due to denitrification, and that (3) N2O emissions would 

be driven by increases in microbial biomass and activity during thaw which would be higher 

under injection soils.  

 

2. Methods 

2.1 Site description 

 Soil samples were collected from the Manure Injection No Till (MINT) farm trial, located 

at Borderview Farm in Alburgh, VT. Established in May of 2013, the trial was set up in a 

continuous corn (Zea mays L.) field with a winter rye (Secale cereale) cover crop. The soils at 

the site are classified as a Benson rocky silt loam and are somewhat excessively to excessively 

well-drained with moderate permeability (Soil Survey, 2017). The experimental design is a 

randomized complete block with a split-split plot arrangement (three blocks and two subplot 

treatments) with no tillage except for manure incorporation (Fig. 1). Average soil pH is 6.1. In 

2013-2015, manure was applied at a rate of 59 m3 ha-1. In all years, manure was applied between 

May 12 and 19. Corn was planted at 84,000 seeds ha-1 within two days of manure application. 

The corn crops were harvested for silage in September and an over-winter rye cover crop was 

planted within two days of corn harvest. Residue was left on the field and corn roots were left 

undisturbed. 

 The three replicate blocks had two subplot manure application treatments each: broadcast 

plus incorporation by plow (broadcast + plow) and closed slot injection (six subplots total) (Fig. 

1). Each subplot was 3.7 by 12.2 m. The broadcast + plow manure application treatment used a 

moldboard plow and disk to incorporate manure to a depth of 15-20 cm. Manure was injected to 

a depth of 15 to 20 cm, but injection lines were 

typically filled to the soil surface or just under the soil 

surface (2–3 cm) with manure. Injection bands were 

approximately 10 cm wide, with 75 cm spacing 

between bands. 

 

2.2 Soil sampling 

 Soils were sampled on April 3, 2018. During 

this time, the soils were still undergoing freeze-thaw 

cycles (FTC) from diurnal temperature fluctuations. To 

ensure that the samples were taken from the correct 

subplot treatment and to avoid edge effects, samples were only taken from a 2.43 by 7.3 m 

section in the middle of the subplot (i.e., 2.43 m width buffers and 0.6 m length buffers between 

subplots). The inner 7.3 by 2.43 section was divided into 24 equal sections. A random number 

Block 1 405 Inject 3.7 m 

 408  Plow  

Block 2 409 Inject  

 411 Plow  

Block 3 413 Inject  

 415 Plow  
Figure 1: MINT 

field trial 

experimental 

design   

12.2 m  
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generator was used to select a section to sample. Within the selected section, a 2.43 m transect 

was established perpendicular to the direction of corn rows and manure injection lines. 

Along each 2.43 m transect, 12 0-20 cm, evenly spaced soil cores were taken, using a 1 

cm diameter corer. Six of these samples were taken from “in row” areas, or from a row where 

corn was planted, and six were taken from “between row” areas, or between the corn rows. Each 

plot had one polyethylene bag into which all 12 samples from that plot were composited, 

homogenized, and kept on ice for transport back to the lab. Soil moisture and temperature were 

taken at the time of sampling, with soil moisture taken four times and temperature taken twice 

evenly over the area of each section. On average, the soil temperature was within 1.4oC for all 

plots, with the average soil temperature being 6.oC. Soil moisture was recorded using a soil 

moisture probe and was also relatively consistent across all plots, with the average period 

reading being 2708 μs.  

 

2.3 Experimental design 

 Soil samples from each plot were subjected to two temperature treatments: frozen at -7oC, 

the mean cold season air temperature from 1980-2014 (Thorton et al., 2016) or thawing at 10oC. 

We also used two atmosphere treatments: aerobic (ambient air) or anaerobic (N2 headspace). 

Additionally, half of the jars under each temperature and atmosphere treatment were treated with 

acetylene to inhibit nitrification and the final step of denitrification (reduction of N2O to N2) 

(Butterbach-Bah et al., 2013); all N2O produced in these jars could be assumed to be from 

denitrification (Fig. 2), yielding total N2O produced by denitrification.  

 Soils were incubated in air-tight Ball mason jars. There were 12 jars per temperature by 

atmosphere treatment (six replicates from the injection subplots and six from the broadcast with 

plow incorporation subplots). Of these, three from injection and three from broadcast + plow 

were treated with acetylene, and the others acted as non-acetylene controls (Fig. 2). The soils 

were subjected to these treatments for eight days. Within each jar, there were four 20 g soil 

samples in open beakers to allow subsampling throughout the incubation. 

 

2.4 Incubation study 

 Prior to the incubation study, soils were tested for chemodenitrification. This was done 

using four, 80 g, soil samples - two from injection soils and two from broadcast + plow soils. 

One injection sample and one broadcast with plow incorporation sample were autoclaved twice 

for 20 minutes at 121oC to eliminate biotic controls on N2O production (2340M Autoclave, 

Tuttnauer, Hauppauge, NY, USA). The other two jars served as controls. All jars were sealed 

and the headspace was sampled at time zero and for the next three days (i.e., 0, 24, 48, and 72 

hours) using an infrared photoacoustic spectroscopy gas analyzer (Model 1412i, Innova Air Tech 

Instruments, Ballerup, 

Denmark). There was no 

N2O production from the 

autoclaved treatments. 

Therefore 

chemodenitrification 

treatments were not 

included in the 

experimental design.  

 Freeze (N2) Freeze (Air) Thaw (N2) Thaw 

(Air) 

Control 3 jars (injection) 3 3 3 

 3 jars (Plow) 3 3 3 

Acetylene 3 3 3 3 

 3 3 3 3 

Figure 2: Experimental design of the incubation study. 
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Before the incubation was initiated, gravimetric soil moisture was taken from each plot’s 

composite sample, and each homogenized sample was divided into 32, 20 g subsamples (see 

Experimental design above), which were placed in glass scintillation vials and frozen at -20oC 

until the start of the incubation study.  

The incubation study was conducted for eight days, starting on May 30, 2018 (Day 0) and 

ending June 6, 2018 (Day 7). Aerobic jars were aired on the countertop for five minutes. Jars 

with an anaerobic headspace were evacuated using a manifold and vacuum pump, then filled 

with N2 gas. Evacuation on the manifold occurred for three minutes by inserting a needle on the 

manifold through a septa in the jar lid. Following evacuation, each anaerobic jar was flushed 

with N2 for one minute. This process was repeated four times to ensure that a fully anaerobic 

headspace was created. The jars subject to acetylene inhibition had acetylene gas added to result 

in a headspace with 10% acetylene after the correct headspace treatment was restored (aerobic or 

anaerobic) (Tiedje et al., 1989). Starting at Time 0 on Day 0, a pressure measurement was taken 

and then 10 mL of gas was removed from each jar’s headspace using a sterile syringe for 

analysis on a GC-2014 Gas Chromatograph (GC) analyzer equipped with a flame ionization 

detector (FID), electron capture detector (ECD), and a Hayesep N 80/100 Mesh 1/8in. X 1.5M 

stainless steel pre-conditioned column (Shimadzu Instruments, Kyoto, Japan). Between 22 and 

24 hours following the prior sampling, 10 mL of gas was removed from each jar again. On Day 1 

(hour 24), Day 2 (hour 48), Day 4 (hour 100), and Day 7 (hour 168), one of the four 20 g 

subsamples was removed for destructive analysis following gas sampling. After subsample 

removal, the jars were flushed with air for 5 minutes, the correct headspace and acetylene 

treatment were restored (as previously described), and a secondary gas sample was taken before 

returning the jar to its incubation treatment.   

To calculate the gas fluxes (CO2, N2O, and CH4) in μg, the slope and y-intercept of the 

calibration curve from each run was used to convert the peak area output from the GC into μL 

gas/ μL total gas: 

 
μL gas (𝐶𝐻4, 𝑁2𝑂, 𝑜𝑟 𝐶𝑂2)

μL total gas
=  

(𝑠𝑙𝑜𝑝𝑒 ∗ 𝑝𝑒𝑎𝑘 𝑎𝑟𝑒𝑎) + 𝑦𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡

1000
 

 

The amount of gas in μg was calculated using the following series of equations: 

 
μmole gas (𝐶𝐻4, 𝑁2𝑂, 𝑜𝑟 𝐶𝑂2)

μL total gas
= (

μL gas

μL total gas
) ∗ (

273 + 𝑖𝑛𝑐𝑢𝑏𝑎𝑡𝑖𝑜𝑛 𝑡𝑒𝑚𝑝 (𝑑𝑒𝑔. 𝐶)

0.08205 𝐿 𝑎𝑡𝑚 𝐾−1 𝑚𝑜𝑙−1
) 

 

μmole gas (𝐶𝐻4, 𝑁2𝑂, 𝑜𝑟 𝐶𝑂2) = (
μmole gas

μL total gas
) ∗ (𝐽𝑎𝑟(𝑚𝑙) − 𝑣. 𝑙𝑜𝑠𝑠(𝑚𝐿)) ∗ 1000 

 

where Jar (mL) is the jar headspace in mL, and v.loss (mL) is the volume change in the 

headspace of the jar as gas samples were removed. The jar headspace volume was calculated by 

filling one of the mason jars containing 4 20 g subsamples with water and weighing the jar, then 

removing the subsamples one at a time and re-weighing the jar to determine how headspace 

changed over the course of the study. Finally: 

 

μg gas (𝐶𝐻4, 𝑁2𝑂, 𝑜𝑟 𝐶𝑂2) =  μmole gas ∗ molecular weight of gas  
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The flux rates were calculated by fitting a linear regression to the gas concentrations recorded 

while each jar was closed. The resulting fluxes were in μg gas s-1. 

 

2.5 Soil analyses 

Soil subsamples were analyzed for nitrite (NO2
-), ammonium (NH4

+), nitrate (NO3
-), 

microbial biomass, extracellular enzyme activity, and phospholipid fatty acids (PLFA). 

Available NO2
- was determined using 2.5 g of each soil subsample extracted using 15 mL DDI 

(Hageman and Huckelby, 1971). Available NH4
+ and NO3

- were determined using 5 g of each 

subsample extracted using 0.5 M potassium sulfate (K2SO4) (Weatherburn 1967; Doane and 

Horwath. 2003; Hood-Nowotny et al. 2010). NO2
-, NH4

+, and NO3
- were all analyzed using 

colorimetric methods on a microplate reader, BioTek Synergy HTX (BioTek Instruments, Inc., 

Winooski, VT, USA).  

To characterize microbial activity during the incubation, we conducted extracellular 

enzyme assays (EEA) (Bell et al., 2013) on Day 1, 2, and 7 soil samples. Hydrolytic enzyme 

activity was tested for cellobiohydrolase (CBH or CB), β-glucosidase (BG), β-N-

acetylglucosaminidase (NAG), and leucine aminopeptidase (LAP), which underwent 

fluorometric analysis on a BioTek Synergy HTX (BioTek Instruments, Inc., Winooski, VT, 

USA). Oxidative enzyme activity was tested for polyphenol oxidase (PPO) and peroxidase 

(PER), which underwent colorimetric analysis on a BioTek Synergy HTX (BioTek Instruments, 

Inc., Winooski, VT, USA). 

To characterize microbial biomass, we used simultaneous chloroform fumigation (Fierer 

2003; Setia et al. 2012) using 5 g of each soil subsample. Unfortunately, the shaking method 

used (with the tubes upright) did not allow the soil subsample to be fully fumigated, so the 

results were inaccurate and will not be further discussed. We also used a 3.50 g subsample taken 

from the last soil sample of the incubation for PLFA (Frey Lab, University of New Hampshire; 

Bligh and Dyer, 1959).  

Soil moisture was tracked over the course of the study to determine if there were 

substantial losses of water over the 8 day incubation study. Gravimetric soil moisture 

measurements were taken from each plot’s composite sample before the start of the study, and 

were taken from each subsample when removed for destructive sampling. 

 

2.6 Statistical analyses 

2.6.1 Gas fluxes 

 N2O and CO2 fluxes were calculated by fitting a linear regression to N2O and CO2 

concentrations over time while the jars were sealed. The slope of the line (ppm sec-1) was 

converted to μg g soil-1 hr-1 using the amount of dry soil in each jar, which was determined using 

gravimetric percent moisture performed on subsamples of removed soils.  

 Daily denitrification, CO2, and N2O fluxes were analyzed using a linear mixed model, 

with jar as a random effect to account for non-independent measurements from the same jar over 

time and all interactions among atmospheric treatment (N2 or ambient), temperature (freeze or 

thaw), and manure application method (inject or broadcast with incorporation by plow). 

Denitrification and N2O fluxes were log transformed to meet normality and homogeneity of error 

assumptions; however, we also included a constant variance function to account for 

heterogeneous errors among the manure and atmospheric treatments (denitrification fluxes) or 

for the atmospheric treatment (N2O fluxes). CO2 fluxes were not transformed, but the model 

included a constant variance function to account for heterogeneous errors among the temperature 
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and atmospheric treatments. Marginal and conditional R2 values were calculated using the 

piecewiseSEM package in R (Lefcheck, 2015). Marginal R2 describes the proportion of variance 

that is explained by fixed factors alone (i.e. atmospheric, manure application, and temperature 

treatments and interactions), while conditional R2 describes the proportion of variance explained 

by fixed and random factors (fixed factors previously listed plus jar; Nakagawa and Schielzeth, 

2013). Treatment significance was assessed using X2 tests. All models were fit using the nlme 

package in R (R Core Team, 2016; Pinheiro et al., 2017). 

 

2.6.2 Nitrate and ammonium 

 Nitrate and ammonium were analyzed using a linear mixed model that included all 

interactions among atmospheric treatment (acetylene, N2, or ambient), temperature treatment 

(freeze or thaw), and manure application method (injection or broadcast + plow). Non-

independent measurements from the same jar over time were accounted for by including jar as a 

random effect. A constant variance function was included to account for heterogeneous errors 

among atmospheric treatments for nitrate or among temperature treatments for ammonium.  

 We again calculated marginal and conditional R2 values using piecewiseSEM (Lefcheck, 

2015). Treatment significance was assessed using X2 tests. All models were fit using the nlme 

package (Pinheiro et al., 2017). 

 

2.6.3 Extracellular enzyme assays (EEA) 

 Extracellular enzymes were analyzed using a linear mixed model that included the same 

interactions as listed for nitrate and ammonium (see above) with jar as a random effect to 

account for non-independent measurements from the same jar over time. Data were 

untransformed for peroxidase, ln transformed for polyphenol oxidase and BG, or square root 

transformed for NAG and LAP to meet normality assumptions. CBH activity was 0 in all 

samples, so CBH was excluded from data analysis. Marginal and conditional R2 values were 

calculated as above and all models were fit using the nlme package in R (R Core Team, 2016; 

Pinheiro et al., 2017). 

 

2.6.4 Phospholipid fatty acids (PLFA) 

Arbuscular mycorrhizae (AMF), actinomycetes, total fungal biomass, and total bacterial 

biomass were determined by PLFA analysis (PLFA; Frey Lab, University of New Hampshire; 

Bligh and Dyer, 1959). For analysis, an ANOVA was run in R (RStudio Team, 2015). Data were 

untransformed, with the exception of total microbial biomass, which was log transformed to 

meet normality assumptions. Statistical models included manure, atmosphere, and temperature 

treatments, along with all interactions. Variance structures were added as needed to meet 

normality assumptions.  
 

3. Results 

3.1 Denitrification and GHG emissions 

3.1.1 Denitrification 

 Despite a marginally significant result for manure and manure by temperature interaction 

(P < 0.1), no substantial difference was found between manure treatments. Denitrification was 

greater in the thaw treatment than in the freeze treatment, but this difference was only of 

marginal significance (P<0.1; Fig. 3 and 4). Denitrification was higher from the broadcast + 
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Table 2  Analysis of variance results (P-values) for denitrification, N2O flux rates, and CO2 flux rates 

for temperature, manure, and headspace incubation treatments. The marginal R2 value describes the 

proportion of variance explained by the fixed factors and the conditional R2 describes the proportion 

of variance explained by the fixed and random factors. X2 is the chi square value and DF is degrees of 

freedom.  

 

plow soils, but again, this result was only of marginal significance (Table 2; Fig. 3). 

Denitrification was found to be significantly greater under the N2 atmosphere than under the 

ambient atmosphere (P < 0.05; Fig. 4). Denitrification was not significant for the manure by 

atmosphere, temperature by atmosphere, or manure by temperature by atmosphere interactions 

(Table 2).  

 

  

Denitrification (mg N2O-N 

g soil-1 d-1) 

N2O flux (mg N2O-N g 

soil-1 d-1) 

CO2 flux (mg N2O-N g 

soil-1 d-1) 

 Variable X2 DF P X2 DF P X2 DF P 

Manure 3.41 1 0.0650 0.38 1 0.5385 0.10 1 0.7482 

Temperature 3.17 1 0.0752 0.26 1 0.6095 59.54 1 <0.0001 

Atmosphere 19.03 1 <0.0001 13.26 1 0.0003 4.85 1 0.0277 

Manure*Temp 3.69 1 0.0547 1.01 1 0.3155 4.91 1 0.0267 

Manure*Atm 1.31 1 0.2530 0.02 1 0.8993 0.05 1 0.8308 

Temp*Atm 0.75 1 0.3866 12.14 1 0.0005 5.39 1 0.0203 

Manure*Temp

*Atm 2.46 1 0.1168 0.00 1 0.9505 0.00 1 0.9520 

Conditional R2 0.1823   0.1757   0.8734   

Marginal R2 0.1823     0.1757     0.8734     
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Fig. 4  Denitrification over time (hour) by temperature and atmospheric treatment (N2 or ambient). 

Error bars are ± 1 standard error (SE). 

 

 

 

 

 

 

 

Fig. 3  Denitrification by manure treatment (inject or broadcast + plow) and by temperature 

treatment (freeze or thaw). Error bars are ± 1 standard error (SE). 
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Fig. 6  CO2 fluxes over time (hour) by temperature and manure treatment. Error bars 

are ± 1 standard error (SE). 

3.1.2 N2O Fluxes 

No significant 

differences were found in 

N2O fluxes between 

temperature treatments, 

manure treatments, or for the 

manure by temperature, 

manure by atmosphere, or 

manure by temperature by 

atmosphere interactions 

(Table 2; Fig. 5). However, a 

significant atmosphere 

relationship and temperature 

by atmosphere interaction 

was found (Fig. 5). N2O 

fluxes were higher under the N2 atmosphere than under the ambient atmosphere, and were 

slightly higher from the freeze temperature treatment than from the thaw treatment (Fig. 5). 

 

3.1.3 CO2 fluxes 

 Fluxes of CO2 were significantly higher in the thaw than freeze treatment (P < 0.0001) 

and were significantly higher in the ambient versus N2 atmosphere treatment (P = 0.0277) (Table 

2; Fig. 7). There were also significant manure by temperature (Table 2, P = 0.0267) and 

temperature by atmosphere (Table 2, P = 0.0203) interactions. There were no real differences in 

CO2 fluxes between the soils subjected to injection or broadcast + plow in the freeze treatment, 

but CO2 fluxes from the broadcast + plow were much higher than CO2 fluxes from injection 

under the thaw treatment (Fig. 6; Table 2, significant manure by temperature). The difference 

between ambient and N2 

treatments was greater in 

the thaw than freeze 

treatment (Fig. 7; 

significant temperature by 

atmosphere interaction, 

Table 2), and emissions 

were the overall highest 

from soils thawing under 

an ambient atmosphere. 

Manure treatment alone 

and manure by 

atmosphere had no 

significant differences in 

CO2 fluxes (Table 2).  

 

 

Fig. 5 Average N2O fluxes by temperature and atmospheric treatment (N2 or 

ambient). Error bars are ± 1 standard error (SE). 
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3.2 Soil parameters 

3.2.1Physiochemical 

properties  

Soil moisture 

showed a slight 

decline over the 

course of the 

incubation study (See 

Appendix 1). At the 

start of the study, 

gravimetric soil 

moisture was, on 

average, 0.24 (24%, 

note that all soil 

moistures are 

recorded as 

percentages in 

decimal form). On 

average across all plot subsamples, the soil moisture was 0.21 at the end of the study, following 

the general trend of declining soil moisture, as seen in Appendix 1. 

 

3.2.2 Inorganic N 

No significant levels of nitrite were found in any of the soil samples during the 

incubation study, so nitrite was not analyzed further. No significant results were found for nitrate 

or ammonium either (see Appendix 2). 

 

3.2.3 Extracellular enzyme assays 

There were no significant differences found in enzyme activities (See Appendix 3). 

 

3.2.4 Phospholipid fatty acids 

Few statistically significant relationships were found with PLFA analysis: total fungal 

biomass was found to be significantly higher for manure injection and ambient atmospheric 

treatments (P<0.05, Appendix 4; Fig. 8), gram positive bacteria was found to be significantly 

higher in the thaw temperature treatment (P<0.0001, Appendix 4, Fig. 11), and gram negative 

bacteria was found to be significantly higher in the injection manure treatment (P = 0.0053, 

Appendix 4; Fig. 11) and significantly higher in the thaw temperature treatment (P<0.05, 

Appendix 4; Fig. 11). Several moderately significant (P<0.1, Appendix 3) relationships were 

found: actinomycetes were moderately higher under the freeze temperature treatment for jars 

with an ambient headspace, however actinomycetes were higher under the thaw temperature 

treatment for jars with an N2 atmosphere (Appendix 4, Temp*Atm interaction; Fig. 9), total 

bacterial biomass was moderately decreased under the plow treatment and moderately higher 

under the thaw treatment (P<0.1, Appendix 4; Fig. 10), and gram positive bacteria was 

moderately higher under the injection treatment (Appendix 4, P<0.1; Fig. 11). 

Fig. 7  CO2 fluxes over time (hour) by temperature and atmospheric treatment. Error 

bars are ± 1 standard error (SE). 
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Fig. 8  Total fungal biomass by manure and atmosphere treatment. 

Significant relationships were found for manure and atmosphere 

treatments. 

 

Fig. 9  Actinomycetes by temperature and atmosphere 

treatments. A moderately significant interaction was found 

for temperature by atmosphere. 

 

Fig. 10  Total bacterial biomass by manure and temperature treatments. Moderately significant 

relationships for manure and temperature treatments were found. 
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4. Discussion 

4.1 Denitrification and N2O flux 

We expected to see significant differences in denitrification and N2O fluxes between 

manure treatments, temperature treatments, and headspace treatments. We hypothesized that 

denitrification and N2O fluxes would follow the same trends, as we hypothesized that the 

primary source of N2O 

emissions from both plots 

would be from denitrification 

Furthermore, we expected to 

find significantly higher rates 

of denitrification and 

corresponding N2O fluxes from 

the injection treatment than we 

anticipated finding from the 

broadcast + plow treatment, as 

found by Adair et al. (2019), 

since injection of manure can 

create anaerobic microsites 

favorable for denitrification 

(Flessa and Beese, 2000; Wulf 

et al., 2002; Dell et al., 2011; 

Maguire et al., 2011; Duncan et 

al., 2017; Adair et al., 2019). 

We anticipated that the 

anaerobic atmospheric 

treatment would further 

promote denitrification and 

resulting N2O emissions and 

expected both denitrification 

and N2O fluxes to be highest from the thaw treatment, since thawing promotes microbial growth 

and respiration, as previously discussed (see Introduction). 

While our denitrification results supported our atmosphere hypothesis and marginally 

supported our temperature hypothesis, we were surprised to find that our denitrification results 

contradicted the manure treatment hypothesis, with the broadcast + plow treatment showing 

marginally higher rates of denitrification than the injection treatment. Our N2O results also 

supported our headspace hypothesis, but surprisingly, the only other significant N2O relationship 

or interaction was under the anaerobic atmosphere for the freeze treatment (Table 2), which 

partially contradicted our hypothesis and the findings by Adair et al. (2019).  

Higher denitrification and N2O fluxes from the N2 atmosphere suggests that 

denitrification was the primary process resulting in N2O emissions in this study (Phillips 2008; 

Saggar et al., 2013; Hu et al., 2015), which supports our second hypothesis. However, we have 

no way to be certain that all N2O emissions were from denitrification alone, given the relatively 

low moisture content of our soils. Nitrifier denitrification can occur in anoxic conditions, but is 

Fig. 11  Gram (+) and (-) bacteria from PLFA analysis by manure and 

temperature treatments. Significant relationships for manure and 

temperature treatments. 
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not limited to higher moisture conditions like denitrification (Yu et al., 2010; Wrage-Mönnig et 

al., 2018). Therefore, some of the denitrification activity and N2O flux may have been from 

nitrifier denitrification.  

We speculated that the higher N2O fluxes from the freeze treatment (significant 

temperature by atmosphere interaction, Table 2) were a result of methodological error. Our soil 

subsamples were very small and uninsulated, so the time out of the freezer for gas sampling and 

headspace restoration may have been great enough to allow the samples to thaw. Additionally, 

both incubation treatment temperatures rose between 5 and 10oC each day during sampling from 

opening the incubators multiple times while removing and replacing jars, so jars were not 

immediately restored to the correct incubation temperature following sampling. If the soil 

samples from the freeze incubation thawed enough, they would have experienced FTC-like 

conditions, which could explain the higher N2O flux rates from the freeze treatment (Matzner 

and Borken, 2008; Zhang et al., 2011; Congreves et al., 2018). This may also explain the lack of 

significant temperature results for both denitrification and N2O flux, since thawing during a 

simulated FTC in the frozen jars may cause bursts of microbial activity (Risk et al., 2013; 

Congreves et al., 2018). As a result, we were not comparing denitrification and N2O flux 

between a frozen control and a thawing soil, but instead were comparing denitrification and N2O 

flux between soils experiencing FTC and those that were continuously thawing.  

Other aforementioned contradictions between our findings and that of Adair et al. (2019) 

and the rejection of several of our hypotheses may be a result of our soil homogenization 

procedure, which caused soil matrix and aggregate disruption. Intact soils are heterogeneous, and 

can have high variability in mineral and organic content, nutrient availability, nutrient transport, 

porosity, and water and gas diffusivity (Six et al., 2004; Ebrahimi and Or, 2016; Wang et al., 

2019). Microbial and nutrient dynamics exist within and between macro- and micro-aggregates 

and are influenced by aggregate size, soil physical properties, and changes to the soil 

environment, such as FTC disruption or fertilization (Or et al., 2007; Kuzyakov and 

Blagodatskaya, 2015; Bach et al., 2018). Microbial activity is constrained to so-called 

“hotspots,” or microsites within or between soil aggregates that contain adequate conditions for 

growth (Kuzyakov and Blagodatskaya, 2015). These microsites are not necessarily connected 

and are as heterogeneous as the soil matrix they exist in, resulting in high variation in microbial 

community composition and dynamics on both the aggregate and soil matrix levels (Sexstone et 

al., 1985; Six et al., 2004; Kremen et al., 2005; Kuzyakov and Blagodatskaya, 2015; Ebrahimi 

and Or, 2016; Hagemann et al., 2017). In turn, microbial communities actively shape aggregate 

properties and dynamics through modification of nutrient, water, and O2 availability, creating a 

feedback loop (Rabot et al., 2018). For example, aggregate and microbial dynamics may 

indirectly influence N2O emissions as anaerobic “hotspots” for denitrification can be created 

within an aerobic matrix (van Bochove et al., 2000; Manucharova et al., 2001; Six et al., 2004; 

Henry, 2007; Ebrahimi and Or, 2016; Bocking and Blyth, 2018; Wang et al., 2019). Biotic and 

abiotic changes can cause major shifts in microbial communities and pore-scale interactions by 

affecting inter- and intra-aggregate dynamics, which are delicate and highly sensitive to soil 

changes (Or et al., 2007; Helgason et al., 2010; Wang and Or, 2010; Bach et al., 2018). 

Studies analyzing aggregate-related effects on microbial activity and N2O emissions are 

inconsistent (Kværnø & Øygarden, 2006; Matzner and Borken, 2008; Makoto et al., 2010; Risk 
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et al., 2014; Li et al., 2015), but seem to be most strongly correlated to available C and soil 

moisture (Kuzyakov and Blagodatskaya, 2015; Ameloot et al., 2016; Bach et al., 2018; Bocking 

and Blyth, 2018). In unfrozen soils, microbial movement, growth, and nutrient uptake relies 

heavily on the existence of water or aqueous films within and between aggregates (Sehy et al., 

2004; Or et al., 2007; Wang and Or, 2010; Kuzyakov and Blagodatskaya, 2015). When soils 

freeze, solutes are concentrated into thin films of water around and within aggregates, which can 

remain liquid at temperatures below 0oC (Jefferies et al., 2010; Risk et al., 2014). Microbial 

survival during freezing has been positively correlated with the existence of these films and with 

the water-holding capacity of the soil upon freezing (Yanai et al., 2004; Matzner and Borken, 

2008; Jefferies et al., 2010; Phillips et al., 2010; Congreves et al., 2018; Wang et al., 2019), and 

could be particularly important for denitrifying microbes, as there is limited O2 diffusion in these 

aqueous films (Wang et al., 2008; Ebrahimi and Or, 2016).  

In summary, microbial activity only occurs in small pockets (hotspots) within the greater 

soil matrix, and is constrained by complicated biotic and abiotic dynamics within and between 

aggregates, specifically by substrate availability and WFPS. We speculated that homogenization 

altered the aforementioned soil properties, disrupting interactions and dynamics in the soil by 

breaking up aggregates, water films, and high-quality microsite habitats (Kuzyakov and 

Blagodatskaya, 2015). For example, if homogenization separated many previously-interacting 

communities, nutrient dynamics such as coupled nitrification-denitrification could be changed 

(Khalil et al., 2004; Sey et al., 2008; Cantera and Stein 2007; Kool et al., 2011; Butterbach-Bahl 

et al., 2013), a portion of the soil microbes may have been rendered inactive due to a lack of 

microsites, and low soil moisture may have impeded restoration of nutrient flow through cell- 

and pore-interactions (Stevens et al., 1997; Six et al., 2004; Or et al., 2007; Wang and Or, 2010; 

Ebrahimi and Or, 2016; Hagemann et al., 2017).  

Additionally, our samples were frozen at -20oC for 57 days (April 3, 2018 to May 30, 

2018), and likely froze rapidly due to their small size. This could be problematic for three 

reasons: (1) samples were frozen to a temperature that is highly unlikely to occur in situ, 

reducing microbial survival and potentially shifting community composition, (2) destruction of 

aggregates and aqueous films in low moisture conditions may have reduced nutrient exchange, 

microbial mobility, and the number of habitable sites upon freezing, and (3) freezing low-

moisture soils can lead to further drying of the soil (Six et al., 2004; Sharma et al., 2006; Henry, 

2007; Or et al., 2007; Wang and Or, 2010; Wang et al., 2011; Ebrahimi and Or, 2016; Thornton 

et al., 2016). Almost all jars saw a reduction of soil moisture over the course of the study 

(Appendix 1), which may have further suppressed denitrification-related N2O emissions (Wrage 

et al., 2001; Wallenstein et al., 2006; Butterbach-Bahl et al., 2013). 

It is possible that homogenization could have impacted the injection soils and the 

broadcast + plow soils differently, which may explain the marginally higher denitrification rates 

from the broadcast + plow treatment soils over the injection soils. Reduced tillage has been 

found to increase N, labile C, aggregate stability, occurrence of anaerobic microsites, microbial 

populations, and shift community composition to have higher numbers of anaerobic microbes, 

while reducing frost depth and O2 diffusivity (van Bochove et al., 2000; Phillips, 2008; Helgason 

et al., 2010; Zhang et al., 2018). Given that microbial communities are very sensitive to soil 

conditions, major differences can be found in microbial richness and diversity between adjacent 



22 
 

soils that share all but a few characteristics (Mangalassery et al., 2013; Ebrahimi and Or, 2016; 

Sun et al., 2016; Bach et al., 2018). Radical alteration of aggregate properties, nutrient 

availability, microbial community composition, and microbial activity can occur with changes in 

management practices, including tillage (Jacinthe et al., 2002; Helgason et al., 2010; Blaud et al., 

2012; Li et al., 2015; Bocking and Blyth, 2018), which may translate to the effects of 

homogenization. In the field, microbial communities in the soils subject to the injection 

treatment experience a relatively undisturbed soil matrix, likely with higher aggregate stability, 

while the microbial communities in the broadcast + plow plots experience annual aggregate 

disruptions during manure incorporation. As a result, the microbial communities from the 

injection plots may have been more sensitive to homogenization, destruction of microsite 

conditions, and a rapid freeze than the soils from broadcast + plow plots, thus leading to lower 

denitrification and N2O emissions from the injection soils than from the broadcast + plow soils.  

Methodological differences between the current incubation study and that of Adair et al. 

(2019) further support our speculation that low soil moisture combined with high soil structure 

disruption affected our results. Adair et al. (2019) used intact soil cores, thereby retaining in situ 

soil structure, aggregates, and aqueous microsites. Denitrification can occur in lower moisture 

conditions if there is adequate labile C (Wang et al., 2008; Hagemann, 2017). Since soil moisture 

was very similar between the two studies but results were very different, the use of intact cores 

may have better preserved microsites, supporting denitrifier communities and activity, 

particularly within the injection treatment samples. Additionally, soil cores used by Adair et al. 

(2019) were insulated, reducing the speed at which the cores could freeze and thaw, and 

simulating unilateral (top down) FTCs as they would occur in the field (Hu et al., 2006). 

 

4.2 CO2 fluxes  

Unlike N2O fluxes and denitrification, CO2 fluxes were responsive to all three treatments. 

CO2 fluxes are a measure of C mineralization and soil respiration, influenced by temperature, C 

availability, soil moisture, microbial abundance, C storage, aggregate structure, and aggregate 

stability (Raich and Tufekciogul, 2000; Sey et al., 2008; Ferrara et al., 2017), and are largely 

from aerobic respiration (Bridgham and Richardson, 1992). Higher CO2 fluxes under thaw 

conditions could be a result of higher mineralized C, or higher rate of microbial decomposition 

from those that had lysed during freeze (Six et al., 2004; Makoto et al., 2010). As expected, 

general microbial respiration was the highest under ambient conditions, but denitrification and 

N2O fluxes were higher under anaerobic conditions, suggesting that CO2 fluxes were not caused 

by the same mechanisms as N2O fluxes.  

 

4.3 Microbial activity and nutrient availability 

The majority of both nitrifying (e.g. Nitrosomonas and Nitrobacter) and denitrifying (e.g. 

Pseudonomas and Alcaligenes) bacteria in soils are gram negative bacteria, which are generally 

the smallest bacteria and very sensitive to drought and water stress (Gamble et al., 1977; Mosier 

et al., 1983; Tiedje, 1988, Ji et al., 2015). Actinomycetes are a type of gram positive (larger than 

gram negative and more resistant to water stress) denitrifying bacteria that is typically anaerobic, 

requiring moist soils and a relatively neutral pH (Ji et al., 2015; Barka et al., 2016).  
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Significantly higher gram positive, gram negative, and total bacterial biomass under the 

thaw treatment supported our hypothesis that microbial growth would occur as the soils thawed 

and provided more favorable temperatures and physiochemical soil conditions (Kim et al., 2012; 

Risk et al., 2013). Since actinomycetes are denitrifiers, higher actinomycete biomass under the 

anaerobic conditions for the thaw treatment supported our hypothesis, but higher actinomycete 

occurrence under ambient conditions for the freeze treatment did not support our hypothesis, and 

we were unable to explain this occurrence. It is possible that there were changes in and 

interactions between microbial and fungal communities over the course of the study (Bach et al., 

2018), but we have no valid way to quantify or predict these potential changes or interactions, 

given data limitations. 

Significantly higher amounts of gram positive, gram negative, and total bacterial biomass 

were found in the injection soils. The occurrence of higher numbers of the aforementioned 

bacterial communities under the injection treatment was surprising when compared to marginally 

higher denitrification rates and significantly higher CO2 fluxes occurring in the broadcast + plow 

soils. These results affirm that there were higher numbers of these microbes in the injection soils, 

which could suggest that there were high numbers of inactive microbes in the injection soils that 

did not add to denitrification or flux rates. Although microbial biomass in the injection soils 

conflicted with denitrification and N2O flux levels, these results support other studies that have 

found reducing tillage and aggregate disruption in nutrient-rich sites to increase microbial 

biomass, particularly that of denitrifying microbes (Helgason et al., 2010; Blaud et al., 2012; 

Zhang et al., 2013; Zhang et al., 2018), and support our speculation about the effects of 

homogenization on our results. Significantly higher total fungal biomass in the injection soils and 

under ambient conditions (Fig. 8; Appendix 4), supports findings that plowing can reduce fungal 

activity by breaking up fungal hyphae (Helgason et al., 2010; Li et al., 2015). 

EEA provided no significant results, suggesting that there was very little microbial 

activity occurring at the time of sampling (Appendix 3; Bell et al., 2013). Furthermore, levels of 

NH4
+ and NO3

- were relatively low (approximately 4 mg N kg soil-1), NO2
- levels were near zero, 

and no significant treatment results were found for NO3
-, or NH4

+ (Appendix 2). Low levels of 

inorganic N may partially explain the low levels of microbial activity, as NO3
- is a limiting factor 

for denitrification and NO2
- and NH4

+ are limiting factors for nitrification (Phillips 2008; Saggar 

et al., 2013; Hu et al., 2015), and the duration of microbial activity is linked to labile nutrient 

availability (Kuzyakov and Blagodatskaya, 2015). Low nutrient levels and extreme freeze 

temperatures, combined with disruption of the soil matrix, aggregates, and aqueous microsites 

may have placed too much stress on the microbial communities, which may have caused 

microbes to become inactive or a die-back during freeze with few nutrients and viable sites to 

support high population activity or growth upon thaw (Or et al., 2007; Hao et al., 2001; Wang 

and Or, 2010; Makoto et al., 2014).  

 

5. Conclusions 

In summary, N2O emissions during FTCs are a function of microbial activity and nutrient 

availability, which are related to aggregate physiochemical properties, such as C and N levels, 

porosity, water content, and O2 diffusion (Or et al., 2007; Risk et al., 2014; Kuzyakov and 

Blagodatskaya, 2015; Bach et al., 2018). While it is known that both manure application method 



24 
 

and FTCs can heavily influence N2O fluxes independently, large knowledge gaps still exist 

surrounding interactions between the two. This study built off of the previous work by Adair et 

al. (2019), exploring the driving mechanisms that caused soils subject to fertilizer injection to 

have higher N2O fluxes during simulated thawing and FTCs than those from soils subject to 

broadcast + plow incorporation. 

Our findings were inconsistent, with some supporting our hypotheses and others 

contradicting both our hypotheses and the findings of Adair et al. (2019). Our findings suggest 

that homogenization of samples under low soil moisture conditions may have been detrimental to 

microbial community survival, microbial activity, and aggregate dynamics (Or et al., 2007; Li et 

al., 2015). While injection soils were found to generally have higher microbial biomass, 

denitrification was higher from broadcast + plow, suggesting that microbial communities in the 

injection soils may have been less tolerant of aggregate disturbance, causing them to become 

more inactive than those in the broadcast + plow soils. FTC action may have occurred in the 

freeze treatment soils during sampling, explaining the higher flux of N2O from the freeze 

treatment.  

In future studies, several steps can be taken to mitigate potential effects of soil structure 

destruction on incubation studies. First of all, use of undisturbed soil cores is recommended, 

allowing for laboratory study of the soil that best retains in situ aggregate and matric dynamics 

(Or et al., 2007; Kuzyakov and Blagodatskaya, 2015; Li et al., 2015). Second, collecting soils 

closer to the initiation of the incubation study and freezing them at the minimum temperature 

occurring in situ can minimize the potential for unrealistic levels of cell death that may be caused 

by extreme freezer temperatures (Henry, 2007). Finally, insulation of soil cores and unilateral 

freezing and thawing is recommended, as this would most closely represent FTC dynamics 

occurring in the field (Hu et al., 2006). Future research examining interactions between 

aggregate dynamics, soil moisture, microbial biomass and activity, and N2O emissions during 

FTCs may help to solve unanswered questions that remain surrounding FTC-induced N2O 

emissions (Wang et al., 2019). Studies examining the effects that homogenization may have on 

laboratory incubation results and on potential relationships between field management (i.e. 

tillage versus no tillage) and homogenization-induced changes in soil samples may be useful to 

improve the accuracy of laboratory incubation study methodologies and results.  
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Appendix 

Appendix 1  Soil moisture over time 

 

Appendix 1  The plots show soil moisture as a fraction of total sample weight over the course of the study. Each plot 

represents one of the 48 jars in the study, with the points showing the change in subsample soil moisture within each 

jar over time. The first point on each plot represents the initial soil moisture of the composite sample from which the 

jar’s subsamples came from, and the four points following the initial point show the soil moisture of the first, 

second, third, and fourth subsamples within the jar, respectively. Gravimetric soil moisture of the subsamples was 

determined upon destructive sampling, which occurred on Days 1, 2, 4, and 7.  
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Appendix 2  Nitrate and ammonium analysis 

   Variable X2 DF P  R2 

Nitrate (mg N kg soil-1)     

 Manure 0.164 1 0.6851  

 Temperature 0.328 1 0.5670  

 Atmosphere 2.577 1 0.1085  

 Manure*Temp 0.087 1 0.7678  

 Manure*Atm 0.007 1 0.9342  

 Temp*Atm 0.014 1 0.9059  

 Manure*Temp*Atm 0.172 1 0.6781  

 Marginal R2    0.0683 

 Conditional R2    0.0683 

Ammonium (mg N kg soil-1)     

 Manure 1.1546 1 0.2826  

 Temperature 0.0024 1 0.9613  

 Atmosphere 0.0621 1 0.8032  

 Manure*Temp 0.0373 1 0.8469  

 Manure*Atm 0.0515 1 0.8204  

 Temp*Atm 0.1593 1 0.6898  

 Manure*Temp*Atm 0.0106 1 0.9182  

 Marginal R2    0.0460 

  Conditional R2       0.5716 

 

Appendix 3  The table shows analysis of variance results (P-values) for nitrate and ammonium levels of all soil 

subsamples. The marginal R2 value describes the proportion of variance explained by the fixed factors and the 

conditional R2 describes the proportion of variance explained by the fixed and random factors. X2 is the chi square 

value and DF is degrees of freedom. No significant results were found for any relationships or interactions. 
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Appendix 3    Extracellular enzyme ANOVA

 Enzyme (nmol g soil-1)   Variable X2 DF P Marginal R2 Conditional R2 

BG Manure 0.070 1 0.7921 0.0359 0.3618 

 Temperature 0.352 1 0.5531   

 Atmosphere 0.002 1 0.9641   

 Manure:Temperature 0.045 1 0.8313   

 Manure:Atmosphere 0.328 1 0.5668   

 Temperature:Atmosphere 0.634 1 0.426   

 Manure:Temperature:Atmosphere 0.148 1 0.7009   

LAP Manure 0.059 1 0.8074 0.0605 0.1341 

 Temperature 0.001 1 0.9789   

 Atmosphere 0.554 1 0.4568   

 Manure:Temperature 1.647 1 0.1994   

 Manure:Atmosphere 0.017 1 0.8971   

 Temperature:Atmosphere 0.308 1 0.5792   

 Manure:Temperature:Atmosphere 1.371 1 0.2416   

NAG Manure 1.281 1 0.2578 0.0925 0.0925 

 Temperature 1.180 1 0.2773   

 Atmosphere 0.002 1 0.9654   

 Manure:Temperature 1.231 1 0.2671   

 Manure:Atmosphere 0.842 1 0.3589   

 Temperature:Atmosphere 2.589 1 0.1076   

 Manure:Temperature:Atmosphere 0.114 1 0.7355   

Polyphenol oxidase Manure 1.003 1 0.3167 0.0401 0.0401 

 Temperature 1.144 1 0.2849   

 Atmosphere 0.000 1 0.9926   

 Manure:Temperature 0.251 1 0.6162   

 Manure:Atmosphere 0.726 1 0.3943   

 Temperature:Atmosphere 0.024 1 0.8771   

 Manure:Temperature:Atmosphere 0.209 1 0.648   

Peroxidase Manure 0.386 1 0.5343 0.0347 0.0347 

 Temperature 0.021 1 0.8852   

 Atmosphere 0.036 1 0.8497   

 Manure:Temperature 0.205 1 0.6505   

 Manure:Atmosphere 0.989 1 0.3201   

 Temperature:Atmosphere 0.672 1 0.4124   

  Manure:Temperature:Atmosphere 0.245 1 0.6206     

Appendix 3  The table shows analysis of variance results (P-values) for extracellular enzyme (BG, LAP, NAG, 

polyphenol oxidase, and peroxidase) levels of all soil subsamples. The marginal R2 value describes the proportion of 

variance explained by the fixed factors and the conditional R2 describes the proportion of variance explained by the fixed 

and random factors. X2 is the chi square value and DF is degrees of freedom. No significant results were found for any 

relationships or interactions. 
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Appendix 4  ANOVA table for PLFA variables 

Microbial pool           

 (nmol g soil-1)   Variable X2 DF P  R2  

AMF Manure 0.061 1 0.8042 0.0701 

 Temperature 0.393 1 0.5307  

 Atmosphere 2.601 1 0.1068  

 Manure*Temp 0.520 1 0.4709  

 Manure*Atm 1.539 1 0.2147  

 Temp*Atm 2.687 1 0.1012  

 Manure*Temp*Atm 0.933 1 0.3342  
Actinomycetes Manure 0.147 1 0.7016 0.0623 

 Temperature 0.098 1 0.7543  

 Atmosphere 1.616 1 0.2037  

 Manure*Temp 0.461 1 0.4970  

 Manure*Atm 2.271 1 0.1318  

 Temp*Atm 3.337 1 0.0677  

 Manure*Temp*Atm 0.599 1 0.4389  
Total fungi Manure 7.623 1 0.0058 0.3160 

 Temperature 0.157 1 0.6924  

 Atmosphere 6.898 1 0.0086  

 Manure*Temp 0.478 1 0.4895  

 Manure*Atm 0.415 1 0.5193  

 Temp*Atm 0.408 1 0.5232  

 Manure*Temp*Atm 0.827 1 0.3632  
Total bacteria Manure 2.905 1 0.0883 0.2472 

 Temperature 3.296 1 0.0695  

 Atmosphere 0.000 1 0.9889  

 Manure*Temp 0.171 1 0.6790  

 Manure*Atm 0.001 1 0.9762  

 Temp*Atm 0.875 1 0.3497  

 Manure*Temp*Atm 1.326 1 0.2495  
Gram + bacteria Manure 3.258 1 0.0711 0.2593 

 Temperature 47.143 1 <0.0001  

 Atmosphere 0.003 1 0.9576  

 Manure*Temp 0.583 1 0.4451  

 Manure*Atm 0.569 1 0.4508  

 Temp*Atm 1.953 1 0.1623  

 Manure*Temp*Atm 0.637 1 0.4249  
Gram - bacteria Manure 7.758 1 0.0053 0.4391 

 Temperature 5.293 1 0.0214  

 Atmosphere 0.941 1 0.3320  

 Manure*Temp 0.006 1 0.9367  

 Manure*Atm 0.099 1 0.7535  

 Temp*Atm 0.322 1 0.5706  
  Manure*Temp*Atm 0.264 1 0.6073   

 

Appendix 4  The table shows analysis of variance results (P-values) for the microbial pool (AMF, actinomycetes, 

total fungal biomass, total bacterial biomass, gram positive (+) bacteria, and gram negative (-) bacteria) tested for 

using PLFA in the Day 7 soil subsamples. The marginal R2 value describes the proportion of variance explained by 

the fixed factors and the conditional R2 describes the proportion of variance explained by the fixed and random 

factors. X2 is the chi square value and DF is degrees of freedom. 
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